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Abstract

Bayesian classification is currently of considerable interest. It provides a strategy for
eliminating the uncertainty associated with a particular choice of classifier-model parame-
ters, and is the optimal decision-theoretic choice under certain circumstances when there is
no single “true” classifier for a given data set. Modern computing capabilities can easily sup-
port the Markov chain Monte Carlo sampling that is necessary to carry out the calculations
involved, but the information available in these samples is not at present being fully utilised.
We show how it can be allied to known results concerning the “reject option” in order to
produce an assessment of the confidence that can be ascribed to particular classifications,
and how these confidence measures can be used to compare the performances of classifiers.
Incorporating these confidence measures can alter the apparent ranking of classifiers as given
by straightforward success or error rates. Several possible methods for obtaining confidence
assessments are described, and compared on a range of data sets using the Bayesian proba-
bilistic nearest-neighbour classifier.
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1 Introduction

Bayesian methods have been advocated in principle for many years (Lindley, 1965; DeGroot,

1970), but their application has been hampered in practice by the computational intractability

of many of the concomitant (high-dimensional) integrals. This state of affairs has been revolu-

tionised in recent years by the development of Markov Chain Monte Carlo (MCMC) methods

(see, e.g., the review by Brooks, 1998) and their reversible-jump (RJ) extensions (Green, 1995).

These methods allow samples to be drawn from posterior distributions that are known only up

to a constant of proportionality, thereby sidestepping the evaluation of the difficult integrals

and replacing other integrals by straightforward averages (or related simple summary statistics)

of sampled values. The sampling process must usually be run for a very long time to allow

the generated Markov Chains to stabilise at the required stationary distributions, but current
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computing power makes light of this demand. Consequently, there has been an explosion in the

use of RJMCMC methods for statistical modelling in the past ten years.

One specific area of interest in such methods is that of discriminant analysis, or supervised

classification. In essence here the problem is to define a suitable function of p features x′ =

(x1, x2, . . . , xp) that will best distinguish between g a-priori groups or populations, and that can

be used to classify future unidentified individuals most accurately to their correct population.

A set of individuals with known population membership is generally available for deriving the

function (usually termed the classifier) and assessing its performance. If this set is large enough

then it can be split into two independent parts to deal with these two aspects, the first part

for training the classifier and the second part for testing its efficacy, but if the set is not large

then some form of data resampling (such as jackknifing or bootstrapping) must be employed for

the performance assessment. This whole area has now been studied for many years and there

are many possible ways of deriving classifiers and determining their efficacies (McLachlan, 1992;

Hand, 1997). A full Bayesian approach has only recently become viable, for the reasons outlined

above, but the appropriate technology has been rapidly developed (Denison, Holmes, Mallick

and Smith, 2002).

However, although the derivation of classifiers and the estimation of their classification per-

formance has been worked out for a range of possible models and classifier types, other important

aspects have received less attention. One such aspect, namely the confidence that can be ascribed

to a particular classification result, is important in general but especially so in safety-critical

systems such as medical diagnosis or air-traffic collision alert systems. We therefore focus in this

paper on methods for deriving confidence measures about classifications in a Bayesian context.

In section 2 we summarise the main features of Bayesian classification, in section 3 we derive

several possible confidence measures and compare them on a range of data sets for one particu-

lar classifier family, in section 4 we discuss how these measures can be used to choose between

competing classifiers, and some concluding remarks are made in section 5.

2 Bayesian Classification

We first assume that the classifier C(x, θ) comes from a family of classifiers depending on the

predictors x as well as on a set of parameters θ′ = (θ0, θ1, . . . , θq). For example, a linear classifier

belongs to the family C(x, θ) = θ0 + θ1x1 + θ2x2 + . . . + θpxp of all linear combinations of the

predictors, with coefficients and constant term comprising the set of parameters. Applying
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the classifier to an individual x yields the values of one or more classification scores on which

the classification of x is made; frequently these scores are the posterior probabilities of group

memberships for x. However, in general θ is unknown and must be inferred from a set of

individuals whose group memberships as well as predictor values are known. The classical

single-classifier approach splits this set of individuals into a training set D, say, and a test set T ,

say. Then θ is replaced by an estimate derived from D, and the resulting classifier’s efficacy is

assessed by finding the proportion of each group that is misclassified in T . Different methods of

estimation make different demands on the data; a common framework involves the assumption

of a probability model for the data D, and hence the use of maximum likelihood as the method

of estimation.

