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Abstract: This paper compares two voting methods commonly used in

presidential elections: simple plurality voting and plurality runoff. In a situ-

ation in which a group of voters have common interests but do not agree on

which candidate to support due to private information, information aggrega-

tion requires them to split their support between their favorite candidates.

However, if a group of voters split their support between their favorite can-

didates, they increase the probability that the winner of the election is not

one of them. In a model with three candidates, due to this tension between

information aggregation and the need for coordination, plurality runoff leads

to higher expected utility for the majority than simple plurality voting if the

information held by voters about the candidates is not very accurate.
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1 Introduction

Consider a group of voters who must decide between three candidates, say, A,

B, and C, for a single public office. Some of the voters clearly prefer candidate

C to the other two. The rest of the voters, presumably the majority, must

decide whether to support candidate A or B. Under certain circumstances, it

would be better for the majority to elect A, while under other circumstances

it would be better to elect B. Voters do not know with certainty which of

the two cases holds. There is, however, some information dispersed among

voters. An election might be an opportunity to aggregate the information

about the desirability of electing A or B. The ability to aggregate information

rests on the possibility of majority voters splitting their support between A

and B, according to the private information they may have. Nevertheless, if

voters in the majority split their support between two candidates, they run

the risk of losing the election to the candidate supported by the minority.

Thus, there is a potential conflict between information aggregation and voter

coordination. This paper explores this conflict within the context of a game-

theoretic model where voters behave as rational, strategic agents. Attention

is restricted to the two common voting methods used in presidential elections:

simple plurality voting and plurality runoff.

The model shows that there are at least three equilibria under simple

plurality. In one of them, majority voters vote according to their private

information, and in the other two, majority voters coordinate in support-

ing only A or only B. If the expected voting share of candidate C is low

enough, the first equilibrium is likely to lead to successful information ag-

gregation in the sense that the most desirable alternative for the majority is

elected. However, if the expected voting share of candidate C is high enough,

successful information aggregation is possible only if the information held by

majority voters about the candidates is very accurate. Otherwise, it is better

for majority voters to disregard their private information and to coordinate

in supporting only A or only B.

Under plurality runoff, on the other hand, there is (under certain condi-

tions) only one equilibrium,1 in which voters vote according to their private

1To avoid dealing with abstention, the analysis of plurality runoff focuses on the case
in which candidate C is high enough, a condition which will be elaborated on further in
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information. In this equilibrium, information is successfully aggregated in

the sense that the most desirable alternative for the majority either wins an

outright victory in the first round or makes it into the runoff election.

This model can help illuminate some common concerns about the effects

of plurality runoff in presidential regimes, particularly in Latin America,

where five out of 18 countries employ plurality voting and twelve employ

plurality runoff in presidential elections (Nohlen 1997). Opinion in Latin

America turned towards plurality runoff in part as a result of the victory

of Allende in a disputed three-way race in Chile and the subsequent demise

of democracy by the military intervention of 1973.2 More recently, plurality

runoff has been criticized as leading to a proliferation of candidates, due to

low costs of entry, which may lead in the long run to a lack of consolidation

of a bipartisan system (Shugart and Carey 1992). In the model proposed,

equilibrium under plurality runoff does lead potentially to a larger number of

serious candidates than plurality voting. However, the model casts a positive

light on this apparent weakness of plurality runoff as it is a condition for

successful information aggregation in a single election.

Moreover, in some episodes such as Fujimori’s victory in Peru’s 1990 pres-

idential election, the runoff voting method has been charged with leading to

seemingly erratic behavior by voters.3 The evolution of voters’ intentions

before the first round of Peru’s 2000 presidential elections was again con-

sider erratic by the media. This time Fujimori was running for reelection,

and opinion polls showed swift variations in the support for the different op-

position candidates.4 Our model suggests that voters may appear “fickle”

before the first round of a plurality runoff election precisely because equi-

librium behavior requires them to react to all sources of information about

the paper.
2Chile’s 1925 constitution provided for the Chamber of Deputies to decide between the

two candidates with the most votes, assuming neither one had the majority. However,
until the military coup, presidential elections operated de facto under plurality voting,
since whenever the chamber was required to decide, it picked the candidate with the most
votes.

3Schmidt (1996) emphasizes the importance of electoral rules to explain Fujimori’s
victory over Vargas Llosa. Vargas Llosa (1993) contains a very readable account of that
election.

4See e.g. “Cholo Challenge,” The Economist, March 25, 2000. Eventually, Fujimori
won a runoff election amidst widespread allegations of fraud.
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the desirability of the alternatives with less regard for possible coordination

problems than under simple plurality. The apparent fickleness of voters may

be a rational reaction to poor information about the candidates. 5

It has been noted that plurality runoff has the potential for leading to the

election of a president with little congressional support. This might be the

case if a completely different method such as proportional representation with

large electoral districts were used to elect the congress. The model proposed

here does not take into account the possible incompatibility between the

methods used for electing the president and those used for the congress (an

issue dealt with by Shugart and Carey in their 1992 analysis of electoral

institutions and also by Mainwaring and Shugart, 1997). This important

topic is left for future research. Also, the analysis of a lower threshold than

50% for victory in the first round is left for future work.

On a more technical note, the analysis of large voting games within a

framework of rational strategic voters carried out here is complicated because

it requires voters to compare the probabilities of the different situations in

which a vote may be decisive, even if all these probabilities are nearly zero

for a large electorate. The task has been made relatively easier by the intro-

duction of Poisson games by Myerson (1997, 1998a, 1998b), which allow to

compute the ratios between limit probabilities of different events with large

electorates. The analysis in this paper is carried out within a framework of

Poisson games. Other applications of this framework include Feddersen and

Pesendorfer’s (1999) analysis of abstention in two-way races and Myerson’s

(1998c) analysis of scoring rules (a class of voting rules that excludes runoff)

in three-way races with complete information.

2 Basics

A group of voters must choose one out of three alternatives. Alternatives

are denoted by X ∈ {A,B,C}. There are three types of voters, denoted by

t ∈ {t1, t2, t3}. Each voter’s preferences over the alternatives depend on the

voter type and the state of the world, ω ∈ {ω1, ω2}. Denote by U(X, t, ω) the

5A formal analysis of opinion polls would require to introduce another stage in the game,
before the elections, and is beyond the scope of this paper. Some early and interesting
references are Simon (1954) and McKelvey and Ordeshook (1985).
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utility payoff for a type t voter if the state is ω and alternative X is chosen.

