Skip to main content
Log in

A Fuzzy Clustering Model for Multivariate Spatial Time Series

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

Clustering of multivariate spatial-time series should consider: 1) the spatial nature of the objects to be clustered; 2) the characteristics of the feature space, namely the space of multivariate time trajectories; 3) the uncertainty associated to the assignment of a spatial unit to a given cluster on the basis of the above complex features. The last aspect is dealt with by using the Fuzzy C-Means objective function, based on appropriate measures of dissimilarity between time trajectories, by distinguishing the cross-sectional and longitudinal aspects of the trajectories. In order to take into account the spatial nature of the statistical units, a spatial penalization term is added to the above function, depending on a suitable spatial proximity/ contiguity matrix. A tuning coefficient takes care of the balance between, on one side, discriminating according to the pattern of the time trajectories and, on the other side, ensuring an approximate spatial homogeneity of the clusters. A technique for determining an optimal value of this coefficient is proposed, based on an appropriate spatial autocorrelation measure. Finally, the proposed models are applied to the classification of the Italian provinces, on the basis of the observed dynamics of some socio-economical indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALLENDE, H. and GALBIATI, J. (2004), “A Non-Parametric Filter for Digital Image Restoration, Using Cluster Analysis”, Pattern Recognition Letters, 25, 841–847.

    Article  Google Scholar 

  • AMBROISE, C. and GOVAERT, G. (1998), “Convergence of an EM-Type Algorithm for Spatial Clustering”, Pattern Recognition Letters, 19, 919–927.

    Article  Google Scholar 

  • AYALA, G., EPIFANIO, I., SIMÓ, A., and ZAPATER, V. (2006), “Clustering of Spatial Point Patterns”, Computational Statistics and Data Analysis, 50, 1016–1032.

    Article  MathSciNet  Google Scholar 

  • BEZDEK, J.C. (1974), “Cluster Validity with Fuzzy Sets”, Journal of Cybernetics, 3, 58–72.

    Article  MathSciNet  Google Scholar 

  • BEZDEK, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press.

    MATH  Google Scholar 

  • BEZDEK, J.C., KELLER, J., KRISNAPURAM, R., and PAL, N.R. (1999), Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, The Handbooks of Fuzzy Sets, 4, New York: Kluwer.

    Google Scholar 

  • CHUANG, K.-S., TZENG, H.-L., CHEN, S., WU, J., and CHEN, T.J. (2006), “Fuzzy C means Clustering with Spatial Information for Image Segmentation”, Computerized Medical Imaging and Graphics, 30, 9–15.

    Article  Google Scholar 

  • CINQUE, L., FORESTI, G., and LOMBARDI, L. (2004), “A Clustering Fuzzy Approach for Image Segmentation”, Pattern Recognition, 37, 1797–1807.

    Article  MATH  Google Scholar 

  • COPPI, R. and D’URSO, P. (2001), “The Geometric Approach to the Comparison of Multivariate Time Trajectories”, in Advances in Data Science and Classification, eds. S. Borra, R. Rocci, M. Vichi, and M. Schader, Heidelberg: Springer-Verlag, 93–100.

  • COPPI, R. and D’URSO, P. (2006), “Fuzzy Unsupervised Classification of Multivariate Time Trajectories with the Shannon Entropy Regularization”, Computational Statistics and Data Analysis, 50, 1452–1477.

    Article  MATH  MathSciNet  Google Scholar 

  • COSTANZO, G.D. (2001), “A Constrained k-means Clustering Algorithm for Classifying Spatial Units”, Statistical Methods and Applications, 10, 237–256.

    Article  MATH  Google Scholar 

  • DI NOLA, A., LOIA, V., and STAIANO, A. (2002), “An Evolutionary Approach to Spatial Fuzzy C-means Clustering”, Fuzzy Optimization and Decision Making, 1, 195–219.