Within such a framework, parametric probability models are frequently used for the popu-

lations from which the groups are taken. In this case the classifier parameters θ are functions of

the population model parameters. For example, the earliest linear classifier between two popula-

tions was derived empirically by Fisher (1936) and was subsequently formalised by Welch (1939),

who modelled the two populations as two multivariate normal distributions having means µ1,

µ2 and a common dispersion matrix Σ. The coefficients θi in the linear classifier are then easily

shown to be functions of µ1, µ2 and Σ. In practice these unknown parameters are replaced

by their estimates from the training data D to yield what is commonly termed Fisher’s linear

discriminant function (LDF). If this function is denoted by F (x), say, then classification of x

depends on whether F (x) ≤ t or not, for some threshold t. This is an example of a classification

score that is not an estimate of posterior probability of group membership of x. In other clas-

sifiers, e.g. logistic discriminators (McLachlan, 1992), the classification score does yield such a

probability estimate.

For a Bayesian approach we need additionally to specify a joint prior distribution π(θ)

for the classifier parameters, form the likelihood L(D|θ) of the training data using the chosen

probability model, and hence obtain the posterior distribution of the parameters,

π(θ|D) =
π(θ)L(D|θ)∫
π(θ)L(D|θ)dθ

.

The Bayesian classifier is then the expected value of C(x, θ) over this posterior distribution,

i.e. C(x|D) =
∫

C(x, θ)π(θ|D)dθ. This is known as the predictive classification score. If the

classification scores are the posterior probabilities of group membership then these predictive

values are often denoted by p(y|x,D), where y is the group label variable.

If the classifier parameters are functions of the probability model parameters, then the prior
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and posterior distributions are for the latter parameters and the Bayesian classifier is the ex-

pected value of C(x, θ) over this latter posterior distribution. For example, in the case of Fisher’s

LDF and multivariate normal assumptions as above, Geisser (1982) shows that on taking the

usual reference prior expressing ignorance about the parameters µ1, µ2 and Σ, viz.

π(µ1,µ2,Σ) ∝ |Σ|−(p+1)/2,

then the posterior distribution of the parameters is a multivariate t distribution, and the expec-

tation of C(x, θ) over this distribution is F (x) + p(n1 − n2)/2n1n2, where n1, n2 are the group

sample sizes in the training data D.

This example involving Fisher’s LDF and multivariate normal assumptions is relatively un-

usual, in that analytical derivation of the expectation of C(x, θ) is possible. More usually,

evaluating the above two integrals can be very difficult, particularly when the dimensionality

of θ is large. However, from its definition the Bayesian classifier will obviously be well approx-

imated by the mean of C(x, θ) over a large sample of independent observations from π(θ|D).

MCMC will enable such a sample to be drawn without having to evaluate the integral in the

denominator of π(θ|D). We just need to ensure that the MCMC acceptance probabilities are

chosen so that π(θ|D) is the limiting (stationary) distribution, run the chain for a preliminary

(burn-in) period to ensure stationarity has been reached, and then sample (say) every 7th value.

This will produce approximate independence of observations, and consistency when estimating

higher-order moments. Each value then yields a single observation from π(θ|D), so substituting

them in turn into C(x, θ) for the particular x to be classified and averaging the results produces

the Bayesian classifier.

This is just an example of Bayesian averaging, which is used much more generally in modelling

(Hoeting, Madigan, Raftery and Volinsky, 1999). Of course, the Bayesian approach does not

preclude the choice of a single “best” classifier, as one can simply be selected from the set of

classifiers generated by the sampling process; the classifier obtained from the “maximum a-

posteriori” (MAP) value of θ would be an obvious choice. However, an averaged classifier not

only usually produces better overall performance than the single MAP classifier, it is also the

optimal decision-theoretic choice when there is no single “true” classifier that is being sought

from among the family C(x, θ) (Denison et al, 2002, pp 28-29). So it is the most appropriate

one to use in many practical cases. The Bayesian approach has now been implemented for many

different families of classifiers, and details may be found, for example, in Denison et al (2002);

we use the nearest neighbour family in the illustrations below.
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3 Measures of Confidence

3.1 Introduction

An important consideration in many applications, particularly with critical systems such as

when air traffic controllers attempt to screen potential aircraft collisions, is the need to attach

a measure of confidence relating to any particular classification. Although much effort has been

expended in the past on refining classifiers and developing methods of accurate assessment of

their overall performance, the estimation of uncertainty in classification prediction has been

relatively under-appreciated.

A traditional method of reducing the risk of misclassification is by means of the reject option

(surveyed in Fukunaga, 1990), whereby we do not automatically accept the outcome of the

classifier for all points in the sample space, but hold back any points about whose classification

we have doubts with the aim of handling these points subsequently by different procedures. If

the resultant cost is less than the cost of wrong classification then such a procedure will improve

classification reliability. We can label points x held back in this way as having UNSURE

classification, and all other points as having SURE classification. Among the latter will be ones

that are classified correctly and others that are classified incorrectly by the chosen classifier,

so adopting such an approach will lead to three categories of points in a test set: those whose

classification is SURE and CORRECT, those whose classification is SURE but INCORRECT,

and those whose classification is UNSURE.