It is assumed that for every alternative X, U(X, t1, ω) = U(X, t2, ω), and for

t = t1, t2,

U(C, t, ω1) = U(C, t, ω2) = U(B, t, ω1)

< U(A, t, ω1) = U(A, t, ω2) < U(B, t, ω2).

That is, voters of types t1 and t2 have common preferences, they would like

alternative A to be chosen in state ω1 and alternative B to be chosen in state

ω2, and they are at best indifferent between alternative C and any other

alternative. It might be useful to think of alternative B as an “entrant”

about which there is imperfect information disseminated among majority

(i.e., t1 and t2) voters.

Define

uAB =
U(B, t1, ω2)− U(A, t1, ω2)

U(A, t1, ω2)− U(C, t1, ω2)
and uCB =

U(B, t1, ω2)− U(C, t1, ω2)

U(A, t1, ω2)− U(C, t1, ω2)

to be the relative gain for t1 and t2 voters of choosing alternative B instead

of A or C in state ω2 . Note that uAB, uCB > 0.

It is also assumed that for ω = ω1, ω2,

U(A, t3, ω) = U(B, t3, ω) < U(C, t3, ω).

That is, voters of type t3 would like alternative C to be chosen, regardless

of the state of the world, and they are indifferent between the other two

alternatives.

Prior beliefs about the state of the world are denoted by q(ω), with

q(ω1) + q(ω2) = 1. The number of voters is a random variable that has a

Poisson distribution with mean n. That is, the probability that there are k

voters is

P (k;n) = e−nnk/k!

Each voter type is drawn from a distribution function that depends on the

state of the world. Denoting by r(t|ω) the probability that a random voter

is of type t given state ω, it is assumed that

r(t1|ω1) = r(t2|ω2) = r11 > 0,

r(t1|ω2) = r(t2|ω1) = r12 > 0,

r(t3|ω1) = r(t3|ω2) = r3 > 0,
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with

r11 + r12 + r3 = 1 and r11 > r12.

That is, a voter is more likely to be of type t1 than of type t2 if the state is

ω1, and the opposite if the state is ω2. It is also assumed that r3 < 1/2, so

that voters of type t3 are likely to be a minority with respect to the combined

population of types t1 and t2. Given a state ω, the random number of type

t voters has a conditional probability distribution that is Poisson with mean

nr(t|ω), as discussed by Myerson (1997). The fraction

r11

r11 + r12

represents how accurate is the information held by majority voters about

candidates A and B.

Let q(ω|t) denote the posterior beliefs of a type t = t1, t2 voter about

state ω. Then

q(ω1|t1) =
r11q(ω1)

r11q(ω1) + r12q(ω2)
, q(ω2|t1) = 1− q(ω1|t1),

q(ω1|t2) =
r12q(ω1)

r12q(ω1) + r11q(ω2)
, q(ω2|t2) = 1− q(ω1|t2).

Note that r11 > r12 implies

q(ω1|t1)/q(ω2|t1) > q(ω1|t2)/q(ω2|t2).

In what follows, two different voting methods are considered in this setup:

simple plurality voting and plurality runoff. These methods presents voters

with different games, so that equilibrium predictions are potentially different.

Since it has been assumed that the combined population of t1 and t2 voters are

likely to be a majority (arbitrarily likely, for large n), a reasonable criterion to

judge a voting method is to look at the expected utility of t1 and t2 voters in

equilibrium. Note that the expected utility of t1 and t2 voters in equilibrium

is bounded from above by U(A, t1, ω1)q(ω1) +U(B, t1, ω2)q(ω2). It will be of

particular interest to determine under which conditions this upper bound is

attainable under each voting method.
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3 Plurality Voting

Under plurality voting, each voter must cast simultaneously a vote for either

A, B or C, and the alternative that receives most votes is chosen. Ties are

broken alphabetically. This choice of a tie breaking rule is made only for

expositional convenience and other tie breaking rules such as a fair coin toss

will lead to the same results.6

A strategy function is a mapping σ : {t1, t2, t3} → ∆({A,B,C}), where

σ(X|t) is the probability that a voter will vote for alternative X if his type

is t. Note that σ(X|t) ≥ 0 for every X and every t, and
∑

X σ(X|t) = 1 for

every t. Each voter’s behavior as predicted by the strategy function depends

only on his type because, as discussed by Myerson (1997), two voters of

the same type have no commonly known attributes by which others can

distinguish them. A strategy function σ is an equilibrium under plurality

rule if it maximizes the expected utility of every given voter when other

voters use the strategy σ.

For a given strategy function, the probability that a random voter votes

for alternative X in state ω is denoted by τ(X|ω) where

τ(X|ω) =
∑
t

σ(X|t)r(t|ω).

Given a strategy function, the number of voters who choose X if the state is

ω is a Poisson random variable with mean τ(X|ω)n, for X = A,B,C. From

the discussion in Myerson (1997a), these are independent random variables.

Moreover, from the viewpoint of any given voter, the number of other voters

who vote for X in state ω is described by the same random variable that the

total number of voters who vote for X. Thus, the probability that k, l,m

other voters vote for A,B and C, respectively, is just

P (k; τ(A|ω)n)P (l; τ(B|ω)n)P (m; τ(C|ω)n).

This probability will be denoted P σ(k, l,m|ω).

