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SOFTWARE REVIEW

GLIMMIX: Software for Estimating Mixtures and Mixtures of
Generalized Linear Models
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Abstract: GLIMMIX is a commercial WINDOWS-based computer program that
implements the EM algorithm (Dempster, Laird and Rubin 1977) for the estimation of
finite mixtures and mixtures of generalized linear models. The program-allows for the
specification of a number of distributions in the exponential family, including the normal,
gamma, binomial, Poisson, and multinomial distributions. For each of those distributions,
a variety of link functions can be specified to relate the expectation of the dependent
variable to a linear predictor. Several statistics, including AIC, CAIC and BIC are
computed to aid in model selection (cf. Akaike 1974; Bozdogan 1987), missing values are
accommodated, and posterior membership probabilities are computed for cases, included
or not included in the analysis. Simple discriminant type models dealing with concomitant
variables to describe the classes are supported, and a random responder class can be added
to the model. Various graphs are provided. A demonstration version of the program can be
obtained from http://www/gamma.rug.nl. Before providing some details on the GLIMMIX
software, a brief review of a few relevant issues in Mixture modelling are provided.
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1. Introduction

In finite mixture models, it is assumed that the observations of a sample
arise from two or more unobserved classes, in unknown proportions, that are
mixed. The purpose is to separate components of the sample and to identify the
underlying classes. Mixture models present a model-based approach to clustering.
They allow for hypothesis testing and estimation within the framework of standard
statistical theory and provide a flexible class of models that can be tailored to a
very wide range of substantive problems. Mixture regression models extend the
traditional mixture approach in that they simultaneously allow for identifying
classes, as well as for the estimation of a regression model within each of these
classes. Details on these models are provided Titterington, Smith, and Makov
(1985), McLachlan and Basford (1988), Wedel and Kamakura (1999), and
McLachlan and Peel (2000). The models, statistics, and procedures below can all
be found in those references.

2. Mixture And Mixture Regression Models

Assume a sample of N subjects, where on each subject K variables
y, = (ynk;n =1...,N;k= 1,...,K) are measured. The subjects are assumed to
arise from a population that is a mixture of S unobserved classes, in (unknown)
proportions 7;,...,7 . It is not known in advance from which class a particular
subject arises. Given that subject n comes from class s, the distribution function of
v, is represented by the general form f, ( v, |6, ) , a member of the exponential
family of distributions, where &, denotes the vector of all unknown parameters for
class s. The unconditional distribution is obtained from the conditional

distributions as:
s

foule)=2.71(.16,), M
s=1
where @ = (71", & ) denotes all parameters.

Mixtures of generalized linear models (GLIMMIX) are extensions of
mixture models. Here, the means of the observations in each class are to be
predicted from a set of explanatory variables. Given class s the expectationof y,,
is denoted by £, . Within each class the expectation is modelled as a function of
a set of P explanatory variables:

R
8(te) = %0, B, - @)
p=1

where g() is a link-function, such as the identity, log, logit, and inverse functions
for the normal, Poisson, binomial, and gamma distributions, respectively.
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GLIMMIX models present a very flexible class of models. Applications of
generalized linear models abound in the social and medical sciences, and the finite
mixture version can be applied in cases where one expects the sample to be
heterogeneous with respect to the regression coefficients. Various examples arise
in the analysis of data from paired comparisons, count data modelling, structural
equations modeling, conjoint analysis, cross sections of discrete- and continuous-
time series, and the analysis of choice behaviour. Two particular extensions that
arise frequently in practice are discussed below.

3. Random Responders

A problem that sometimes occurs, in particular in the analysis of preference
and sensory data, is that some part of the respondents are unable or unwilling to
provide responses based on careful judgment of the stimuli, but instead tend to
respond in a random manner. Thus, for this subset of the respondents, there is no
systematic relation between the attributes of the products and the overall
judgment. To place this situation in a mixture model framework, instead of
analysing the data with, say, S classes, an S+1th class is added. In this S+1st class,
the model does not include a relationship between the independent and the
dependent variables, but only estimates an intercept. Thus, if some part of the
subjects are assigned to the random responders class, this strategy strengthens the
relation of the dependent and the independent variables in the other classes.

4. Concomitant Variables

In social science research, the classes of subjects identified with GLIMMIX
models are often described by background variables of the subjects ( z, ) to obtain
insights into the composition of the classes. Such profiling of classes is sometimes
performed on the basis of the estimated a-posteriori class membership
probabilities computed with Bayes rule:

3)

But that two-step procedure has several disadvantages. Models have been
developed to accomplish this procedure in a single step, with the two most
important being the concomitant variable mixture and the latent discriminant type
mixture. In the first model the prior membership probability is specified directly as
a function of the concomitant variables, e.g. as 7, = e 1y e’ . In
formulating the latent discriminant type models, assumptions are made on the
distribution of the concomitant variables so that they can be included in the core of
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the mixture, usually based on the assumption of conditional independence:
)
FOuz0)= 27,0, 16.)f.(z, | ,) . @)
s=1

It can be shown that the two classes of models are closely related. While both
types of models have advantages and disadvantages, the discriminant type models
allow for inference on the concomitant variables, and missing observations are
easier to deal with.