    Article  MATH  MathSciNet  Google Scholar 

  • DUAN, L., XU, L., GUO, F., LEE, J., and YAN, B. (2007), “A Local-Density Based Spatial Clustering Algorithm with Noise”, Information Systems, 32, 978–986.

    Article  Google Scholar 

  • D’URSO, P. (2000), “Dissimilarity Measures for Time Trajectories”, Journal of the Italian Statistical Society, 1–3, 1–31.

    Google Scholar 

  • D’URSO, P. (2004), “Fuzzy C-means Clustering Models for Multivariate Time-Varying Data: Different Approaches”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12, 287–326.

    Article  MATH  MathSciNet  Google Scholar 

  • D’URSO, P. (2005), “Fuzzy Clustering for Data Time Array with Inlier and Outlier Time Trajectories”, IEEE Transactions on Fuzzy Systems, 13, 583–604.

    Article  Google Scholar 

  • EVERITT, B.S., LANDAU, S. ,and LEESE, M. (2001), Cluster Analysis (4th ed.), London: Arnold Press.

    Google Scholar 

  • FERLIGOJ A. and BATAGELJ, V. (1982), “Clustering with Relational Constraint”, Psychometrika, 47, 413–426.

    Article  MATH  MathSciNet  Google Scholar 

  • FERLIGOJ A. and BATAGELJ, V. (1983), “Some Types of Clustering with Relational Constraint”, Psychometrika, 48, 541–552.

    Article  MATH  MathSciNet  Google Scholar 

  • FERLIGOJ A. and BATAGELJ, V. (1992), “Direct Multicriteria Clustering Algorithm”, Journal of Classification, 9, 43–61.

    Article  MATH  MathSciNet  Google Scholar 

  • GORDON, A.D. (1996), “A Survey of Constrained Classification”, Computational Statistics and Data Analysis, 21, 17–29.

    Article  MATH  MathSciNet  Google Scholar 

  • GORDON, A.D. (1999), Classification, New York: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • HEISER, W.J. and GROENEN, P.J.F. (1997), “Cluster Differences Scaling with a Within-Clusters Loss Component and a Fuzzy Successive Approximation Strategy to Avoid Local Minima”, Psychometrika, 62, 63–83.

    Article  MATH  MathSciNet  Google Scholar 

  • HU, T. and SUNG, S.Y. (2006), “A Hybrid EM Approach to Spatial Clustering”, Computational Statistics and Data Analysis, 50, 1188–1205.

    Article  MathSciNet  Google Scholar 

  • HWANG, H., DE SARBO, W.S., and TAKANE Y. (2007), “Fuzzy Clusterwise Generalized Structured Component Analysis”, Psychometrika, 72, 181–198.

    Article  MATH  MathSciNet  Google Scholar 

  • KONTOS, D. and MEGALOOIKONOMOU, V. (2005), “Fast and Effective Characterization for Classification and Similarity Searches of 2D and3D Spatial Region Data”, Pattern Recognition, 38, 1831–1846.

    Article  Google Scholar 

  • KROOSHOF, P.W.T., TRAN, T.N., POSTMA, G.J., MELSSEN, W.J., and BUYDENS, L.M.C. (2006) ,“Effects of Including Spatial Information in Clustering Multivariate Image Cata”, Trends in Analytical Chemistry, 25, 1067–1080.

    Article  Google Scholar 

  • LAWSON, A.B., SIMEON, S., KULLDORFF, M., BIGGERI, A., and MAGNANI, C. (2007), “Line and Point Cluster Models for Spatial Health Data”, Computational Statistics and Data Analysis, 51, 6027–6043.

    Article  MATH  MathSciNet  Google Scholar 

  • LEFKOVITCH, L.P. (1980), “Conditional Clustering”, Biometrics, 36, 43–58.

    Article  MATH  Google Scholar 

  • LIEW, A.W.C., LEUNG, S.H., and LAU, W.H. (2000), “Fuzzy Image ClusteringIncorporating Spatial Continuity”, IEE Proceedings of Visual Image Signal Process, 147, 185–192.