6A similar choice is made by Palfrey (1989) and Fey (1997), for identical reasons. A
random tie-breaking rule would increase the number of events to be considered in Lemma
2 below. The events disregarded, however, correspond to near three-way ties, so their
probability converges very fast to zero.
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Note that, for a t1 or t2 voter, voting for C is a strictly dominated strategy

if there is some positive probability that voting for C actually leads to C being

chosen, while voting for A leads to A being chosen. But this probability is

positive independently of the strategy chosen by other voters because the

event that the total number of voters is one has no zero probability. For a t3
voter, voting for C is a strictly dominant strategy for the same reason. Thus:

Lemma 1 Given any strategy σ followed by every other voter, if a voter is

playing a best response then he will vote for C with probability 0 if his type

is t1 or t2 and with probability 1 if his type is t3. Thus, if σ is an equilibrium

strategy, σ(C|t1) = σ(C|t2) = 0 and σ(C|t3) = 1. 2

It remains to determine conditions under which t1 and t2 voters will sup-

port alternative A or B. In deciding how to vote, a strategic voter takes into

account exclusively the events in which his vote is pivotal – i.e., it actually

makes a difference with respect to the outcome of the election. Those events

are in this model {voting for A yields A but voting for B yields B}, {voting

for A yields A but voting for B yields C}, and {voting for A yields C but

voting for B yields B}. The probabilities of these events depend on the state

of the world and on the strategy followed by other voters, and are given

below:

pσAB(ω) =
∞∑
k=0

k+1∑
m=0

P σ(k, k,m|ω) + P σ(k, k + 1,m|ω),

pσAC(ω) =
∞∑
k=0

k∑
m=0

P σ(k,m, k + 1|ω),

pσCB(ω) =
∞∑
k=0

k∑
m=0

P σ(m, k + 1, k + 2|ω).

These three probabilities involve near two-way ties, and converge to zero

as the expected number of voters n goes to infinity. To determine the best

response of a t1 or t2 voter in a large election, it is useful to know how fast

these probabilities converge to 0. The following lemma answers that question.
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Define

T (ω) = (τ(A|ω)τ(B|ω)τ(C|ω))1/3.

Then

Lemma 2 For (X, Y, Z) = (A,B,C), (A,C,B), (C,B,A) and ω = ω1, ω2,

lim
n→∞

log pσXY (ω)

n
=

 −(τ(X|ω)1/2 − τ(Y |ω)1/2)2 if T (ω) ≥ τ(Z|ω)

−1 + 3T (ω) if T (ω) < τ(Z|ω).
2

Note that

−(τ(X|ω)1/2 − τ(Y |ω)1/2)2 ≥ −1 + 3T (ω)

with strict equality if and only if T (ω) = τ(Z|ω) > 0. The proof of the

lemma is in the appendix and is an application of the “magnitude theorem”

in Myerson (1998b). The lemma states that the probability of a near tie

between two alternatives goes faster to zero if the probability that a random

voter votes for the excluded alternative is higher than the geometric mean

of the probabilities of voting for each of the three alternatives. Otherwise,

the probability of a near tie between two alternatives goes faster to zero the

larger is the difference between the probabilities that a random voter will

vote for each of the two alternatives. Note also that if

lim
n→∞

log pσAB(ω)

n
> lim

n→∞

log pσAC(ω)

n

then

lim
n→∞

pσAC(ω)

pσAB(ω)
= 0,

and similarly for the other pairs of probabilities. This fact will be used

throughout the paper.

Going back to the problem of t1 and t2 voters, let

Gσ(t) = q(ω1|t) (pσAB(ω1) + pσAC(ω1))

−q(ω2|t) (uABp
σ
AB(ω2) + uCBp

σ
CB(ω2)− pσAC(ω2)) .
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Gσ(t) is the expected (normalized) gain of voting for A instead of for B for

a t1 or t2 voter, conditional on the information possessed by the voter. Since

q(ω1|t1)/q(ω2|t1) > q(ω1|t2)/q(ω2|t2), this gain is strictly larger for a t1 voter

than for a t2 voter. Thus

Lemma 3 Given a strategy σ followed by every other voter, if a voter is

playing a best response and his type is t1 or t2, he will vote for B with

probability 0 if Gσ(t) > 0 and with probability 1 if Gσ(t) < 0. Moreover,

Gσ(t1) > Gσ(t2). If σ is an equilibrium strategy, then

σ(B|t2) < 1⇒ σ(B|t1) = 0 and σ(B|t1) > 0⇒ σ(B|t2) = 1.
2

This lemma simplifies the search for equilibrium strategies. In particular,

define

h = σ(B|t2) + σ(B|t1).

By an abuse of notation, denote by h any strategy σ that satisfies the re-

strictions imposed by Lemmas 1 and 3, and such that σ(B|t2)+σ(B|t1) = h.

Note that h = 0 denotes an equilibrium in which all t1 and t2 voters vote for

alternative A, h = 2 denotes an equilibrium in which all t1 and t2 voters vote

for alternative B, and h = 1 denotes an equilibrium in which t2 voters vote

for B and t1 voters vote for A.

We have:

Theorem 1 For large enough n, there is an equilibrium with h = 0, an equi-

librium with h = 2, and at least one equilibrium with 0 < h < 2. The value

of h corresponding to a sequence of these intermediate equilibria converges to

1 as n goes to infinity. 2

Proof To prove that there is an equilibrium with h = 0 and an equilibrium

with h = 2, we can use Lemma 2 and p0
AC(ω1) = p0

AC(ω2) to show that

lim
n→∞

G0(t)

p0
AC(ω1)

= q(ω1|t) + q(ω2|t) = 1

lim
n→∞

G2(t)

p2
CB(ω2)

= −q(ω2|t)uCB.

Thus, for large enough n, G0(t1), G0(t2) > 0 and G2(t1), G2(t2) < 0.
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Note that, from Lemma 3, 0 < h < 1 is an equilibrium iff Gh(t2) = 0;

1 < h < 2 is an equilibrium iff Gh(t1) = 0; and h = 1 is an equilibrium iff

G1(t2) ≤ 0 and G1(t1) ≥ 0. The proof that there is an equilibrium with an

intermediate value of h consists of three cases. Let

R = (r11r12r3)1/3 .

Consider first the case r12 > r3. This implies that r11 > R > r3. By

Lemma 2,

lim
n→∞

log p1
AB(ω1)

n
= lim

n→∞

log p1
AB(ω2)

n
= −(r

1/2
11 − r

1/2
12 )2

lim
n→∞

log p1
AC(ω1)

n
= lim

n→∞

log p1
CB(ω2)

n
= max

{
−(r

1/2
11 − r

1/2
3 )2,−1 + 3R

}
lim
n→∞

log p1
AC(ω2)

n
= −1 + 3R.

Recall that −(r
1/2
11 − r

1/2
12 )2 > −1 + 3R (see the discussion after Lemma 2).

