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Prediction involves estimating the unknown value of an attribute of a system under study given the values of
other measured attributes. In prediction (machine) learning the prediction rule is derived from data consisting
of previously solved cases. Most methods for predictive learning were originated many years ago at the dawn
of the computer age. Recently two new techniques have emerged that have revitalized the field. These are
support vector machines and boosted decision trees. This paper provides an introduction to these two new
methods tracing their respective ancestral roots to standard kernel methods and ordinary decision trees.

1. Introduction

The predictive or machine learning problem
is easy to state if difficult to solve in gen-
eral. Given a set of measured values of at-
tributes/characteristics/properties on a object (obser-
vation) x = (x1, x2, ···, xn) (often called “variables”)
the goal is to predict (estimate) the unknown value
of another attribute y. The quantity y is called the
“output” or “response” variable, and x = {x1, ···, xn}
are referred to as the “input” or “predictor” variables.
The prediction takes the form of function

ŷ = F (x1, x2, · · ·, xn) = F (x)

that maps a point x in the space of all joint values of
the predictor variables, to a point ŷ in the space of
response values. The goal is to produce a “good” pre-
dictive F (x). This requires a definition for the quality,
or lack of quality, of any particular F (x). The most
commonly used measure of lack of quality is predic-
tion “risk”. One defines a “loss” criterion that reflects
the cost of mistakes: L(y, ŷ) is the loss or cost of pre-
dicting a value ŷ for the response when its true value
is y. The prediction risk is defined as the average loss
over all predictions

R(F ) = EyxL(y, F (x)) (1)

where the average (expected value) is over the joint
(population) distribution of all of the variables (y,x)
which is represented by a probability density function
p(y,x). Thus, the goal is to find a mapping function
F (x) with low predictive risk.

Given a function f of elements w in some set, the
choice of w that gives the smallest value of f(w) is
called arg minw f (w). This definition applies to all
types of sets including numbers, vectors, colors, or
functions. In terms of this notation the optimal pre-
dictor with lowest predictive risk (called the “target
function”) is given by

F ∗ = arg min
F

R(F ). (2)

Given joint values for the input variables x, the opti-
mal prediction for the output variable is ŷ = F ∗(x).

When the response takes on numeric values y ∈
R1, the learning problem is called “regression” and
commonly used loss functions include absolute error
L(y, F ) = |y−F |, and even more commonly squared–
error L(y, F ) = (y − F )2 because algorithms for min-
imization of the corresponding risk tend to be much
simpler. In the “classification” problem the response
takes on a discrete set of K unorderable categorical
values (names or class labels) y, F ∈ {c1, · · ·, cK} and
the loss criterion Ly,F becomes a discrete K ×K ma-
trix.

There are a variety of ways one can go about trying
to find a good predicting function F (x). One might
seek the opinions of domain experts, formally codified
in the “expert systems” approach of artificial intel-
ligence. In predictive or machine learning one uses
data. A “training” data base

D = {yi, xi1, xi2, · · ·, xin}
N
1 = {yi,xi}

N
1 (3)

of N previously solved cases is presumed to exist for
which the values of all variables (response and predic-
tors) have been jointly measured. A “learning” pro-
cedure is applied to these data in order to extract
(estimate) a good predicting function F (x). There
are a great many commonly used learning procedures.
These include linear/logistic regression, neural net-
works, kernel methods, decision trees, multivariate
splines (MARS), etc. For descriptions of a large num-
ber of such learning procedures see Hastie, Tibshirani
and Friedman 2001.

Most machine learning procedures have been
around for a long time and most research in the field
has concentrated on producing refinements to these
long standing methods. However, in the past several
years there has been a revolution in the field inspired
by the introduction of two new approaches: the ex-
tension of kernel methods to support vector machines
(Vapnik 1995), and the extension of decision trees by
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boosting (Freund and Schapire 1996, Friedman 2001).
It is the purpose of this paper to provide an introduc-
tion to these new developments. First the classic ker-
nel and decision tree methods are introduced. Then
the extension of kernels to support vector machines is
described, followed by a description of applying boost-
ing to extend decision tree methods. Finally, similari-
ties and differences between these two approaches will
be discussed.

Although arguably the most influential recent de-
velopments, support vector machines and boosting are
not the only important advances in machine learning
in the past several years. Owing to space limitations
these are the ones discussed here. There have been
other important developments that have considerably
advanced the field as well. These include (but are not
limited to) the bagging and random forest techniques
of Breiman 1996 and 2001 that are somewhat related
to boosting, and the reproducing kernel Hilbert space
methods of Wahba 1990 that share similarities with
support vector machines. It is hoped that this article
will inspire the reader to investigate these as well as
other machine learning procedures.

2. Kernel methods

Kernel methods for predictive learning were intro-
duced by Nadaraya (1964) and Watson (1964). Given
the training data (3), the response estimate ŷ for a set
of joint values x is taken to be a weighted average of
the training responses {yi}

N
1 :

ŷ = FN (x) =

N
∑

i=1

yi K(x,xi)

/

N
∑

i=1

K(x,xi). (4)

The weight K(x,xi) assigned to each response value
yi depends on its location xi in the predictor variable
space and the location x where the prediction is to be
made. The function K(x,x′) defining the respective
weights is called the “kernel function”, and it defines
the kernel method. Often the form of the kernel func-
tion is taken to be

K(x,x′) = g(d(x,x′)/σ) (5)

where d(x,x′) is a defined “distance” between x and
x′, σ is a scale (“smoothing”) parameter, and g(z)
is a (usually monotone) decreasing function with in-
creasing z; often g(z) = exp(−z2/2). Using this kernel
(5), the estimate ŷ (4) is a weighted average of {yi}

N
1 ,

with more weight given to observations i for which
d(x,xi) is small. The value of σ defines “small”. The
distance function d(x,x′) must be specified for each
particular application.

