Skip to main content
Log in

Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Unfolding creates configurations from preference information. In this paper, it is argued that not all preference information needs to be collected and that good solutions are still obtained, even when more than half of the data is missing. Simulation studies are conducted to compare missing data treatments, sources of missing data, and designs for the specification of missing data. Guidelines are provided and used in actual practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARNOLD, G.M., andWILLIAMS, A.A. (1986), “The Use of Generalized Procrustes Analysis in Sensory Analysis”, in Statistical Procedures in Food Research, ed. R. Piggott, London: Elsevier, pp. 233–253.

    Google Scholar 

  • BALABANIS,G., and DIAMANTOPOULOS,A. (2004),“Domestic Country Bias, Countryof- Origin Effects, and Consumer Ethnocentrism: A Multidimensional Unfolding Approach”, Journal of the Academy of Marketing Science, 32(1), 80–95.

    Article  Google Scholar 

  • BENNETT, J., and HAYES, W.L. (1960), “Multidimensional Unfolding: Determining the Dimensionality of Ranked Preference Data”, Psychometrika, 25, 27–43.

    Article  MathSciNet  Google Scholar 

  • BORG, I., and GROENEN, P.F. (2005), Modern Multidimensional Scaling: Theory and Applications (2nd ed.), New York: Springer-Verlag.

    MATH  Google Scholar 

  • BURT, C. (1948),“The Factorial Study of Temperamental Traits”, British Journal of Psychology (Statistical Section), 1, 178–203.

    Google Scholar 

  • BUSING, F.M.T.A. (2006), “Avoiding Degeneracy In Metric Unfolding By Penalizing the Intercept”, British Journal of Mathematical and Statistical Psychology, 59, 419–427.

    Article  MathSciNet  Google Scholar 

  • BUSING, F.M.T.A., GROENEN, P.J.F., and HEISER, W.J. (2005), “Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation”, Psychometrika, 70(1), 71–98.

    Article  MathSciNet  Google Scholar 

  • CARROLL, J.D. (1972), “Individual Differences and Multidimensional Scaling”, in Multidimensional Scaling: Theory and Applications in the Behavioral Sciences (Vol. 1), eds. R.N. Shepard, A.K. Romney, and S. B. Nerlove, New York: Seminar Press, pgs. 105–155.

    Google Scholar 

  • CHATTERJEE, R. and DESARBO, W.S. (1992), “Accommodating the Effects of Brand Unfamiliarity in the Multidimensional Scaling of Preference Data”,Marketing Letters, 3(1), 85–99.

    Article  Google Scholar 

  • CLATWORTHY, W.H. (1973), “Tables of Two-Associate-Class Partially Balanced Designs”, Applied Mathematics Series 63.

  • CLIFF, N. (1966), “Orthogonal Rotation to Congruence”, Psychometrika, 31, 33–42.

    Article  MathSciNet  Google Scholar 

  • COCHRAN, W.G., and COX, G.M. (1957), Experimental Designs (2nd ed.), New York: Wiley.

    MATH  Google Scholar 

  • COHEN, J. (1988), Statistical Power Analysis for the Behavioral Sciences (2nd ed.), New York: Academic Press.

    MATH  Google Scholar 

  • COMMANDEUR, J.J.F., and HEISER,W.J. (1993), “Mathematical Derivations in the Proximity Scaling (PROXSCAL) of Symmetric Data Matrices”, Technical Report RR-93-04, Leiden, The Netherlands: Leiden University, Department of Data Theory.

    Google Scholar 

  • COOMBS, C.H. (1950), “Psychological Scaling Without a Unit of Measurement”, Psychological Review, 57, 148–158.

    Article  Google Scholar 

  • CURETON, E.E., and D’AGOSTINO, R.B. (1983), Factor Analysis: An Applied Approach, Hillsdale, NJ: Lawrence Erlbaum.