This implies that

lim
n→∞

log p1
AB(ω1)

n
= lim

n→∞

log p1
AB(ω2)

n

> lim
n→∞

log p1
AC(ω1)

n
= lim

n→∞

log p1
CB(ω2)

n
≥ lim

n→∞

log p1
AC(ω2)

n
.

Since p1
AB(ω1) = p1

AB(ω2), we have

lim
n→∞

G1(t)

p1
AB(ω1)

= q(ω1|t)− uABq(ω2|t).

Note that

q(ω1|t2)− uABq(ω2|t2) < q(ω1|t1)− uABq(ω2|t1).

We have five subcases. Suppose first that q(ω1|t1) − uABq(ω2|t1) < 0.

Then limn→∞G
1(t1), G1(t2) < 0. Consider a strategy h = 1 + ε, with ε > 0

and such that r12(1−ε) > r3 and r11(1−ε) > r12 +εr11. These two conditions
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imply that τ(A|ω1) > τ(B|ω1) > τ(C|ω1) and τ(B|ω2) > τ(A|ω2) > τ(C|ω2).

Note also that

−((r11(1− ε))1/2 − (r12 + εr11)1/2)2 > −((r11 + εr12)1/2 − (r12(1− ε))1/2)2

or, equivalently, for the strategy 1 + ε,

−(τ(A|ω1)1/2 − (τ(B|ω1)1/2)2 > −(τ(A|ω2)1/2 − (τ(B|ω2)1/2)2.

Using Lemma 2, we can show that

lim
n→∞

G1+ε(t1)

p1+ε
AB (ω1)

= q(ω1|t1).

Thus, limn→∞G
1+ε(t1) > 0. Since Gh(t1) is continuous in h, this implies that

for large enough n there exists some µ(n) ∈ (0, ε) such that G1+µ(n)(t1) = 0.

But then h = 1 + µ(n) is an equilibrium. Since ε can be chosen to be

arbitrarily small, for large n we can find an equilibrium arbitrarily close from

above to h = 1.

Suppose that q(ω1|t2)−uABq(ω2|t2) > 0. Then limn→∞G
1(t1), G1(t2) > 0.

For ε > 0 such that r12(1− ε) > r3 and r11(1− ε) > r12 + εr11, we can show

that

lim
n→∞

G1−ε(t2)

p1−ε
AB (ω2)

= −q(ω2|t2).

Thus, limn→∞G
1−ε(t2) < 0. Since Gh(t2) is continuous in h, this implies that

for large enough n there exists some µ(n) ∈ (0, ε) such that G1−µ(n)(t2) = 0.

But then h = 1 − µ(n) is an equilibrium. Since ε can be chosen to be

arbitrarily small, for large n we can find an equilibrium arbitrarily close from

below to h = 1.

Suppose that q(ω1|t2)−uABq(ω2|t2) < 0 < q(ω1|t1)−uABq(ω2|t1). In this

subcase, for large enough n, h = 1 is an equilibrium.

Suppose that q(ω1|t1) − uABq(ω2|t1) = 0 and limn→∞G
1(t1) = 0. For

any subsequence such that G1(t1) converges from above, we are back in the

previous subcase, while for any subsequence such that G1(t1) converges from

below we are in situation similar to the first subcase considered. The analysis

is similar in the last subcase, q(ω1|t2)− uABq(ω2|t2) = 0.
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Now consider the case r3 > r12. This implies that R > r12. By Lemma 2,

lim
n→∞

log p1
AC(ω1)

n
= lim

n→∞

log p1
CB(ω2)

n
= −(r

1/2
11 − r

1/2
3 )2

lim
n→∞

log p1
AB(ω1)

n
= lim

n→∞

log p1
AB(ω2)

n
= max

{
−(r

1/2
11 − r

1/2
12 )2,−1 + 3R

}
lim
n→∞

log p1
AC(ω2)

n
= max

{
−(r

1/2
3 − r1/2

12 )2,−1 + 3R
}
.

Recall that −(r
1/2
11 − r

1/2
3 )2 > −1 + 3R. Also, limn→∞ log p1

AC(ω2)/n =

−(r
1/2
3 − r1/2

12 )2 iff r11 < R (from Lemma 2). But r11 < R implies r3 > r11

and −(r
1/2
11 − r

1/2
3 )2 > −(r

1/2
3 − r1/2

12 )2. Thus,

lim
n→∞

log p1
AC(ω1)

n
= lim

n→∞

log p1
CB(ω2)

n

> max

{
lim
n→∞

log p1
AB(ω1)

n
, lim
n→∞

log p1
AB(ω2)

n
, lim
n→∞

log p1
AC(ω2)

n

}
.

Since p1
AC(ω1) = p1

CB(ω2), we have

lim
n→∞

G1(t)

p1
AC(ω1)

= q(ω1|t)− uCBq(ω2|t).

The rest of the analysis is similar to the previous case. In particular, if

r11 > r3, for small enough ε,

−((r11(1− ε))1/2 − r1/2
3 )2 > −((r11 + εr12)1/2 − r1/2

3 )2.

If q(ω1|t1) − uCBq(ω2|t1) < 0, limn→∞G
1(t1) < 0 and limn→∞G

1+ε(t1) > 0.

Thus, for large enough n there is an equilibrium arbitrarily close from above

to h = 1, while if q(ω1|t2)−uCBq(ω2|t2) > 0 there is an equilibrium arbitrarily

close from below. If r11 ≤ r3, the position of the intermediate equilibrium

with respect to h = 1 in those subcases is reversed.

Finally, consider the case r12 = r3. This implies that r11 > R > r12. By
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Lemma 2,

lim
n→∞

log p1
AB(ω1)

n
= lim

n→∞

log p1
AB(ω2)

n
= −(r

1/2
11 − r

1/2
12 )2

lim
n→∞

log p1
AC(ω1)

n
= lim

n→∞

log p1
CB(ω2)

n
= −(r

1/2
11 − r

1/2
3 )2

lim
n→∞

log p1
AC(ω2)

n
= −1 + 3R.

Moreover, p1
AB(ω1) = p1

AB(ω2) = p1
AC(ω1) = p1

CB(ω2). Then

lim
n→∞

G1(t)

p1
AB(ω1)

= 2q(ω1|t)− (1 + uCB)q(ω2|t).