Kernel methods have several advantages that make
them potentially attractive. They represent a univer-
sal approximator; as the training sample size N be-
comes arbitrarily large, N → ∞, the kernel estimate

(4) (5) approaches the optimal predicting target func-
tion (2), FN (x) → F ∗(x), provided the value chosen
for the scale parameter σ as a function of N ap-
proaches zero, σ(N) → 0, at a slower rate than 1/N .
This result holds for almost any distance function
d(x,x′); only very mild restrictions (such as convex-
ity) are required. Another advantage of kernel meth-
ods is that no training is required to build a model; the
training data set is the model. Also, the procedure is
conceptually quite simple and easily explained.

Kernel methods suffer from some disadvantages
that have kept them from becoming highly used in
practice, especially in data mining applications. Since
there is no model, they provide no easily understood
model summary. Thus, they cannot be easily inter-
preted. There is no way to discern how the function
FN (x) (4) depends on the respective predictor vari-
ables x. Kernel methods produce a “black–box” pre-
diction machine. In order to make each prediction, the
kernel method needs to examine the entire data base.
This requires enough random access memory to store
the entire data set, and the computation required to
make each prediction is proportional to the training
sample size N . For large data sets this is much slower
than that for competing methods.

Perhaps the most serious limitation of kernel meth-
ods is statistical. For any finite N , performance
(prediction accuracy) depends critically on the cho-
sen distance function d(x,x′), especially for regression
y ∈ R1. When there are more than a few predictor
variables, even the largest data sets produce a very
sparse sampling in the corresponding n–dimensional
predictor variable space. This is a consequence of the
so called “curse–of–dimensionality” (Bellman 1962).
In order for kernel methods to perform well, the dis-
tance function must be carefully matched to the (un-
known) target function (2), and the procedure is not
very robust to mismatches.

As an example, consider the often used Euclidean
distance function

d(x,x′) =





n
∑

j=1

(xj − x′
j)

2





1/2

. (6)

If the target function F ∗(x) dominately depends on
only a small subset of the predictor variables, then
performance will be poor because the kernel function
(5) (6) depends on all of the predictors with equal
strength. If one happened to know which variables
were the important ones, an appropriate kernel could
be constructed. However, this knowledge is often not
available. Such “kernel customizing” is a requirement
with kernel methods, but it is difficult to do without
considerable a priori knowledge concerning the prob-
lem at hand.

The performance of kernel methods tends to be
fairly insensitive to the detailed choice of the function
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g(z) (5), but somewhat more sensitive to the value
chosen for the smoothing parameter σ. A good value
depends on the (usually unknown) smoothness prop-
erties of the target function F ∗(x), as well as the sam-
ple size N and the signal/noise ratio.

3. Decision trees

Decision trees were developed largely in response to
the limitations of kernel methods. Detailed descrip-
tions are contained in monographs by Brieman, Fried-
man, Olshen and Stone 1983, and by Quinlan 1992.
The minimal description provided here is intended as
an introduction sufficient for understanding what fol-
lows.

A decision tree partitions the space of all joint pre-
dictor variable values x into J–disjoint regions {Rj}

J
1 .

A response value ŷj is assigned to each corresponding
region Rj . For a given set of joint predictor values x,
the tree prediction ŷ = TJ(x) assigns as the response
estimate, the value assigned to the region containing
x

x ∈ Rj ⇒ TJ(x) =ŷj . (7)

Given a set of regions, the optimal response values
associated with each one are easily obtained, namely
the value that minimizes prediction risk in that region

ŷj = arg min
y′

Ey[L(y, y′) |x ∈ Rj ]. (8)

The difficult problem is to find a good set of regions
{Rj}

J
1 . There are a huge number of ways to parti-

tion the predictor variable space, the vast majority
of which would provide poor predictive performance.
In the context of decision trees, choice of a particu-
lar partition directly corresponds to choice of a dis-
tance function d(x,x′) and scale parameter σ in ker-
nel methods. Unlike with kernel methods where this
choice is the responsibility of the user, decision trees
attempt to use the data to estimate a good partition.

Unfortunately, finding the optimal partition re-
quires computation that grows exponentially with the
number of regions J , so that this is only possible for
very small values of J . All tree based methods use
a greedy top–down recursive partitioning strategy to
induce a good set of regions given the training data
set (3). One starts with a single region covering the
entire space of all joint predictor variable values. This
is partitioned into two regions by choosing an optimal
splitting predictor variable xj and a corresponding op-
timal split point s. Points x for which xj ≤ s are
defined to be in the left daughter region, and those
for which xj > s comprise the right daughter region.
Each of these two daughter regions is then itself op-
timally partitioned into two daughters of its own in
the same manner, and so on. This recursive parti-
tioning continues until the observations within each

region all have the same response value y. At this
point a recursive recombination strategy (“tree prun-
ing”) is employed in which sibling regions are in turn
merged in a bottom–up manner until the number of
regions J∗ that minimizes an estimate of future pre-
diction risk is reached (see Breiman et al 1983, Ch.
3).

3.1. Decision tree properties

Decision trees are the most popular predictive learn-
ing method used in data mining. There are a number
of reasons for this. As with kernel methods, deci-
sion trees represent a universal method. As the train-
ing data set becomes arbitrarily large, N → ∞, tree
based predictions (7) (8) approach those of the target
function (2), TJ(x) → F ∗(x), provided the number
of regions grows arbitrarily large, J(N) → ∞, but at
rate slower than N .