We will therefore consider methods that allow us to construct these categories for any chosen

classifier. Clearly, there is a scale of “sureness” along along which points are categorised as

SURE or UNSURE, and for convenience we will align this scale with a probability scale of 0 to

1 (so that, for example, there will be more UNSURE points at a value of sureness of 0.9 than

at one of 0.6). The Bayesian MCMC mechanism gives a good framework for developing the

methodology, because consistency or otherwise of classification outcomes among the different

classifiers produced by the MCMC sample is an obvious way of judging the uncertainty of the

classification. In the next section we consider a number of possible methods.

3.2 Methodology

If we adopt the reject option approach, we need to establish how points should be held back.

Various possibilities have been mooted (see, e.g., Bishop, 1995), but Chow (1970) showed that

theoretically the optimal rejection rule is to hold back x if its maximum posterior probability
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of allocation to any group is less than a threshold t. Different values of t will lead to different

proportions of UNSURE points and will therefore correspond to different levels of the “sureness”

scale.

In practice, of course, the posterior probabilities of allocation have to be estimated. If we

use the Bayesian approach they are given by the values of p(y|x,D) for each possible setting

of y, so x will be held back if maxy{p(y|x,D)} < t. Providing that the classifier is one that

delivers posterior probabilities p(y|x,θ,D) as classifier scores, p(y|x,D) is just the expecta-

tion of these probabilities over the posterior distribution π(θ|D) and so is simply estimated

by 1
m

∑m
i=1 p(y|x, θi,D) over the m MCMC samples. Choosing a value of t and applying the

classifier to all the points x in the test set will identify the points to be classified and the points

to be held back, thereby generating estimated probabilities of SURE CORRECT, SURE IN-

CORRECT and UNSURE classifications for the given populations at the chosen value of t. We

will call this procedure the standard reject method.

However, not all classifiers deliver a posterior probability but instead give a classification

score C(x, θi) for each classifier making up the MCMC sample, so what should be done here?

The obvious possibility is to classify each point in the test data by each of these individual

classifiers, and any point x that is classified to the same group by more than a proportion t of

classifiers could be deemed a SURE classification at “sureness” level t, otherwise the classification

is UNSURE. Here we convert each classifier result into a discrete variable (group to which x

is classified) and then obtain the average incidence in each category, so the result can still be

formally viewed as a posterior probability of allocation and hence falls within the scope of Chow’s

result. In effect, if C(x, θi) = y indicates that the ith classifier allocates x to class y, then we

are estimating p(y|x,D) by 1
m

∑m
i=1 I(C(x, θi) = y) where I(A) is the indicator function taking

value 1 if A is true and 0 if A is false. In the feature space, this method produces a gradually

widening envelope of classifications labelled UNSURE as t increases, so we will call it the envelope

method.

Note that the envelope method uses consistency of actual classifications, so only labels points

as UNSURE if they are unreliable in their classification rather than simply if their posterior

probabilities of group membership are not high. It might therefore be a useful competitor to

the standard reject method even when the classifier returns a posterior probability rather than

just a classification score. However, it is important to see that the two methods deliver different

estimates: the standard reject method estimates the expected value of p(yi|x, θi,D) for specified

class yi over the posterior distribution of the parameters π(θ|D), while the envelope method
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estimates the expected value of the tail-area p(y = yi|x, θi,D) > p(y = yj|x, θi,D) ∀ j �= i

over the same posterior distribution. The distinction is perhaps clearer in the two-class situation,

where we need only look at the probabilities associated with one of the classes, y say. Then the

comparison is between the posterior mean of p(y|x, θi,D), i.e. the predictive distribution of the

classification probabilities, and the posterior mean of I(p(y|x, θi,D) > 0.5), i.e. the predictive

distribution of the classification outcomes.

While there are some very specific situations when these have the same value (e.g. if

p(y|x, θi,D) is approximately constant over θ and the posterior distribution is symmetric about

0.5), in general they will be different. We can demonstrate this, and highlight the points of

difference in the two approaches, with a very simple example. Suppose that the classification

probability p of the datum x to group y is given by a normal distribution with mean 0.6 and

variance 0.01 (i.e. standard deviation 0.1), irrespective of the classification parameter values θ.