The rest of the analysis is similar to previous cases. In particular, if

2q(ω1|t1) − (1 + uCB)q(ω2|t1) < 0, there is an equilibrium arbitrarily close

from above to h = 1, while if 2q(ω1|t) − (1 + uCB)q(ω2|t) > 0, there is an

equilibrium arbitrarily close from below. �

The equilibria with h = 0 and h = 2 are sometimes referred as “Du-

vergerian equilibria” in the political science literature (see, e.g., Riker 1986,

Cox 1997 and the references therein). In the Duvergerian equilibria of the

model, only two of the three alternatives receive a positive fraction of the

votes cast in the election. The idea is that, if a voter perceives that no one

else will vote for a given alternative, voting for that alternative would be

equivalent to “wasting a vote” because the probability that this alternative

will be nearly tied for the first place is negligible compared to the probability

that the other two alternatives will be nearly tied. The next result estab-

lishes that, if r11 ≤ r3, a non-Duvergerian equilibrium would entail a utility

loss for t1 and t2 voters. Since t1 and t2 voters are in the majority, we may

think about a non-Duvergerian equilibrium as a sort of coordination failure.

For the case r11 > r3, however, a Duvergerian equilibrium would constitute

a coordination failure:

Corollary 1 If r11 ≤ r3, the maximal equilibrium expected payoff for t1 and

t2 voters converges to max{U(A, t1, ω1), q(ω1)U(B, t1, ω1)+q(ω2)U(B, t1, ω2)}
as n goes to infinity. If r11 > r3, the maximal equilibrium expected payoff for

13



t1 and t2 voters converges to q(ω1)U(A, t1, ω1) + q(ω2)U(B, t1, ω2) as n goes

to infinity. 2

Proof For the first part, note that an equilibrium with h = 0 has expected

payoff of U(A, t1, ω1), while an equilibrium with h = 2 has an expected payoff

of q(ω1)U(B, t1, ω1)+q(ω2)U(B, t1, ω2) for t1 and t2 voters. From Theorem 1,

both equilibria exist. An equilibrium with 0 < h < 2 can improve upon both

h = 0 and h = 2 only if in this equilibrium τ(A|ω1) ≥ r3 and τ(B|ω2) ≥ r3.

Thus we need

σ(A|t1)r11 + σ(A|t2)r12 ≥ r3,

σ(B|t1)r12 + σ(B|t2)r11 ≥ r3.

Since r11 > r12, we have (2− h)r11 > r3 and hr11 > r3. Adding up these two

inequalities we obtain r11 > r3.

For the second part, from Theorem 1, there is a sequence of equilibria with

0 < h < 2 such that h converges to 1. But if r11 > r3 and h is close enough to

1, alternative A will win the election with probability arbitrarily close to 1 in

state ω1, while alternative B will win the election with probability arbitrarily

close to 1 in state ω2. �

4 Plurality Runoff

Under plurality runoff, each voter must cast simultaneously a vote for either

A, B or C, and the alternative that receives most votes is chosen if the

number of votes it receives exceeds half the total number of votes cast in the

election. Otherwise, the two alternatives that receive more votes go into a

runoff election, and the alternative with most votes in the runoff is chosen.

Ties are broken alphabetically.

With respect to the runoff, suppose the electorate is drawn again accord-

ing to the process described in section 2. For a large n, this means that the

probability of A or B defeating C in a runoff is arbitrarily close to 1. Also,

from Theorem 2 in Myerson (1998a), there is a sequence of equilibria in the

continuation game corresponding to a runoff between A and B such that

the probability of A being chosen in state ω1 and the probability of B being

14



chosen in state ω2 converge to 1 as n goes to infinity.7 We do not model ex-

plicitly the continuation game corresponding to a runoff and instead assume

that A or B defeat C with probability 1 in a runoff, and that A defeats B

with probability 1 if and only if the state is ω1.

A strategy function σ̃ in a plurality runoff game is a mapping σ̃ :

{t1, t2, t3} → ∆({A,B,C}), where σ̃(X|t) is the probability that a voter

will vote in the first round for alternative X if his type is t. We must have

σ̃(X|t) ≥ 0 for every X and every t, and
∑

X σ̃(X|t) = 1 for every t. A

strategy function σ̃ is an equilibrium if it maximizes the expected utility of

every voter when other voters use the strategy σ̃.

As before, let τ(X|ω) be the probability that a random voter votes in the

first round for alternative X in state ω for a given strategy σ̃. The number of

voters who choose alternative X if the state is ω is, then, a Poisson random

variable with mean τ(X|ω)n. We will denote by P̃ σ̃(k, l,m|ω) the probability

that k, l,m voters vote for alternatives A, B and C respectively in the first

round, in state ω given the strategy σ̃.

Note that a vote for C in the first round increases the probability of C

being chosen in the first round or disputing a runoff, while leaving unaffected

the outcome of a runoff, if every voter uses runoff pooling strategies. On the

other hand, voting for A or B reduces the probability of C being chosen in

the first round or disputing a runoff, while leaving unaffected the expected

outcome in case of a runoff. Thus, voting for C is a strictly dominant strategy

for t3 voters. However, as opposed to the case of plurality rule, voting for

C is not a strictly dominated strategy for t1 and t2 voters. The reason is

that we do not allow for abstention, and for some strategy profiles t1 or t2
voter may prefer to avoid being decisive for a victory of A or B in the first

round, if the risk of C winning in the first round or getting into the runoff is

small enough.8 To keep matters simple, rather than allowing for abstention,

we restrict our attention to situations in which C is a “serious contender.”

7The same result is shown by Feddersen and Pesendorfer (1997) in a game without
population uncertainty: if the size and preferences of the electorate are common knowl-
edge, elections fully aggregate information in a two-way race in the sense that the chosen
alternative would not change if all private information would be common knowledge.