In contrast to kernel methods, decision trees do pro-
duce a model summary. It takes the form of a binary
tree graph. The root node of the tree represents the
entire predictor variable space, and the (first) split
into its daughter regions. Edges connect the root to
two descendent nodes below it, representing these two
daughter regions and their respective splits, and so on.
Each internal node of the tree represents an interme-
diate region and its optimal split, defined by a one of
the predictor variables xj and a split point s. The ter-
minal nodes represent the final region set {Rj}

J
1 used

for prediction (7). It is this binary tree graphic that is
most responsible for the popularity of decision trees.
No matter how high the dimensionality of the predic-
tor variable space, or how many variables are actually
used for prediction (splits), the entire model can be
represented by this two–dimensional graphic, which
can be plotted and then examined for interpretation.
For examples of interpreting binary tree representa-
tions see Breiman et al 1983 and Hastie, Tibshirani
and Friedman 2001.

Tree based models have other advantages as well
that account for their popularity. Training (tree build-
ing) is relatively fast, scaling as nN log N with the
number of variables n and training observations N .
Subsequent prediction is extremely fast, scaling as
log J with the number of regions J . The predictor
variables need not all be numeric valued. Trees can
seamlessly accommodate binary and categorical vari-
ables. They also have a very elegant way of dealing
with missing variable values in both the training data
and future observations to be predicted (see Breiman
et al 1983, Ch. 5.3).

One property that sets tree based models apart
from all other techniques is their invariance to mono-
tone transformations of the predictor variables. Re-
placing any subset of the predictor variables {xj } by
(possibly different) arbitrary strictly monotone func-
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tions of them { xj ← mj(xj)}, gives rise to the same
tree model. Thus, there is no issue of having to exper-
iment with different possible transformations mj(xj)
for each individual predictor xj , to try to find the
best ones. This invariance provides immunity to the
presence of extreme values “outliers” in the predictor
variable space. It also provides invariance to chang-
ing the measurement scales of the predictor variables,
something to which kernel methods can be very sen-
sitive.

Another advantage of trees over kernel methods
is fairly high resistance to irrelevant predictor vari-
ables. As discussed in Section 2, the presence of many
such irrelevant variables can highly degrade the per-
formance of kernel methods based on generic kernels
that involve all of the predictor variables such as (6).
Since the recursive tree building algorithm estimates
the optimal variable on which to split at each step,
predictors unrelated to the response tend not to be
chosen for splitting. This is a consequence of attempt-
ing to find a good partition based on the data. Also,
trees have few tunable parameters so they can be used
as an “off–the–shelf” procedure.

The principal limitation of tree based methods
is that in situations not especially advantageous to
them, their performance tends not to be competitive
with other methods that might be used in those situa-
tions. One problem limiting accuracy is the piecewise–
constant nature of the predicting model. The predic-
tions ŷj (8) are constant within each region Rj and
sharply discontinuous across region boundaries. This
is purely an artifact of the model, and target functions
F ∗(x) (2) occurring in practice are not likely to share
this property. Another problem with trees is instabil-
ity. Changing the values of just a few observations can
dramatically change the structure of the tree, and sub-
stantially change its predictions. This leads to high
variance in potential predictions TJ(x) at any partic-
ular prediction point x over different training samples
(3) that might be drawn from the system under study.
This is especially the case for large trees.

Finally, trees fragment the data. As the recursive
splitting proceeds each daughter region contains fewer
observations than its parent. At some point regions
will contain too few observations and cannot be fur-
ther split. Paths from the root to the terminal nodes
tend to contain on average a relatively small fraction
of all of the predictor variables that thereby define
the region boundaries. Thus, each prediction involves
only a relatively small number of predictor variables.
If the target function is influenced by only a small
number of (potentially different) variables in different
local regions of the predictor variable space, then trees
can produce accurate results. But, if the target func-
tion depends on a substantial fraction of the predictors
everywhere in the space, trees will have problems.

4. Recent advances

Both kernel methods and decision trees have been
around for a long time. Trees have seen active use,
especially in data mining applications. The clas-
sic kernel approach has seen somewhat less use. As
discussed above, both methodologies have (different)
advantages and disadvantages. Recently, these two
technologies have been completely revitalized in dif-
ferent ways by addressing different aspects of their
corresponding weaknesses; support vector machines
(Vapnik 1995) address the computational problems of
kernel methods, and boosting (Freund and Schapire
1996, Friedman 2001) improves the accuracy of deci-
sion trees.

4.1. Support vector machines (SVM)

A principal goal of the SVM approach is to fix the
computational problem of predicting with kernels (4).
As discussed in Section 2, in order to make a kernel
prediction a pass over the entire training data base
is required. For large data sets this can be too time
consuming and it requires that the entire data base
be stored in random access memory.

Support vector machines were introduced for the
two–class classification problem. Here the response
variable realizes only two values (class labels) which
can be respectively encoded as

y =

{

+1 label = class 1
−1 label = class 2

. (9)

The average or expected value of y given a set of joint
predictor variable values x is

E [y |x] = 2 · Pr(y = +1 |x)− 1. (10)

Prediction error rate is minimized by predicting at
x the class with the highest probability, so that the
optimal prediction is given by

y∗(x) = sign(E [y |x]).

From (4) the kernel estimate of (10) based on the
training data (3) is given by

Ê [y |x] = FN (x) =

N
∑

i=1

yi K(x,xi)

/

N
∑

i=1

K(x,xi)

(11)
and, assuming a strictly non negative kernel K(x,xi),
the prediction estimate is

ŷ(x) = sign(Ê [y |x]) = sign

(

N
∑

i=1

yi K(x,xi)

)

.

(12)
Note that ignoring the denominator in (11) to ob-
tain (12) removes information concerning the absolute
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value of Pr(y = +1 |x); only the estimated sign of (10)
is retained for classification.