In this case the posterior distribution of these parameters is immaterial, and the MCMC process

simply delivers a stream of independent values pi from a N(0.6, 0.01) distribution. By the strong

law of large numbers the mean of this stream converges to 0.6 as the number of values tends to

infinity, so the standard reject method delivers an estimated classification probability close to

0.6. By contrast, in the envelope method the value of each pi is replaced by 1 if it exceeds 0.5

and by 0 otherwise. Thus, the probability that it is replaced by 1 equals the probability that

a standard normal deviate exceeds 0.5−0.6
0.1 = −1, which from normal tables equals 0.841. So by

the strong law of large numbers again, the average of the 0/1 transformed pi values converges

to 0.841 as the number of values tends to infinity. Thus the envelope method delivers an esti-

mated classification probability close to 0.841, very different from the standard reject estimate

(irrespective of for how long the MCMC process is run).

As a practical illustration of the differences, consider a synthetic two-class data set devised by

Ripley (1994) and augmented with a further Gaussian function: it thus comprises five Gaussian

components, 3 contributing to one class and 2 to the other (full details are given in Fieldsend

et al, 2003). The probabilistic k−nearest neighbour classifier described in section 3.3 below was

applied to this data set, and the above two estimates were obtained for three data points x. The

picture in the top-left corner of Figure 1 shows the data set, with the two classes denoted by

circles and crosses respectively and the 0.5 Bayes classification probability contour marked. The

three chosen points are highlighted: one is firmly in class 2, one is on the border between the

classes, and one is in class 1. The other pictures in Figure 1 then show the two estimates of class

2 probabilities for each point (solid line for standard reject method, broken line for envelope
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method) as a function of the number of MCMC samples collected, up to 5 × 105 samples. The

bottom left plot refers to the point on the decision boundary, where the reject estimate settles

at about 0.5 while the envelope method settles at around 0.3. The other two plots refer to the

points firmly in the two classes; here the envelope values stabilise at close 1 and 0 respectively,

while the reject values are around 0.05 different from them.

Figure 1 about here.

Of course, the above two methods are not the only possible bases for estimation of uncer-

tainty. A complete Bayesian summary would be to report the full conditional distribution of

the p(y|x, θi,D), and to determine the categorisation of x as SURE or UNSURE depending on

the degree of overlap of these posterior distributions over groups. This introduces significantly

greater computational effort, particularly if degree of overlap requires calculations of percentiles

(and hence rankings of large amounts of data). Summary statistics of these posterior distri-

butions would provide a first approximation. One possibility is to report a standard deviation

as well as a mean, and then to base membership of the SURE category on whether or not

the mean plus or minus a suitable multiple of the standard deviation exceeded the requisite

threshold. We will call this the posterior distribution method; note, however, that this method

carries an implication of symmetry of posterior distributions which may not be tenable. Another

possibility is to compute 1
m

∑m
i=1 I(p(y|x, θi,D) > t), which estimates the posterior probability

that p(y|x, θi,D) > t so we could label a point as UNSURE if this estimated probability fell

below a threshold s. However, the point may be consistently and correctly classified even when

p(y|x, θi,D) exceeds t on very few occasions, so this criterion may be unnecessarily stringent.

Moreover, the major drawback of all these suggestions is that they require the classifier to deliver

posterior probabilities. We give some examples of the posterior distribution method below, but

concentrate essentially on the standard reject and envelope methods in the main development.

It is also worth noting some connections between the above methods and other (non-

Bayesian) multiple classifier systems. It has long been recognised that classification accuracy

can be improved if a selection of diverse classifiers is employed, and a consensus view among

them is taken when classifying x. One possible consensus is the average posterior probability of

class membership of x, which relates to the standard reject method, while another is the major-

ity vote among the separate clssifications of x, which relates to the envelope method. Among

majority vote strategies is the idea of “boosting”, which is essentially a weighted system with

higher weights accorded to those classifications that have greater probabilities, and this is even
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more closely linked to the MCMC scheme. For a recent discussion of all these ideas, together

with relevant references, see Kuncheva (2004).

3.3 Applications

In order to conduct empirical investigations, we must first choose a family of classifiers. Many

choices are possible, but to maintain flexibility while keeping the parameter dimensionality low

we focus on k−nearest neighbour classifiers. To classify an observation x′ = (x1, . . . , xp) into

one of g groups y = (1, . . . , g) using the standard (classical) k−nearest neighbour classifier, we:

1. define a metric in the x−space (usually Euclidean distance);

2. find the k training set members closest to x;

3. classify x to the majority group among these k.

The value of k can either be set by the user or chosen from D by some data-based procedure,

e.g. cross-validation.