8See Feddersen and Pesendorfer (1996) and (1999) for an analysis of two-way races in
which voters may be better off abstaining.
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Formally, C is a serious contender if

−1 + 2(1− r3)1/2r
1/2
3 > −(r

1/2
11 − r

1/2
12 )2

and r3 > 1/3. This condition requires that r3 is closer to 1/2 the closer is r12

to r11. The intuition for this requirement is that a voter will be less tempted

to abstain to vote for either A or B the larger is the risk of C winning the

election and the better is the information contained in the voter’s type. The

following result is proved in the Appendix:

Lemma 4 If a voter is playing a best response, then in the first round he

will vote for C with probability 1 if his type is t3. Moreover, if C is a seri-

ous contender and the strategy followed by other voters satisfies σ̃(C|t1) =

σ̃(C|t2) = 0 and σ̃(C|t3) = 1, for large enough n if a voter is playing a best

response then in the first round he will vote for C with probability 0 if his

type is t1 or t2. 2

A t1 or t2 voter deciding whether to support A or B must be concerned

about the events in which his vote is pivotal. Those events are: {voting for

A in the first round ultimately yields A but voting for B yields B}, {voting

for A in the first round ultimately yields A but voting for B yields C}, and

{voting for A in the first round ultimately yields C but voting for B yields

B}. The probabilities of the last two events are 0, regardless of the state of

the world. This is because a near tie between C and any other alternative in

the first round already implies that a runoff will take place once one more vote

is cast for either A or B, and C will ultimately be defeated. The probability

of the first event given state ω1, if other voters are following the strategy σ̃,

is given by

pσ̃AB(ω1) =
∞∑
k=0

 2k+1∑
m=k+1

P̃ σ̃(k, k,m|ω) +
2k+1∑

m=max{1,k}

P̃ σ̃(k, k + 1,m+ 1|ω)


+

∞∑
k=0

k+1∑
m=0

(
P̃ σ̃(k, k +m,m|ω) + P̃ σ̃(k, k +m+ 1,m|ω)

)
.

The first term represents situations in which a vote for either A or B deter-

mines which of the two alternatives disputes a runoff with C. The second
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term represent situations in which a vote for A leads to a runoff between A

and B while a vote for B leads to a victory of B in the first round. Similarly,

the probability of the first event given state ω2, if other voters are following

the strategy σ̃, is given by

pσ̃AB(ω2) =
∞∑
k=0

 2k+1∑
m=k+1

P̃ σ̃(k, k,m|ω) +
2k+1∑

m=max{1,k}

P̃ σ̃(k, k + 1,m+ 1|ω)


+

∞∑
k=0

k+1∑
m=0

(
P̃ σ̃(k +m, k,m|ω) + P̃ σ̃(k +m+ 1, k,m|ω)

)
.

The two probabilities just described converge to 0 as the expected number

of voters n goes to infinity. The following lemma tells us how fast they

converge. Let

S(ω1) = (τ(A|ω1) + τ(C|ω1))1/2τ(B|ω1)1/2,

S(ω2) = τ(A|ω2)1/2(τ(B|ω2) + τ(C|ω2))1/2.

We have

Lemma 5 If τ(A|ω)1/2τ(B|ω)1/2 < τ(C|ω) < 1/2 for ω = ω1, ω2, then

lim
n→∞

log pσ̃AB(ω)

n
= max{−(τ(A|ω)1/2 − τ(B|ω)1/2)2,−1 + 2S(ω)}.

2

The proof of Lemma 5 is in the appendix. Lemma 5 reflects the fact that

the more likely event in which a vote for A or B is decisive is either a near

tie between A and B for the second place in the first round or a situation

in which alternative B in state ω1 (or alternative A in state ω2) is close to

winning the election in the first round (and avoiding losing the runoff).

Let

G̃σ̃(t) = q(ω1|t)pσ̃AB(ω1)− q(ω2|t)uABpσ̃AB(ω2).

G̃σ̃(t) is the expected (normalized) gain of voting for A instead of for B for

a t1 or t2 voter, conditional on the information possessed by the voter. As

in the case of plurality, this gain is larger for a t1 voter than for a t2 voter.

Thus
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Lemma 6 Given a strategy σ̃ followed by every other voter, if a voter is

playing a best response and his type is t1 or t2, he will vote for B in the

first round with probability 0 if G̃σ̃(t) > 0 and he will vote for A in the first

round with probability 0 if G̃σ̃(t) < 0. Moreover, G̃σ̃(t1) > G̃σ̃(t2). If σ̃ is an

equilibrium strategy, then

σ̃(B|t2) < 1⇒ σ̃(B|t1) = 0 and σ̃(B|t1) > 0⇒ σ̃(A|t2) = 0.
2

This lemma simplifies the search for equilibrium strategies. In particular,

define

h̃ = σ̃(B|t2) + σ̃(B|t1).

By an abuse of notation, we denote by h̃ any strategy σ̃ that satisfies the

restrictions imposed by lemmas 4 and 6, with σ̃(B|t2) + σ̃(B|t1) = h̃. As

before, h̃ = 1 denotes an equilibrium in which t1 voters vote for A and t2
voters vote for B in the first round. We have

Theorem 2 If C is a serious contender, for large enough n there is at least

one equilibrium with 0 < h̃ < 2. The value of h̃ corresponding to any sequence

of equilibria converges to 1 as n goes to infinity. 2

Remark This theorem implies in particular that in a large election there is

no equilibrium in which t1 and t2 voters “coordinate” in voting only for A or

only for B.

Proof From Lemmas 4 and 6, for large n, h̃ = 0 is an equilibrium iff

G̃h̃(t2) ≥ 0, 0 < h̃ < 1 is an equilibrium iff G̃h̃(t2) = 0; h̃ = 1 is an

equilibrium iff G̃1(t2) ≤ 0 and G̃1(t1) ≥ 0; 1 < h̃ < 2 is an equilibrium iff

G̃h̃(t1) = 0; and h̃ = 2 is an equilibrium iff G̃h̃(t1) ≤ 0.

If C is a serious contender, r3 > τ(A|ω)1/2τ(B|ω)1/2 for any strategy h̃.

Thus, we can use Lemma 5 for any such strategy. Now, consider any strategy

h̃ = 1− ε, with 0 < ε ≤ 1. Note that

−((r11(1− ε))1/2 − (r12 + εr11)1/2)2 > −((r11 + εr12)1/2 − ((1− ε)r12)1/2)2

and

− 1 + 2((1− ε)r11 + r3)1/2((r12 + εr11)1/2

> −1 + 2(r11 + εr12 + r3)1/2((1− ε)r12)1/2.
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It follows from Lemma 5 that limn→∞ G̃
h̃(t1), G̃h̃(t2) < 0 so that there cannot

be a sequence of equilibria converging to some h̃ < 1. Now consider any

strategy h̃ = 1 + ε, with 0 < ε ≤ 1. By an argument similar to the one put

forward above, we have limn→∞ G̃
h̃(t1), G̃h̃(t2) > 0. Thus, there cannot be

an equilibrium sequence converging to some h̃ > 1.