A support vector machine is a weighted kernel clas-
sifier

ŷ(x) = sign

(

a0 +

N
∑

i=1

αi yi K(x,xi)

)

. (13)

Each training observation (yi,xi) has an associ-
ated coefficient αi additionally used with the kernel
K(x,xi) to evaluate the weighted sum (13) compris-
ing the kernel estimate ŷ(x). The goal is to choose
a set of coefficient values {αi}

N
1 so that many αi = 0

while still maintaining prediction accuracy. The ob-
servations associated with non zero valued coefficients
{xi |αi 6= 0} are called “support vectors”. Clearly
from (13) only the support vectors are required to do
prediction. If the number of support vectors is a small
fraction of the total number of observations computa-
tion required for prediction is thereby much reduced.

4.1.1. Kernel trick

In order to see how to accomplish this goal consider
a different formulation. Suppose that instead of using
the original measured variables x = (x1, · · ·, xn) as
the basis for prediction, one constructs a very large
number of (nonlinear) functions of them

{zk = hk(x)}M1 (14)

for use in prediction. Here each hk(x) is a differ-
ent function (transformation) of x. For any given x,
z = {zk}

M
1 represents a point in a M–dimensional

space where M >> dim(x) = n. Thus, the number of
“variables” used for classification is dramatically ex-
panded. The procedure constructs simple linear clas-
sifier in z–space

ŷ(z) = sign

(

β0 +

M
∑

k=1

βk zk

)

= sign

(

β0 +

M
∑

k=1

βk hk (x)

)

.

This is a highly non–linear classifier in x–space ow-
ing to the nonlinearity of the derived transformations
{hk(x)}M1 .

An important ingredient for calculating such a lin-
ear classifier is the inner product between the points
representing two observations i and j

zT
i zj =

M
∑

k=1

zikzjk (15)

=

M
∑

k=1

hk (xi) hk (xj)

= H(xi,xj).

This (highly nonlinear) function of the x–variables,
H(xi,xj), defines the simple bilinear inner product
zT

i zj in z–space.
Suppose for example, the derived variables (14)

were taken to be all d–degree polynomials in the
original predictor variables {xj}

n
1 . That is zk =

xi1(k)xi2(k) · · · xid(k), with k labeling each of the

M = (n+1)d possible sets of d integers, 0 ≤ ij(k) ≤ n,
and with the added convention that x0 = 1 even
though x0 is not really a component of the vector
x. In this case the number of derived variables is
M = (n + 1)d, which is the order of computation for
obtaining zT

i zj directly from the z variables. However,
using

zT
i zj = H(xi,xj) = (xT

i xj + 1)d (16)

reduces the computation to order n, the much smaller
number of originally measured variables. Thus, if for
any particular set of derived variables (14), the func-
tion H(xi,xj) that defines the corresponding inner
products zT

i zj in terms of the original x–variables can
be found, computation can be considerably reduced.

As an example of a very simple linear classifier in
z–space, consider one based on nearest–means.

ŷ(z) = sign( || z− z̄− ||
2 − || z− z̄+ ||

2). (17)

Here z̄± are the respective means of the y = +1 and
y = −1 observations

z̄± =
1

N±

∑

yi=±1

zi.

For simplicity, let N+ = N− = N/2. Choosing the
midpoint between z̄+ and z̄− as the coordinate system
origin, the decision rule (17) can be expressed as

ŷ(z) = sign(zT (z̄+ − z̄−)) (18)

= sign

(

∑

yi=1

zT zi −
∑

yi=−1

zT zi

)

= sign

(

N
∑

i=1

yiz
T zi

)

= sign

(

N
∑

i=1

yiH(x,xi)

)

.

Comparing this (18) with (12) (13), one sees that
ordinary kernel rule ({αi = 1}N1 ) in x–space is the
nearest–means classifier in the z–space of derived vari-
ables (14) whose inner product is given by the kernel
function zT

i zj = K(xi,xj). Therefore to construct
an (implicit) nearest means classifier in z–space, all
computations can be done in x–space because they
only depend on evaluating inner products. The ex-
plicit transformations (14) need never be defined or
even known.
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4.1.2. Optimal separating hyperplane

Nearest–means is an especially simple linear classi-
fier in z–space and it leads to no compression: {αi =
1}N1 in (13). A support vector machine uses a more
“realistic” linear classifier in z–space, that can also be
computed using only inner products, for which often
many of the coefficients have the value zero (αi = 0).
This classifier is the “optimal” separating hyperplane
(OSH).

We consider first the case in which the observations
representing the respective two classes are linearly
separable in z–space. This is often the case since the
dimension M (14) of that (implicitly defined) space
is very large. In this case the OSH is the unique hy-
perplane that separates two classes while maximizing
the distance to the closest points in each class. Only
this set of closest points equidistant to the OSH are
required to define it. These closest points are called
the support points (vectors). Their number can range
from a minimum of two to a maximum of the training
sample size N . The “margin” is defined to be the dis-
tance of support points from OSH. The z–space linear
classifier is given by

ŷ(z) = sign

(

β∗
0 +

M
∑

k=1

β∗
kzk

)

(19)

where (β∗
0 , β∗ = {β∗

k}
M
1 ) define the OSH. Their val-

ues can be determined using standard quadratic pro-
gramming techniques.

An OSH can also be defined for the case when the
two classes are not separable in z–space by allowing
some points to be on wrong side of their class mar-
gin. The amount by which they are allowed to do so
is a regularization (smoothing) parameter of the pro-
cedure. In both the separable and non separable cases
the solution parameter values (β∗

0 , β∗) (19) are defined
only by points close to boundary between the classes.
The solution for β∗ can be expressed as

β∗ =

N
∑

i=1

α∗
i yi zi

with α∗
i 6= 0 only for points on, or on the wrong side

of, their class margin. These are the support vectors.
The SVM classifier is thereby

ŷ(z) = sign

(

β∗
0 +

N
∑

i=1

α∗
i yi z

T zi

)

= sign



β∗
0 +

∑

α∗

i
6=0

α∗
i yi K(x,xi)



 .