Holmes & Adams (2002) have given a probabilistic formulation of this process, and this

enables a Bayesian approach to be taken. They define the likelihood of the data given parameters

k and β to be

L(D|β, k) =
n∏

i=1

exp(aijiβ/k)∑
j exp(aijβ/k)

,

where aij is the number of the k nearest neighbours to the ith observation that belong to group

j and ji is the group to which the ith observation belongs. Here k is the number of neighbours as

above, and β reflects the influence of neighbours on the group probabilities: the greater the value

of β, the higher the probability of belonging to the group that has the majority of neighbours.

By assuming some temporal ordering of the data points, Holmes and Adams (2002) then deduce

the predictive distribution for the response at a new point x as

p(y = i|x, β, k) =
exp(aiβ/k)∑
i exp(aiβ/k)

,

where ai is the number of group i individuals among the k nearest training set neighbours of x

(i = 1, . . . , g), so that ai/k is the proportion of such individuals. Thus the predictive scores are

given by

p(y = j|x,D) =
∫

p(y = j|x, β, k)π(k, β|D)dkdβ,

where π(k, β|D) is the joint posterior distribution of the parameters β, k.
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Table 1: Data set details and overall classification performances

Data Set p D T % correct
Pima 8 512 256 77.1

Synthetic 2 250 1000 88.6
Sonar 60 138 70 87.1

Ionosphere 33 200 151 94.7
Wisconsin 9 455 228 99.6

We thus need to formulate a prior distribution π(k, β) for the two parameters. In the case

of prior ignorance it is suggested that π(k, β) = π(k)π(β) where π(k) is a uniform distribution

between 1 and min(n, 200) and π(β) is a half-normal distribution (i.e. distribution of |x| when

x is normal) with large variance. Using a symmetric MCMC proposal, any proposed move to a

new classifier from the current parameter settings (β, k) to new settings (β′, k′) is accepted if u, a

draw from a U [0, 1] distribution, is less than min
{
1, L(D|β′,k′)π(β′,k′)

L(D|β,k)π(β,k)

}
, and otherwise the current

values of β and k are retained. In all MCMC runs reported in this paper we used 10,000 burn-in

and 10,000 post burn-in samples, the latter taken at a sampling rate of one in seven. Thus a

total of 10,000 + 70,000 = 80,000 members constituted each chain, and graphical methods were

used to verify that each chain had reached a stationary distribution by the end of its burn-in

period.

We now apply both the standard reject and the envelope methods to a number of data sets.

In order to avoid uncertainty over the lower bound of the threshold t in the reject method for

multi-class data, where there are many ways in which posterior probabilities can be distributed

among the classes, we consider only two-class sets here and so a lower bound for t is 0.5. One

of these sets is the synthetic data described above, while the other four sets are from the UCI

Machine Learning Repository; they are the Wisconsin, Ionosphere, Pima, and Sonar data sets

respectively. The data-set details are given in Table 1 (number of predictors, p; size of training

set, D; size of test set, T ). Also shown in the table are the overall classification performances,

i.e. the percent correct classification of the test set, for each data set.

To compare the envelope and reject methods we need to compare the proportions each

method assigns to the three categories SURE CORRECT (SC), SURE INCORRECT (SI) and

UNSURE (U). In order to do this we have found the proportions assigned to each of the three

categories by the envelope method at each of three commonly used threshold values (0.80, 0.95

and 0.99). To standardise the two methods we have then found the assignments to the three

categories for which the reject method gives the same SI proportion as the envelope method
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(apart from the Pima 95% region where we standardised on the SC proportions), together with

the reject threshold value that achieves this assignment. In a couple of cases there was a range

of such values, and in these cases we have quoted the highest value in the range. We used the

same MCMC output on both methods. All the results are given in Table 2 for each of the five

data sets.

We also include the posterior distribution method for comparison with these data sets, since

the probabilistic k−nearest neighbour classifier delivers posterior probabilities. To standardise

this method with the others we found the multiple of the posterior standard deviation that

was needed in order to produce the same SC value as the envelope method, and where there

were several possible multiples we chose the one that delivered a threshold value closest to the

envelope value. These multiples are given in the column headed “s.d.”in Table 2.

In terms of proportions within each category (SC, U, SI), the envelope and standard reject

methods of region construction give very comparable results (although the chosen probability

thresholds are rather different). Where values differ between the two methods for a category,

the better (i.e. lower SI or higher SC) value is shown in bold. We see that if we require

strong consistency of classification (99% envelopes) then success rates (SC) show a fall from the

unconditional rates in Table 1, but if we are prepared to tolerate weaker consistency then there

is generally a closer match between the rates. Comparing the posterior distribution method with

the envelope approach, the UNSURE proportions for the former are either equal to or greater

than those for the latter in nearly all cases − but the differences are very small so the methods

are very similar when posterior probabilities are produced by the classifier.