The proof that there is in fact a sequence of equilibria converging to h̃ = 1

has five cases. Since p1
AB(ω1) = p1

AB(ω2), we have

G̃1(t)

p1
AB(ω1)

= q(ω1|t)− uABq(ω2|t).

Recall that q(ω1|t1)−uABq(ω2|t1) > q(ω1|t2)−uABq(ω2|t2). Suppose first that

q(ω1|t1)−uABq(ω2|t1) < 0. Then limn→∞ G̃
1(t1), G̃1(t2) < 0. By the previous

argument, limn→∞ G̃
1+ε(t1), G̃1+ε(t2) > 0 for every ε ∈ (0, 1]. Since G̃h̃(t1) is

continuous in h̃ for every ε for large enough n there exists some µ(n) ∈ (0, ε)

such that G̃1+µ(n)(t1) = 0. But then h̃ = 1 + µ(n) is an equilibrium. Since

ε can be chosen to be arbitrarily small, for large enough n we can find an

equilibrium arbitrarily close from above to h̃ = 1.

Similarly, if q(ω1|t2)−uABq(ω2|t2) > 0, there is an equilibrium arbitrarily

close from below to h̃ = 1, and if

q(ω1|t2)− uABq(ω2|t2) < 0 < q(ω1|t1)− uABq(ω2|t1),

for large enough n, h̃ = 1 is an equilibrium. For the other two subcases,

q(ω1|t1) − uABq(ω2|t1) = 0 and q(ω1|t2) − uABq(ω2|t2) = 0, see the proof of

Theorem 1. �

Recall that r11 > r12 and, if C is a serious contender, 1/2 > r3 > r12.

Thus, from Theorem 2, A is arbitrarily likely to win the election in the first

round or to dispute a runoff with C in state ω1, and B is arbitrarily likely to

win the election in the first round or to dispute a runoff with C in state ω2.

Thus

Corollary 2 If C is a serious contender, the equilibrium expected payoff for

t1 and t2 voters converges to U(A, t1, ω1)q(ω1) + U(B, t1, ω2)q(ω2) as n goes

to infinity. 2
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5 Conclusion

This paper compares simple plurality voting and plurality runoff from the

point of view of a group of voters with common preferences that is likely

to be the majority but which have divided opinions about which candidate

to support due to private information. A situation with three candidates is

modeled. The analysis gets complicated as it is conducted in a framework of

rational, strategic voters which are able to compare near zero probabilities.

The results of the analysis are clear, however. Simple plurality allows for

successful information aggregation among majority voters only if the candi-

date they like the least is not supported by a large minority. If the candidate

majority voters like the least is in fact supported by a large minority, plu-

rality runoff gives majority voters a higher expected payoff. The advantage

of plurality runoff over simple plurality in terms of information aggregation

seems likely to hold in more complex situations (with more candidates and

more heterogeneity of preferences), even if completely successful information

aggregation of the sort obtained in this paper is not likely to hold. Ignoring

the possibility of coordination failures under plurality voting, the advantage

of the runoff system consists in introducing an stage in the election game

in which voters can express their opinions without risking completely the

final result of the election. The advantage of the runoff system disappears

if primaries take place or if a sequence of preelection polls allow voters to

successfully pool their information about candidates.
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Appendix

Preliminaries We state here a result from Myerson (1998b) that will be

useful in the proofs that follow. Let λn(ω) = (λn(A|ω), λn(B|ω), λn(C|ω))

be any sequence of voting profiles. Define

Ψ(θ) = θ(1− log θ).

By Lemma 1 in Myerson (1988b), if either limit exists,

lim
n→∞

log Pr(λn(ω))

n
= lim

n→∞

∑
X∈{A,B,C}

τ(X|ω)Ψ

(
λn(X|ω)

nτ(X|ω)

)
.

Moreover, if Λn(ω) is a sequence of events, from Theorem 1 in Myerson

(1988b),

lim
n→∞

log Pr(Λn(ω))

n
= lim

n→∞
max

λn(ω)∈Λn(ω)

∑
X∈{A,B,C}

τ(X|ω)Ψ

(
λn(X|ω)

nτ(X|ω)

)
.

That is, the probability of a sequence of events is concentrated in the limit

in the voting profiles in that event with maximum probability.

Proof of Lemma 2 Consider the sequence of events

Ln(ω) =
⋃
k≥0

0≤m≤k+1

{(k, k,m), (k, k + 1,m)} ,

with probability pσAB(ω). If τ(C|ω) < (τ(A|ω)τ(B|ω))1/2 or, equivalently,

τ(C|ω) < (τ(A|ω)τ(B|ω)τ(C|ω))1/3,

then, for large n,
∑

X∈{A,B,C} τ(X|ω)Ψ(λn(X|ω)/(nτ(X|ω))) is maximized

on λn(ω) ∈ Ln(ω) by

λn(ω) =
(
n(τ(A|ω)τ(B|ω))1/2, n(τ(A|ω)τ(B|ω))1/2, nτ(C|ω)

)
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(ignoring integer constraints). Thus,

lim
n→∞

log pσAB(ω)

n

= τ(A|ω)Ψ

(
(τ(B|ω))1/2

(τ(A|ω))1/2

)
+ τ(B|ω)Ψ

(
(τ(A|ω))1/2

(τ(B|ω))1/2

)
+ τ(C|ω)Ψ(1)

= −(τ(A|ω)1/2 − τ(B|ω)1/2)2.

On the other hand, if

τ(C|ω) > (τ(A|ω)τ(B|ω)τ(C|ω))1/3,

then, for large n,
∑

X∈{A,B,C} τ(X|ω)Ψ(λn(X|ω)/(nτ(X|ω))) is maximized

on λn(ω) ∈ Ln(ω) by

λn(X|ω) = n(τ(A|ω)τ(B|ω)τ(C|ω))1/3

for X = A,B,C (ignoring integer constraints). Thus,

lim
n→∞

log pσAB(ω)

n
= −1 + 3(τ(A|ω)τ(B|ω)τ(C|ω))1/3.