This is a weighted kernel classifier involving only
support vectors. Also (not shown here), the quadratic
program used to solve for the OSH involves the data

only through the inner products zT
i zj = K(xi,xj).

Thus, one only needs to specify the kernel function to
implicitly define z–variables (kernel trick).

Besides the polynomial kernel (16), other popular
kernels used with support vector machines are the “ra-
dial basis function” kernel

K(x,x′) = exp(− ||x− x′ ||2/2σ2), (20)

and the “neural network” kernel

K(x,x′) = tanh(axT x′ + b). (21)

Note that both of these kernels (20) (21) involve addi-
tional tuning parameters, and produce infinite dimen-
sional derived variable (14) spaces (M =∞).

4.1.3. Penalized learning formulation

The support vector machine was motivated above
by the optimal separating hyperplane in the high di-
mensional space of the derived variables (14). There
is another equivalent formulation in that space that
shows that the SVM procedure is related to other well
known statistically based methods. The parameters of
the OSH (19) are the solution to

(β∗
0 , β∗) = arg min

β0,β

N
∑

i=1

[1−yi(β0 +βT zi)]+ +λ · ||β ||
2
.

(22)
Here the expression [η]+ represents the “positive part”
of its argument; that is, [η]+ = max(0, η). The “regu-
larization” parameter λ is related to the SVM smooth-
ing parameter mentioned above. This expression (22)
represents a penalized learning problem where the
goal is to minimize the empirical risk on the training
data using as a loss criterion

L(y, F (z)) = [1− yF (z)]+, (23)

where

F (z) = β0 + βT z,

subject to an increasing penalty for larger values of

||β ||
2

=

n
∑

j=1

β2
j . (24)

This penalty (24) is well known and often used to reg-
ularize statistical procedures, for example linear least
squares regression leading to ridge–regression (Hoerl
and Kannard 1970)

(β∗
0 , β∗) = arg min

β0,β

N
∑

i=1

[yi − (β0 + βT zi)]
2 + λ · ||β ||

2
.

(25)
The “hinge” loss criterion (23) is not familiar in

statistics. However, it is closely related to one that is
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well known in that field, namely conditional negative
log–likelihood associated with logistic regression

L(y, F (z)) = − log[1 + e−yF (z)]. (26)

In fact, one can view the SVM hinge loss as a
piecewise–linear approximation to (26). Unregular-
ized logistic regression is one of the most popular
methods in statistics for treating binary response out-
comes (9). Thus, a support vector machine can
be viewed as an approximation to regularized logis-
tic regression (in z–space) using the ridge–regression
penalty (24).

This penalized learning formulation forms the basis
for extending SVMs to the regression setting where
the response variable y assumes numeric values y ∈
R1, rather than binary values (9). One simply replaces
the loss criterion (23) in (22) with

L(y, F (z)) = (|y − F (z)| − ε)+. (27)

This is called the “ε–insensitive” loss and can be
viewed as a piecewise–linear approximation to the Hu-
ber 1964 loss

L(y, F (z)) =

{

|y − F (z)|2/2 |y − F (z)| ≤ ε
ε(|y − F (z)| − ε/2) |y − F (z)| > ε

(28)
often used for robust regression in statistics. This loss
(28) is a compromise between squared–error loss (25)
and absolute–deviation loss L(y, F (z)) = |y − F (z)|.
The value of the “transition” point ε differentiates the
errors that are treated as “outliers” being subject to
absolute–deviation loss, from the other (smaller) er-
rors that are subject to squared–error loss.

4.1.4. SVM properties

Support vector machines inherit most of the advan-
tages of ordinary kernel methods discussed in Section
2. In addition, they can overcome the computation
problems associated with prediction, since only the
support vectors (αi 6= 0 in (13)) are required for mak-
ing predictions. If the number of support vectors is
much smaller that than the total sample size N , com-
putation is correspondingly reduced. This will tend to
be the case when there is small overlap between the
respective distributions of the two classes in the space
of the original predictor variables x (small Bayes error
rate).

The computational savings in prediction are bought
by dramatic increase in computation required for
training. Ordinary kernel methods (4) require no
training; the data set is the model. The quadratic pro-
gram for obtaining the optimal separating hyperplane
(solving (22)) requires computation proportional to
the square of the sample size (N2), multiplied by the
number of resulting support vectors. There has been
much research on fast algorithms for training SVMs,
extending computational feasibility to data sets of size

N . 30, 000 or so. However, they are still not feasible
for really large data sets N & 100, 000.

SVMs share some of the disadvantages of ordinary
kernel methods. They are a black–box procedure with
little interpretive value. Also, as with all kernel meth-
ods, performance can be very sensitive to kernel (dis-
tance function) choice (5). For good performance the
kernel needs to be matched to the properties of the
target function F ∗(x) (2), which are often unknown.
However, when there is a known “natural” distance for
the problem, SVMs represent very powerful learning
machines.

4.2. Boosted trees

Boosting decision trees was first proposed by Fre-
und and Schapire 1996. The basic idea is rather than
using just a single tree for prediction, a linear combi-
nation of (many) trees

F (x) =

M
∑

m=1

amTm(x) (29)

is used instead. Here each Tm(x) is a decision tree of
the type discussed in Section 3 and am is its coeffi-
cient in the linear combination. This approach main-
tains the (statistical) advantages of trees, while often
dramatically increasing accuracy over that of a single
tree.