One way in which we could reduce the set of values to a single one for each method would be

to assign a loss to each outcome (e.g. +2 for sure incorrect, 0 for unsure and −1 for sure correct)

and to compare the expected loss across methods. The problem here is that in the absence of

substantive knowledge of the particular classification task there is no guidance about suitable

loss assignments; many arbitrary choices could be made, resulting in a plethora of comparisons,

so we do not pursue this avenue here.

4 Choosing Between Classifiers

4.1 Methodology

Traditionally, classifier system performance has been measured simply by the percentage of test-

set allocations that are correct (or by its complement, the error rate, or some simple variant
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depending on problem-specific variation in the importance of the alternative classifications).

Thus whenever a choice has to be made between competing classifiers, either the success rate

or the error rate is the criterion on which the decision is based. Within a Bayesian approach

to classification, the problem is generally turned into one of model choice and then the optimal

model can be chosen on the basis of a criterion such as BIC (Schwarz, 1978). A good example

is provided by Lee (2001), who uses this criterion for developing a procedure for model choice in

neural network classification. But these statistics carry no information regarding the confidence

with which the various classifications have been made. We have argued above for the use of SURE

CORRECT, SURE INCORRECT and UNSURE as measures of confidence in classifications, so a

better comparison between classifiers should be based on simultaneous use of all these measures.

To see how this can be implemented, we draw on the work that has been done in classi-

fier acceptance-reject rates (see, e.g., Giacinto, Roli and Bruzzone, 2000, for a summary). In

particular, Battiti and Cola (1994) have shown that to compare the performance of different

classifiers we need to compare their accuracies over a range of different rejection rates (i.e. dif-

ferent threshold values t), and this can be done by plotting these values in the accuracy-rejection

(A-R) plane. In our case the UNSURE proportions at different t values correspond to the rejec-

tion rates, while “accuracy” is reflected by either of the SURE categories. We prefer to minimise

SURE INCORRECT rather than maximise SURE CORRECT, so to compare different classi-

fiers on a data set we compare the curves each produces when SURE INCORRECT is plotted

against UNSURE for a range of values of t. The classifier corresponding to the lowest curve on

such a plot is the one to be chosen.

4.2 Applications

To illustrate this methodology, we first need a set of classifiers to compare. There is an almost

unlimited choice available to us, but to keep within a traditional statistical modelling framework

we define a nested set of k−nearest neighbour classifiers by providing first a simplification and

then a generalization of the probabilistic classifier introduced above.

The simplified version is obtained by keeping β fixed at 1.0 throughout, and only sampling

over k. Here the probability of x belonging to a particular group is directly proportional to

the preponderance of this group among the k nearest neighbours of x, and there is thus no

possibility of skewing this probability as the balance of neighbours between groups varies. We

call this version the “simple” classifier as opposed to the other “standard” one.

The generalized version is obtained by expanding the single β parameter into a matrix M
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of parameters to reflect scaling and rotation of the variables. This is equivalent to replacing the

Euclidean metric d(x1,x2) = {(x1 − x2)t(x1 − x2)}1/2 in step 1 of the k−nearest neighbour

process by an “adaptive” metric d(x1,x2) = {(x1 − x2)tM(x1 − x2)}1/2 where the (positive-

definite) matrix M is chosen to optimise the classification with regard to differential scales

and orientations of the variables. Various ways can be devised for achieving such an adaptive

classifier (see, e.g., Myles and Hand, 1990, or Hastie and Tibshirani, 1996). Our approach is

to take M = QΛQt, where Λ is a diagonal scaling matrix and Q = exp(S) with S a skew-

symmetric rotation matrix. The proposals are generated by forming M ′ =Q′Λ′Q′t, where

quantities ri drawn independently from N(0, 0.22) are added to the diagonal elements of Λ to

give Λ′, and Q′ = exp(S′) where quantities si are drawn independently from N(0, 0.12) and

added to elements of S to give S′. Further details are given by Everson and Fieldsend (2004);

we call this version the “adaptive” classifier.

It is evident that the three classifier versions are therefore nested, with the simple one being

a special case of the standard one and this in turn being a special case of the adaptive one.

4.2.1 Comparison of envelope and reject methods

To make this comparison as simply and directly as possible, we compare the two methods on just

the simple Bayesian k−nearest neighbour classifier (i.e. only one parameter k) and the standard

Bayesian k−nearest neighbour classifier (i.e. two parameters k and β) on the five data sets used

above; Figure 2 shows the accuracy-rejection plots for these data sets. The plots obtained using

the envelope method are on the left, and those using the reject method are on the right; the

curve obtained from the simple classifier is indicated by crosses, that from the standard classifier

by open circles.