    MATH  Google Scholar 

  • DE LEEUW, J., and HEISER,W.J. (1977), “Convergence of Correction-matrix Algorithms for Multidimensional Scaling”, in Geometric Representations of Relational Data, eds. J.C. Lingoes, E.E.C.I. Roskam, and I. Borg, Ann Arbor, MI: Mathesis Press, pp. 735–752.

    Google Scholar 

  • DESARBO, W.S., and CARROLL, J.D. (1985), “Three-Way Metric Unfolding via Alternating Weighted Least Squares”, Psychometrika, 50 3), 275–300.

    Article  MATH  Google Scholar 

  • DESARBO, W.S., KIM, J., CHOI, S.C., and SPAULDING, M. (2002), “A Gravity-Based Multidimensional Scaling Model for Deriving Spatial Structures Underlying Consumer Preference/Choice Judgments”, Journal of Consumer Research, 29, 91–100.

    Article  Google Scholar 

  • DESARBO, W.S., and RAO, V.R. (1984), “GENFOLD2: A Set of Models and Algorithms for the GENeral unFOLDing Analysis Of Preference/Dominance Data”, Journal of Classification, 1, 147–186.

    Article  MATH  Google Scholar 

  • DESARBO, W.S., YOUNG, M.R., and RANGASWAMY, A. (1997), “A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research”, Journal of Marketing Research, 34(4), 499–516.

    Article  Google Scholar 

  • DIJKSTERHUIS, G.B., GOWER, J.C. (1991), “The Interpretation of Generalized Procrustes Analysis and Allied Methods”, Food, Quality and Preference, 3, 67–87.

    Article  Google Scholar 

  • GREEN, P.E., RAO, V. (1972), Applied Multidimensional Scaling, Hinsdale, IL: Dryden Press.

    Google Scholar 

  • HEISER, W.J., and DE LEEUW, J. (1979), How to use SMACOF-III: A Program for Metric Multidimensional Unfolding, Leiden, The Netherlands: Leiden University, Department of Data Theory.

    Google Scholar 

  • HEISER, W.J., and GROENEN, P.J.F. (1997), “Cluster Differences Scaling with a Withinclusters Loss Component and a Fuzzy Successive Approximation Strategy to Avoid Local Minima”, Psychometrika, 62, 63–83.

    Article  MATH  MathSciNet  Google Scholar 

  • KELLY, G A. (1955), The Psychology of Personal Constructs: Theory of Personality, New York: Norton.

    Google Scholar 

  • KENDALL, M.G. (1948), Rank Correlation Methods, London: Charles Griffin and Company Limited.

    MATH  Google Scholar 

  • KIM, C., RANGASWAMY, A., and DESARBO,W.S.(1999), “A Quasi-metric Approach to Multidimensional Unfolding for Reducing the Occurrence of Degenerate Solutions”, Multivariate Behavioral Research, 34, 143–180.

    Article  Google Scholar 

  • KRUSKAL, J.B. (1964), “Multidimensional Scaling by Optimizing Goodness-of-fit to a Nonmetric Hypothesis”, Psychometrika, 29, 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  • KRUSKAL, J.B., and CARROLL, J.D. (1969), “Geometrical Models and Badness-of-fit Functions, in Multivariate Analysis, ed. P. R. Krishnaiah, New York: Academic Press, pp. 639–671.

    Google Scholar 

  • LINGOES, J.C. (1977), “A General Nonparametric Model for Representing Objects and Attributes in a Joint Metric Space”, in Geometric Representations of Relational Data, ed. J. C. Lingoes, Ann Arbor, Michigan: Mathesis Press, pp. 475–496.

    Google Scholar 

  • LITTLE, R.J.A., and Rubin, D.B. (1987), Statistical Analysis withMissing Data, NewYork: J. Wiley & Sons.

    Google Scholar 

  • MEULMAN, J.J., and HEISER, W.J. (1983), The Display of Bootstrap Solutions in Multidimensional Scaling, Technical Report, Leiden, The Netherlands: Leiden University, Department of Data Theory.