4.2.1. Training

The recursive partitioning technique for construct-
ing a single tree on the training data was discussed in
Section 3. Algorithm 1 describes a forward stagewise
method for constructing a prediction machine based
on a linear combination of M trees.

Algorithm 1

Forward stagewise boosting

1 F0(x) = 0
2 For m = 1 to M do:
3 (am, Tm(x)) = arg mina,T (x)

4
∑N

i=1 L(yi, Fm−1(xi)+ aT (xi))
5 Fm(x) =Fm−1(xi)+amTm(x)
6 EndFor

7 F (x) = FM (x) =
∑M

m=1 amTm(x)

The first line initializes the predicting function to
everywhere have the value zero. Lines 2 and 6 con-
trol the M iterations of the operations associated with
lines 3–5. At each iteration m there is a current pre-
dicting function Fm−1(x). At the first iteration this
is the initial function F0(x) = 0, whereas for m > 1 it
is the linear combination of the m − 1 trees induced
at the previous iterations. Lines 3 and 4 construct
that tree Tm(x), and find the corresponding coeffi-
cient am, that minimize the estimated prediction risk
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(1) on the training data when amTm(x) is added to
the current linear combination Fm−1(x). This is then
added to the current approximation Fm−1(x) on line
5, producing a current predicting function Fm(x) for
the next (m + 1)st iteration.

At the first step, a1T1(x) is just the standard tree
build on the data as described in Section 3, since
the current function is F0(x) = 0. At the next
step, the estimated optimal tree T2(x) is found to
add to it with coefficient a2, producing the function
F2(x) =a1T1(x) + a2T2(x). This process is continued
for M steps, producing a predicting function consist-
ing of a linear combination of M trees (line 7).

The potentially difficult part of the algorithm is
constructing the optimal tree to add at each step.
This will depend on the chosen loss function L(y, F ).
For squared–error loss

L(y, F ) = (y − F )2

the procedure is especially straight forward, since

L(y, Fm−1+ aT )=(y−Fm−1 − aT )
2

= (rm − aT )2.

Here rm = y−Fm−1 is just the error (“residual”) from
the current model Fm−1 at the mth iteration. Thus
each successive tree is built in the standard way to
best predict the errors produced by the linear com-
bination of the previous trees. This basic idea can
be extended to produce boosting algorithms for any
differentiable loss criterion L(y, F ) (Friedman 2001).

As originally proposed the standard tree construc-
tion algorithm was treated as a primitive in the boost-
ing algorithm, inserted in lines 3 and 4 to produced
a tree that best predicts the current errors {rim =
yi − Fm−1(xi)}

N
1 . In particular, an optimal tree size

was estimated at each step in the standard tree build-
ing manner. This basically assumes that each tree
will be the last one in the sequence. Since boosting
often involves hundreds of trees, this assumption is
far from true and as a result accuracy suffers. A bet-
ter strategy turns out to be (Friedman 2001) to use a
constant tree size (J regions) at each iteration, where
the value of J is taken to be small, but not too small.
Typically 4 ≤ J ≤ 10 works well in the context of
boosting, with performance being fairly insensitive to
particular choices.

4.2.2. Regularization

Even if one restricts the size of the trees entering
into a boosted tree model it is still possible to fit the
training data arbitrarily well, reducing training error
to zero, with a linear combination of enough trees.
However, as is well known in statistics, this is seldom
the best thing to do. Fitting the training data too
well can increase prediction risk on future predictions.
This is a phenomenon called “over–fitting”. Since

each tree tries to best fit the errors associated with
the linear combination of previous trees, the train-
ing error monotonically decreases as more trees are
included. This is, however, not the case for future
prediction error on data not used for training.

Typically at the beginning, future prediction error
decreases with increasing number of trees M until at
some point M∗ a minimum is reached. For M > M∗,
future error tends to (more or less) monotonically in-
crease as more trees are added. Thus there is an opti-
mal number M∗ of trees to include in the linear combi-
nation. This number will depend on the problem (tar-
get function (2), training sample size N , and signal to
noise ratio). Thus, in any given situation, the value
of M∗ is unknown and must be estimated from the
training data itself. This is most easily accomplished
by the “early stopping” strategy used in neural net-
work training. The training data is randomly parti-
tioned into learning and test samples. The boosting is
performed using only the data in the learning sample.
As iterations proceed and trees are added, prediction
risk as estimated on the test sample is monitored. At
that point where a definite upward trend is detected
iterations stop and M∗ is estimated as the value of
M producing the smallest prediction risk on the test
sample.

Inhibiting the ability of a learning machine to fit
the training data so as to increase future performance
is called a “method–of–regularization”. It can be mo-
tivated from a frequentist perspective in terms of the
“bias–variance trade–off” (Geman, Bienenstock and
Doursat 1992) or by the Bayesian introduction of a
prior distribution over the space of solution functions.
In either case, controlling the number of trees is not
the only way to regularize. Another method com-
monly used in statistics is “shrinkage”. In the context
of boosting, shrinkage can be accomplished by replac-
ing line 5 in Algorithm 1 by

Fm(x) = Fm−1(x) + (ν · am) Tm (x) . (30)

Here the contribution to the linear combination of the
estimated best tree to add at each step is reduced
by a factor 0 < ν ≤ 1. This “shrinkage” factor or
“learning rate” parameter controls the rate at which
adding trees reduces prediction risk on the learning
sample; smaller values produce a slower rate so that
more trees are required to fit the learning data to the
same degree.