Figure 2 about here.

The first obvious difference between the envelope plots and the reject method plots is that

the latter stretch across the whole x−axis while the former generally stop about half-way across.

This is because the envelope plots are determined by the proportion of MCMC classifiers that

classify to each group, and in all data sets there will be at least some points for which all

classifiers allocate to one group. Such points have posterior group allocation probabilities of

1.0 so can never be categorised as UNSURE whatever the threshold value of t − even if their

estimated posterior probabilities of classification are not very high. The reject method plots,

on the other hand, are based directly on these estimated posterior probabilities which rarely
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approach 1.0 for any data points (which may, in itself, be a recommendation for this method

to the Bayesian). Hence the range of possible UNSURE values is much greater for the reject

method than for the envelope method, and this feature is borne out by the plots. Indeed for

some envelope plots the range of UNSURE values is either very short or nonexistent (e.g. for

the Wisconsin data). Reference back to Table 2 shows that for these data sets there are either

no or very few UNSURE points at the highest threshold value, so there cannot be any such

points at lower threshold values.

With that proviso, it is evident that the differences between the two methods of construction

are very slight, and that they both give the same qualitative conclusions regarding the com-

parison between the simple and the standard k−nearest neighbour classifiers. Since the simple

classifier is nested within the standard one we would expect the latter to have better classifica-

tion performance (as the simple classifier is crude and the training samples are large), and this

is generally the case in our examples. For the Pima, Synthetic and Sonar data sets the curve

for the standard classifier lies distinctly below that for the simple classifier (although there is a

small reversal at the lowest UNSURE value of the Sonar data). In the cases of Ionosphere the

two classifiers give indistinguishable performances, the two curves virtually coinciding over the

range plotted, while the Wisconsin data (as already noted) has virtually no variability for either

classifier.

We have stressed earlier the ease of application of the envelope method to multi-class data,

since the basic operation is no different from that in the two-class case. We therefore selected two

more data sets from the UCI repository: the Wine data with 3 classes (p = 13,D = 89, T = 89,

96.6% correct classification) and the Vehicle data with 4 classes (p = 19,D = 564, T = 282,

67.4% correct classification). The accuracy-rejection plots for these sets are shown in Figure 3

for the envelope method.

Figure 3 about here.

The two classifiers give virtually indistinguishable performances for the vehicle data, the two

curves lying more or less on top of each other, but for the wine data we have the apparently

surprising result that the simple classifier has better performance than the standard classifier.

However, this set of data is one with small data sets, relatively high number of variables and

well-separated classes, so a difference of one or two classifications is enough to cause the result

observed. We ran five separate MCMC chains and noted that the misclassification rates varied

between 0% and 3.5% unpredictably across methods, so the apparent differences are well within
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Table 3: Percentage of correct classifications in the test set for each classifier and each data set

Classifier
Data Set simple standard adaptive

Pima 76.0 77.1 79.2
Synthetic 87.9 88.6 89.4

Sonar 85.7 87.1 84.3
Ionosphere 94.7 94.7 98.0
Wisconsin 99.6 99.6 98.7
Vehicle 63.8 67.4 77.0
Wine 98.9 96.6 98.9

the MCMC “noise” level for this data set.

4.2.2 Comparison of classifiers

We can now turn to comparison of the three versions of k−nearest neighbour classifier. First,

we show in Table 3 the overall classification performances of each of these versions as judged by

the percentage of correct classifications in the test set T of each data set.

Although there are one or two exceptions evident in the table, the broad trend of the results

suggests that classifier accuracy improves on moving successively from simple to standard to

adaptive, i.e. as the complexity of the k-nearest neighbour classifier increases. (Although the

details are not shown here, the Bayesian-averaging classifier also generally gives better results

than just the single-best MAP classifier.) However, we have argued above that such a way

of judging classifier performance is too simplistic, and that we need to examine the SURE

INCORRECT versus UNSURE plots of the classifiers over a range of values of t. In Figure 4

we therefore show these plots for the test data portion of each of the seven data sets. In each

plot the simple classifier is indicated by crosses, the standard classifier by open circles, and the

adaptive classifier by stars.

Figure 4 about here.

The picture now is less clear-cut than the error rate comparisons would suggest. The only

data set in which the above trend is definitely supported is the Pima data, where the curve for

the simple classifier lies completely above the curve for the standard classifier, and this in turn

lies mostly above the curve for the adaptive classifier. Although the standard classifier curve is

not completely above that for the adaptive classifier, it is nevertheless so for a sufficient part of

the range of UNSURE values, so that we can indeed conclude that for this data set the adaptive
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classifer is best, the standard classifier is next best, and the simple classifier is the poorest. We

note that the test set for the Pima data is quite large (256 individuals).