5. Estimation And Inference

Mixture and mixture regression models can be estimated in various ways,
where most currently used methods are based on the likelihood function, which is
obtained by summing equation (1) over n. Numerical maximisation of the
likelihood function, for example with Newton or Quasi Netwon Methods, can be
used to find the parameter estimates, but the EM algorithm (or the Stochastic or
the Generalized EM algorithm) seem to be a more popular choice. More recently,
researchers have used a Bayesian estimation, in which the Gibbs sampler is used
to approximate the posterior distribution of the parameters (see for a review of
EM and related algorithms, for example, McLachlan and Krishnan 1997). Because
the likelihood is often multimodal, the investigation of local optima, based on
several runs of the algorithms, is required. Statistical inference in a mixture model
is based on the estimated information matrix. Likelihood ratio tests for nested
models are possible, but the selection of the number of classes still awaits a fully
satisfacory solution. Often, information statistics such as AIC, BIC and CAIC are
used as heuristics (Akaike 1974; Bozdogan 1987).

6. Glimmix Software

GLIMMIX is a computer program for estimating exponential family
mixture models and mixtures of generalized linear regression models that
implements the EM algorithm for estimation. Version 2.0 includes several new
features and improvements over version 1.0. GLIMMIX 2.0 runs under
WINDOWS 3.1 and up, and WINDOWS NT. A demonstration version can be
downloaded from the homepage of ProGAMMA: http://www.gamma.rug.nl/
catalog. The software comes with several test data sets that can be run to explore
various possible options.

GLIMMIX operates in five major steps, which are activated from five
buttons on the toolbar:

Step I: Define the variables in the data set,
Step 2: Recode the variables,
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Step 3: Make a selection of available cases,
Step 4: Provide the specifications for the analysis,
Step 5: View the results of the analysis.

In Step 1, GLIMMIX supports ASCII input data of various formats and
allows one to define variables of different types, and label them for further use.

In Step 2, missing values can be defined and variables can be transformed,
for example by taking a log, square root, and centering and/or scaling; nominal
variables can be recoded.

Step 3 makes it possible to select a subset of the cases in the data, at
random, on the basis of levels of categorical variables or using a text editor. This
option may be useful for various types of applications. For example it is of use in
Hybrid Segmentation, where segments are identified based on a GLIMMIX model
within a-priori identified primary segments, in Cross-Validation, where a mixture
model is to be cross-validated in two independent analyses to investigate stability,
or in Data-mining, where because sample sizes are prohibitively large, an analysis
of a random subsample is desired, or in Data-fusion and other Missing Data
Problems. In the latter case, based on the analysis of subjects with complete data,
posterior memberships are computed for all subjects. Those posterior membership
probabilities serve to identify "imputation groups". For subjects with only partial
data, the missing data may be imputed based on the posterior membership
probabilities and class-level parameters. '

Step 4 entails the specification of the mixture model (Figure 1). One may fit
a standard mixture model (mixture clustering), or a regression mixture model. In
the latter case one may select the independent variables to be included in the
model. Several specifications of the distribution of the dependent variable are
accommodated, where the options normal, gamma, binomial, multinomial, and
Poisson are available and for each distribution, several Link functions can be
chosen (identity and log-links for the normal and Poisson distributions, inverse
and log-links for the gamma distribution, identity, logit and probit-links for the
binomial distribution, and the logit-link for the multinomial distribution).
GLIMMIX 2.0 in addition allows one to estimate latent discriminant type
concomitant variable models (where currently the distribution of the y and z
variables most be the same), and to add a random responder class to the model to
filter out subjects for whom the dependent variable is not affected by the
independent variables. Since ratings scales occur very frequently in social science
research, binomial rating scale models that assume a rank order logit model are
accommodated. A range of numbers of classes to be estimated can be provided, as
well as the number of starting values for each. Convergence parameters for the
EM algorithm can be set.

In Step 5, output can be inspected, i.e., estimates of the posterior proba-
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Figure 1. The GLIMMIX Analysis Screen

bilities, (where posteriors are also computed for subjects in the database that are
not used in the estimation), coefficients and standard errors (the latter are currently
based on an approximation), such information statistics as AIC, CAIC, and BIC.
Several graphics can be displayed, e.g. histograms of the coefficient estimates,
plots of the likelihood against the EM iterations, plots of residuals, and plots of
the information statistics against the number of classes.

7. Conclusion

Standard mixture models can be seen as a statistical analogue to cluster
methods, with the former offering the advantage of allowing for statistical
inference and investigation of model fit within the framework of standard
statistical theory. The application of mixtures of generalized linear models is
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useful in all cases where a (generalized linear) regression model is to be estimated,
but the sample is suspected to be heterogeneous with respect to the coefficients of
that model. The mixture regression model approach thus presents a very flexible
class of models that can be tailored to a very wide range of substantive problems
in the social sciences and other fields. A flexible and easy to use program such as
GLIMMIX enables applied researchers in these fields to exploit fully the
possibilities of this interesting class of models in practical applications.
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