Shrinkage (30) was introduced in Friedman 2001
and shown empirically to dramatically improve the
performance of all boosting methods. Smaller learning
rates were seen to produce more improvement, with a
diminishing return for ν . 0.1, provided that the esti-
mated optimal number of trees M∗(ν) for that value
of ν is used. This number increases with decreasing
learning rate, so that the price paid for better perfor-
mance is increased computation.
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4.2.3. Penalized learning formulation

The introduction of shrinkage (30) in boosting was
originally justified purely on empirical evidence and
the reason for its success was a mystery. Recently,
this mystery has been solved (Hastie, Tibshirani and
Friedman 2001 and Efron, Hastie, Johnstone and Tib-
shirani 2002). Consider a learning machine consisting
of a linear combination of all possible (J–region) trees:

F̂ (x) =
∑

âmTm(x) (31)

where

{âm} = arg min
{am}

N
∑

i=1

L
(

yi,
∑

amTm(xi)
)

+λ·P ({am}).

(32)
This is a penalized (regularized) linear regression,
based on a chosen loss criterion L, of the response
values {yi}

N
1 on the predictors (trees) {Tm(xi)}

N
i=1.

The first term in (32) is the prediction risk on the
training data and the second is a penalty on the val-
ues of the coefficients {am}. This penalty is required
to regularize the solution because the number of all
possible J–region trees is infinite. The value of the
“regularization” parameter λ controls the strength of
the penalty. Its value is chosen to minimize an esti-
mate of future prediction risk, for example based on
a left out test sample.

A commonly used penalty for regularization in
statistics is the “ridge” penalty

P ({am}) =
∑

a2
m (33)

used in ridge–regression (25) and support vector ma-
chines (22). This encourages small coefficient absolute
values by penalizing the l2–norm of the coefficient vec-
tor. Another penalty becoming increasingly popular
is the “lasso” (Tibshirani 1996)

P ({am}) =
∑

| am |. (34)

This also encourages small coefficient absolute values,
but by penalizing the l1–norm. Both (33) and (34) in-
creasingly penalize larger average absolute coefficient
values. They differ in how they react to dispersion or
variation of the absolute coefficient values. The ridge
penalty discourages dispersion by penalizing variation
in absolute values. It thus tends to produce solutions
in which coefficients tend to have equal absolute val-
ues and none with the value zero. The lasso (34) is in-
different to dispersion and tends to produce solutions
with a much larger variation in the absolute values of
the coefficients, with many of them set to zero. The
best penalty will depend on the (unknown population)
optimal coefficient values. If these have more or less
equal absolute values the ridge penalty (33) will pro-
duce better performance. On the other hand, if their

absolute values are highly diverse, especially with a
few large values and many small values, the lasso will
provide higher accuracy.

As discussed in Hastie, Tibshirani and Friedman
2001 and rigorously derived in Efron et al 2002, there
is a connection between boosting (Algorithm 1) with
shrinkage (30) and penalized linear regression on all
possible trees (31) (32) using the lasso penalty (34).
They produce very similar solutions as the shrink-
age parameter becomes arbitrarily small ν → 0. The
number of trees M is inversely related to the penalty
strength parameter λ; more boosted trees corresponds
to smaller values of λ (less regularization). Using early
stopping to estimate the optimal number M∗ is equiv-
alent to estimating the optimal value of the penalty
strength parameter λ. Therefore, one can view the in-
troduction of shrinkage (30) with a small learning rate
ν . 0.1 as approximating a learning machine based on
all possible (J–region) trees with a lasso penalty for
regularization. The lasso is especially appropriate in
this context because among all possible trees only a
small number will likely represent very good predic-
tors with population optimal absolute coefficient val-
ues substantially different from zero. As noted above,
this is an especially bad situation for the ridge penalty
(33), but ideal for the lasso (34).

4.2.4. Boosted tree properties

Boosted trees maintain almost all of the advantages
of single tree modeling described in Section 3.1 while
often dramatically increasing their accuracy. One of
the properties of single tree models leading to inac-
curacy is the coarse piecewise constant nature of the
resulting approximation. Since boosted tree machines
are linear combinations of individual trees, they pro-
duce a superposition of piecewise constant approxi-
mations. These are of course also piecewise constant,
but with many more pieces. The corresponding dis-
continuous jumps are very much smaller and they are
able to more accurately approximate smooth target
functions.

Boosting also dramatically reduces the instability
associated with single tree models. First only small
trees (Section 4.2.1) are used which are inherently
more stable than the generally larger trees associated
with single tree approximations. However, the big in-
crease in stability results from the averaging process
associated with using the linear combination of a large
number of trees. Averaging reduces variance; that is
why it plays such a fundamental role in statistical es-
timation.

Finally, boosting mitigates the fragmentation prob-
lem plaguing single tree models. Again only small
trees are used which fragment the data to a much
lesser extent than large trees. Each boosting iteration
uses the entire data set to build a small tree. Each
respective tree can (if dictated by the data) involve
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different sets of predictor variables. Thus, each pre-
diction can be influenced by a large number of predic-
tor variables associated with all of the trees involved
in the prediction if that is estimated to produce more
accurate results.

The computation associated with boosting trees
roughly scales as nN log N with the number of pre-
dictor variables n and training sample size N . Thus,
it can be applied to fairly large problems. For exam-
ple, problems with n v 102–103 and N v 105–106 are
routinely feasible.

The one advantage of single decision trees not inher-
ited by boosting is interpretability. It is not possible
to inspect the very large number of individual tree
components in order to discern the relationships be-
tween the response y and the predictors x. Thus, like
support vector machines, boosted tree machines pro-
duce black–box models. Techniques for interpreting
boosted trees as well as other black–box models are
described in Friedman 2001.