The remaining data sets depart from the expected trend to a greater or lesser extent. Closest

is the Synthetic data, where the simple classifier is uniformly the poorest again, but there

is nothing to choose between the other two types. However, it is possible to establish the

optimal Bayes error rate for Synthetic data; in this case both standard and adaptive versions

are operating at close to the Bayes level, and such a large test set (1000 observations) permits

accurate estimation of classification rates. For the Vehicle data there is in fact nothing to

choose between all three types until near the very end of the range of UNSURE values, so by

analogy with the Synthetic data result we infer that all three classifiers are operating at close

to the Bayes level. We also note that the Vehicle test set is the second largest among our

data sets (282 individuals). The Wisconsin data has very little variation across the whole range

of classifiers, so can perhaps be discounted, while the Wine and Sonar data exhibit so many

“cross-overs” of curves as to make any single conclusion meaningless. However, we note that

these latter two data sets have very small test samples (89 and 70 respectively), so these “cross-

overs” are a reflection of the large variability in small data sets. The one puzzling outcome is

for the Ionosphere data, which show the reverse of the expected trend with the most complex

classifier being the poorest until near the end of the UNSURE range. This result is opposite

to the one suggested by consideration of the straightforward correct/incorrect dichotomy and

would merit further investigation.

We therefore conclude from these experiments that although the addition of a confidence

measure to the usual correct/incorrect assessment of classifiers is highly desirable, it carries a

penalty in terms of sampling variability. The expected trends show up only generally when

samples are large (particularly when test samples are large), and in small samples the picture is

considerably less clear.

5 Conclusion

We have shown that Bayesian MCMC methodology can be allied to existing knowledge on

the reject option in classification to produce a quantification of the confidence that can be

ascribed to particular classification outcomes. One point that can be made here is that a typical

Bayesian MCMC classification task gathers a vast amount of information, much of which is

thrown away without further use. The envelope method makes use of some of this information;
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it is very efficient in that it needs little more computation than is already carried out and has

considerable added benefit, but nevertheless there is still information being thrown away by

keeping only classifications rather than classification probabilities.

Of the two methods compared in detail, the envelope approach offers some direct advantages

over the standard reject approach: interpretability in terms of familiar confidence coefficient ter-

minology, guidance in choice of threshold values, and easy applicability to all types of grouping.

It has been shown that incorporating confidence measures into a comparison of classifiers

via the accuracy-rejection plots can make the comparison less clear-cut than the traditional

one based solely on either success or error rates. This is related to the variability inherent in

sample-based classifiers, which is often ignored when making error rate comparisons. A more

realistic assessment might come from comparisons of confidence regions for error rates (see, e.g.,

Krzanowski, 2001), but this does not yet seem to be standard practice.

Indeed, it is surprising that classifier confidence has received so little attention, considering

the emphasis placed on confidence regions in general statistical practice. The methods described

here are easily built in to a standard Bayesian procedure so should be part of the general

classification tool kit, especially in such areas as safety-critical applications. However, some

aspects remain to be investigated. For example, what can be done if the available data are

not extensive enough to be split into a training set D and a test set T ? In a fully Bayesian

approach, all data would be used without holding any out, and this would be accompanied by a

formal model selection. The standard way of proceeding in the single-classifier frequentist case

would be to use a data-based method of error rate estimation such as leave-one-out, but in our

set-up each unit omission in effect creates a new set D for the MCMC process. So if such a

scheme were to be contemplated then an efficient way of organising the computations would be

essential. Similar considerations of efficiency are paramount if the variability of the results is to

be established using, say, n−fold cross-validation on the (D,T ) splits of the data.

While such aspects remain to be investigated, we nevertheless feel that use of the confidence

measures described in this paper provide a distinct step forward in classifier technology.
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Figure 1: Synthetic data (top left), plus plots of the standard reject (solid line) and envelope
(broken line) probability estimates of Pr(x ∈ class 2) across 5 × 105 MCMC samples.
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Figure 2: Accuracy-rejection plots for the 2-group data sets; envelope method on left, reject
method on right, circles for general classifier and crosses for simple classifier.
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Figure 3: Accuracy-rejection plots for the multi-group data sets using the envelope method;
circles for the general classifier, crosses for the simple classifier.
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Figure 4: Accuracy-rejection plots for all data sets using the envelope method; crosses for the
simple classifier, circles for the general classifier, stars for the adaptive classifier.
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