We can proceed similarly with respect to the other sequences of events in

Lemma 2.

Proof of Lemma 4 It is argued in the text that a t3 voter will vote for

C for any strategy of the other voters. Thus, in equilibrium, σ̃(C|t3) = 1.

In what follows we show that under the conditions of the lemma a t1 or t2
voter obtains a larger payoff by voting for A or B rather than for C if n

is large enough. Let pσ̃XY ′ , pσ̃XY ′′ denote, respectively, the probability that

voting for A in the first round ultimately yields X but voting for C yields

Y , and the probability that voting for B in the first round ultimately yields

X but voting for C yields Y , with X,Y = A,B,C. Then, the statement of

the lemma obtains if, for n large enough and t = t1, t2,

q(ω1|t)(pσ̃AB′(ω1) + pσ̃AC′(ω1))

> q(ω2|t)(uABpσ̃AB′(ω2)− uBCpσ̃BC′(ω2)− pσ̃AC′(ω2))
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or

q(ω1|t)(pσ̃AC′′(ω1)− pσ̃BA′′(ω1))

> q(ω2|t)(−uABpσ̃BA′′(ω2)− uBCpσ̃BC′′(ω2)− pσ̃AC′′(ω2)).

A sufficient condition for this is

uBCp
σ̃
BC′(ω2) > uABp

σ̃
AB′(ω2) or pσ̃AC′′(ω1) > pσ̃BA′′(ω1).

Using the same techniques as in the proof of Lemmas 2 and 5 (below) we

can show that:

lim
n→∞

(log pσ̃BC′(ω2))/n = lim
n→∞

(log pσ̃AC′′(ω2))/n = −1 + 2(1− r3)1/2r
1/2
3 ,

lim
n→∞

(log pσ̃AB′(ω2))/n = −(τ(A|ω2)1/2 − τ(B|ω2)1/2)2,

lim
n→∞

(log pσ̃BA′′(ω1)/n = −(τ(A|ω1)1/2 − τ(B|ω1)1/2)2.

Since min{−(τ(A|ω1)1/2 − τ(B|ω1)1/2)2,−(τ(A|ω2)1/2 − τ(B|ω2)1/2)2} is less

than or equal to −(r
1/2
11 − r

1/2
12 )2, we have that uBCp

σ̃
BC′(ω2) > uABp

σ̃
AB′(ω2)

or pσ̃AC′′(ω1) > pσ̃BA′′(ω1) if

−1 + 2(1− r3)1/2r
1/2
3 > −(r

1/2
11 − r

1/2
12 )2.

which is satisfied if C is a serious contender.

Proof of Lemma 5 Consider the sequence of events

Mn(ω) =

(
∞⋃
k=0

2k+1⋃
m=k+1

(k, k,m)

)⋃ ∞⋃
k=0

2k+1⋃
m=max{1,k}

(k, k + 1,m+ 1)

 ,

corresponding to the first term in pσ̃AB(ω). Recall that, by assumption of the

lemma, τ(C|ω) < 1/2. Following the steps of the proof of Lemma 2, we can

show that

lim
n→∞

log Pr(Mn(ω))

n
= −(τ(A|ω)1/2 − τ(B|ω)1/2)2.

Now consider the sequence of events

Nn(ω1) =
⋃
k≥0

0≤m≤k+1

{(k, k +m,m), (k, k +m+ 1,m)} ,
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corresponding to the second term in pσ̃AB(ω1). For λn(ω1) ∈ Nn(ω1) and large

n,
∑

X∈{A,B,C} τ(X|ω1)Ψ(λn(X|ω1)/(nτ(X|ω1))) is maximized by

λn(A|ω1) =
nτ(A|ω1)τ(B|ω1)1/2

(τ(A|ω1) + τ(C|ω1))1/2
,

λn(B|ω1) = n(τ(A|ω1) + τ(C|ω1))1/2τ(B|ω1)1/2,

λn(C|ω1) =
nτ(C|ω1)τ(B|ω1)1/2

(τ(A|ω1) + τ(C|ω1))1/2
.

(ignoring integer constraints). Thus,

lim
n→∞

(log Pr(Nn(ω1)))/n = −1 + 2(τ(A|ω1) + τ(C|ω1))1/2τ(B|ω1)1/2.

The claim about state ω2 obtains similarly.

24



References

[1] Cox, G. (1997) Making Votes Count. Cambridge University Press.

[2] Feddersen, T. and W. Pesendorfer (1996) The Swing Voter’s Curse,

American Economic Review 86: 408-424.

[3] Feddersen, T. and W. Pesendorfer (1997) Voting Behavior and Informa-

tion Aggregation in Elections with Private Information, Econometrica

65: 1029-1058.

[4] Feddersen, T. and W. Pesendorfer (1999) Abstention in Elections with

Asymmetric Information and Diverse Preferences, American Political

Science Review 93: 381-398.

[5] Fey, M. (1997) Stability and Coordination in Duverger’s Law: A For-

mal Model of Preelection Polls and Strategic Voting, American Political

Science Review 91: 135-147.

[6] McKelvey, R. and P. Ordeshook (1985) Elections with Limited Informa-

tion: A Fulfilled Expectations Model Using Contemporaneous Polls and

Endorsement Data as Information Sources, Journal of Economic Theory

36: 55-85.

[7] Mainwaring, S. and M. Shugart (1997) Conclusion: Presidentialism and

the Party System. In Presidentialism and Democracy in Latin America,

edited by S. Mainwaring and M. Shugart. Cambridge University Press.

[8] Myerson, R. (1997) Population Uncertainty and Poisson Games, forth-

coming, International Journal of Game Theory.

[9] Myerson, R. (1998a) Extended Poisson Games and the Condorcet Jury

Theorem, Games and Economic Behavior 25: 111-131.

[10] Myerson, R. (1998b) Large Poisson Games, forthcoming, Journal of Eco-

nomic Theory.

[11] Myerson, R. (1998c) Comparison of Scoring Rules in Poisson Voting

Games. Discussion Paper, Northwestern University.

25



[12] Nohlen, D. (1998) Sistemas Electorales y Partidos Poĺıticos. Fondo de
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