  • MEULMAN, J.J., HEISER, W.J., and SPSS Inc. (1999), SPSS Categories 10.0, Chicago, IL, USA: SPSS Inc.

    Google Scholar 

  • MULAIK, S.A. (1972), The Foundations of Factor Analysis, New York: McGraw-Hill.

    Google Scholar 

  • NGUYEN, N. (1993), “An Algorithm for Constructing Optimal Resolvable Incomplete Block Designs”, Communications in Statistics, Simulation & Computation, 22, 911–923.

    Article  MATH  Google Scholar 

  • NGUYEN, N. (1994), “Construction of Optimal Block Design by Computer”, Technometrics, 36, 300–307.

    Article  MATH  MathSciNet  Google Scholar 

  • PEARSON, K. (1896), “ Regression, Heredity, and Panmixia”, Philosophical Transactions of the Royal Society of London, Series A, 187, 253–318.

    Article  Google Scholar 

  • PRESTWICH, S.D. (2001), “Balanced Incomplete Block Design as Satisfiability”, in Proceedings of the 12th Irish Conference on AI and Cognitive Science (AICS 2001), ed. D. O’Donoghue, NUI Maynooth, Ireland.

  • ROSKAM, E.E. CH I. (1968), Metric Analysis of Ordinal Data, Voorschoten: VAM.

    Google Scholar 

  • ROWE, G., LAMBERT, N., BOWLING, A., EBRAHIM, S., WAKELING, I., and THOMSON, R. (2005), “Assessing Patients Preferences for Treatments for Angina Using a Modified Repertory Grid Method”, Social Science & Medicine, 2585–2595.

  • SHEPARD, R.N. (1962), “The Analysis of Proximities: Multidimensional Scaling with an nknown distance fun ction. I.”, Psychometrika, 27, 125–140.

    Article  MathSciNet  Google Scholar 

  • SHOCKER, A.D., BEN-AKIVA,M., BOCCARA, B., and NEDUNGADI, P. (1991), “Consideration Set Influences on Consumer Decision-Making and Choice: Issues, Models, and Suggestions”, Marketing Letters, 2:3, 181–197.

    Google Scholar 

  • SPSS (2006), SPSS for Windows, Release 15.0, [Computer Software].

  • TUCKER, L. R. (1951), A Method for Synthesis of Factor Analytic ”S” Studies, Washington, D.C.: Department of the Army.

    Google Scholar 

  • VAN DEUN, K. (2005), Degeneracies in Multidimensional Unfolding, Unpublished doctoral dissertation, Catholik University Leuven.

    Google Scholar 

  • VAN DEUN, K., GROENEN, P.J.F., and DELBEKE, L. (2005), “ VIPSCAL: A Combined Vector Ideal PointModel for Preference Data”, Econometric Institute Report EI 2005-03, Rotterdam: Erasmus University Rotterdam.

  • VAN DEUN, K., HEISER, W.J., and DELBEKE, L. (2007), “Multidimensional Unfolding by Nonmetric Multidimensional Scaling of Spearman distances in the Extended Permutation Polytope”, Multivariate Behavioral Research, 42(1), 103–132.

    Google Scholar 

  • WAGENAAR, W.A., and PADMOS, P. (1971), “Quantitative Interpretation of Stress in Kruskal’s Method Multidimensional Scaling Technique”, British Journal of Mathematical and Statistical Psychology, 24, 101–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. T. A. Busing.

Additional information

This research was conducted while the second author was sponsored by the Netherlands Organization for Scientific Research (NWO), Innovational Grant, no. 452-06-002. The authors would like to thank the DIOS for their invaluable computer support and Willem Heiser and Graham Cleaver and the three anonymous referees for their helpful comments and suggestions to improve the quality of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busing, F.M.T.A., de Rooij, M. Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings. J Classif 26, 329–360 (2009). https://doi.org/10.1007/s00357-009-9039-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-009-9039-7

Keywords

Navigation