4.3. Connections

The preceding section has reviewed two of the most
important advances in machine learning in the re-
cent past: support vector machines and boosted de-
cision trees. Although motivated from very different
perspectives, these two approaches share fundamen-
tal properties that may account for their respective
success. These similarities are most readily apparent
from their respective penalized learning formulations
(Section 4.1.3 and Section 4.2.3). Both build linear
models in a very high dimensional space of derived
variables, each of which is a highly nonlinear function
of the original predictor variables x. For support vec-
tor machines these derived variables (14) are implic-
itly defined through the chosen kernel K(x,x′) defin-
ing their inner product (15). With boosted trees these
derived variables are all possible (J–region) decision
trees (31) (32).

The coefficients defining the respective linear mod-
els in the derived space for both methods are solu-
tions to a penalized learning problem (22) (32) in-
volving a loss criterion L(y, F ) and a penalty on the
coefficients P ({am}). Support vector machines use
L(y, F ) = (1 − y F )+ for classification y ∈ {−1, 1},
and (27) for regression y ∈ R1. Boosting can be
used with any (differentiable) loss criterion L(y, F )
(Friedman 2001). The respective penalties P ({am})
are (24) for SVMs and (34) with boosting. Addition-
ally, both methods have a computational trick that
allows all (implicit) calculations required to solve the
learning problem in the very high (usually infinite) di-
mensional space of the derived variables z to be per-
formed in the space of the original variables x. For
support vector machines this is the kernel trick (Sec-
tion 4.1.1), whereas with boosting it is forward stage-

wise tree building (Algorithm 1) with shrinkage (30).

The two approaches do have some basic differences.
These involve the particular derived variables defin-
ing the linear model in the high dimensional space,
and the penalty P ({am}) on the corresponding coef-
ficients. The performance of any linear learning ma-
chine based on derived variables (14) will depend on
the detailed nature of those variables. That is, dif-
ferent transformations {hk(x)} will produce different
learners as functions of the original variables x, and
for any given problem some will be better than others.
The prediction accuracy achieved by a particular set
of transformations will depend on the (unknown) tar-
get function F ∗(x) (2). With support vector machines
the transformations are implicitly defined through the
chosen kernel function. Thus the problem of choosing
transformations becomes, as with any kernel method,
one of choosing a particular kernel function K(x,x′)
(“kernel customizing”).

Although motivated here for use with decision trees,
boosting can in fact be implemented using any spec-
ified “base learner” h(x;p). This is a function of the
predictor variables x characterized by a set of param-
eters p = {p1,p2, · · ·}. A particular set of joint pa-
rameter values p indexes a particular function (trans-
formation) of x, and the set of all functions induced
over all possible joint parameter values define the de-
rived variables of the linear prediction machine in the
transformed space. If all of the parameters assume
values on a finite discrete set this derived space will
be finite dimensional, otherwise it will have infinite
dimension. When the base learner is a decision tree
the parameters represent the identities of the predic-
tor variables used for splitting, the split points, and
the response values assigned to the induced regions.
The forward stagewise approach can be used with any
base learner by simply substituting it for the deci-
sion tree T (x)→h(x;p) in lines 3–5 of Algorithm 1.
Thus boosting provides explicit control on the choice
of transformations to the high dimensional space. So
far boosting has seen greatest success with decision
tree base learners, especially in data mining applica-
tions, owing to their advantages outlined in Section
3.1. However, boosting other base learners can pro-
vide potentially attractive alternatives in some situa-
tions.

Another difference between SVMs and boosting is
the nature of the regularizing penalty P ({am}) that
they implicitly employ. Support vector machines use
the “ridge” penalty (24). The effect of this penalty is
to shrink the absolute values of the coefficients {βm}
from that of the unpenalized solution λ = 0 (22),
while discouraging dispersion among those absolute
values. That is, it prefers solutions in which the de-
rived variables (14) all have similar influence on the
resulting linear model. Boosting implicitly uses the
“lasso” penalty (34). This also shrinks the coefficient
absolute values, but it is indifferent to their disper-
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sion. It tends to produce solutions with relatively few
large absolute valued coefficients and many with zero
value.

If a very large number of the derived variables in
the high dimensional space are all highly relevant for
prediction then the ridge penalty used by SVMs will
provide good results. This will be the case if the cho-
sen kernel K(x,x′) is well matched to the unknown
target function F ∗(x) (2). Kernels not well matched
to the target function will (implicitly) produce trans-
formations (14) many of which have little or no rele-
vance to prediction. The homogenizing effect of the
ridge penalty is to inflate estimates of their relevance
while deflating that of the truly relevant ones, thereby
reducing prediction accuracy. Thus, the sharp sensi-
tivity of SVMs on choice of a particular kernel can be
traced to the implicit use of the ridge penalty (24).

By implicitly employing the lasso penalty (34),
boosting anticipates that only a small number of its
derived variables are likely to be highly relevant to
prediction. The regularization effect of this penalty
tends to produce large coefficient absolute values for
those derived variables that appear to be relevant and
small (mostly zero) values for the others. This can
sacrifice accuracy if the chosen base learner happens
to provide an especially appropriate space of derived
variables in which a large number turn out to be highly
relevant. However, this approach provides consider-
able robustness against less than optimal choices for
the base learner and thus the space of derived vari-
ables.

5. Conclusion

A choice between support vector machines and
boosting depends on one’s a priori knowledge con-
cerning the problem at hand. If that knowledge is
sufficient to lead to the construction of an especially
effective kernel function K(x,x′) then an SVM (or
perhaps other kernel method) would be most appro-
priate. If that knowledge can suggest an especially ef-
fective base learner h(x;p) then boosting would likely
produce superior results. As noted above, boosting
tends to be more robust to misspecification. These
two techniques represent additional tools to be con-
sidered along with other machine learning methods.
The best tool for any particular application depends
on the detailed nature of that problem. As with any
endeavor one must match the tool to the problem. If
little is known about which technique might be best
in any given application, several can be tried and ef-
fectiveness judged on independent data not used to
construct the respective learning machines under con-
sideration.
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