    Article  Google Scholar 

  • LIEW, A.W.C., LEUNG, S.H., and LAU, W.H. (2003), “Segmentation of Color Lip Images by Spatial Fuzzy Clustering”, IEEE Transactions on Fuzzy Systems, 11, 542–549.

    Article  Google Scholar 

  • LIEW, A.W.C. and YAN, H. (2003), “An Adaptive Spatial Fuzzy Clustering Algorithm for 3-D MR image Segmentation”, IEEE Transactions on Medical Imaging, 22, 1063–1075.

    Article  Google Scholar 

  • MACQUEEN, J.B. (1967), “Some Methods for Classifilcation and Analysis of Multivariate Observations”, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 2, 281–297.

  • MARÇAL, A.R.S. and CASTRO, L. (2005) ,“Hierarchical Clustering of Multispectral Images Using Combined Spectral and Spatial Criteria”, IEEE Geoscience and Remote Sensing Letters, 2, 59–63.

    Article  Google Scholar 

  • MAHARAJ, E.A. (2000), “Clusters of Time Series”, Journal of Classification, 17, 298–314.

    Article  MathSciNet  Google Scholar 

  • MCBRATNEY, A.B. and MOORE, A.W. (1985), “Application of Fuzzy Sets to Climatic Classification”, Agricultural and Forest Meteorology, 35, 165–185.

    Article  Google Scholar 

  • MOLENAAR, M. and Cheng, T. (2000), “Fuzzy Spatial Objects and Their Dynamics”, ISPRS Journal of Photogrammetry and Remote Sensing, 55, 164–175.

    Article  Google Scholar 

  • MORAN, P.A.P. (1950), “A Test for the Serial Independence of Residuals”, Biometrika 37, 178–181.

    MATH  MathSciNet  Google Scholar 

  • MURTAGH, F. (1985), “A Survey of Algorithms for Contiguity-Constrained Clustering and Related Problems”, Computer Journal, 28, 82–88.

    Article  Google Scholar 

  • NG, R.T. and HAN, J. (2002), “CLARANS: A Method for Clustering Objects for Spatial Data Mining”, IEEE Transactions on Knowledge and Data Engineering, 14, 1003–1016.

    Article  Google Scholar 

  • PERMUTER, H., FRANCOS, J., and JERMYN, I. (2006), “A Study of Gaussian Mixture Models of Color and Texture Features for Image Classification and Segmentation”, Pattern Recognition, 39, 695–166.

    Article  MATH  Google Scholar 

  • PHAM, D.L. (2001), “Spatial Models for Fuzzy Clustering”, Computer Vision and Image Understandin, 84, 285–297.

    Article  MATH  MathSciNet  Google Scholar 

  • PHAM, D.L. and PRINCE, J.L. (1999), “Adaptive Fuzzy Segmentation of Magnetic Resonance Images”, IEEE Transactions on Medical Imaging 18, 737–752.

    Article  Google Scholar 

  • PILEVAR, A.H. and SUKUMAR, M. (2005), “GCHL: A Grid-Clustering Algorithm for High-dimensional Very Large Spatial Data Bases”, Pattern Recognition Letters, 26, 999–1010.

    Article  Google Scholar 

  • SMOUSE, P.E. and PEAKALL, R. (1999), “Spatial Autocorrelation Analysis of Individual Multiallele and Multilocus Genetic Structure”, Heredity, 82, 561–573.

    Article  Google Scholar 

  • TOLIAS, Y.A. and PANAS, S.M. (1998), “On Applying Spatial Constraints in Fuzzy Image Clustering Using a Fuzzy Rule-based System”, IEEE Signal Processing Letters, 5, 245–247.

    Article  Google Scholar 

  • TOLIAS, Y.A. and PANAS, S.M. (1998), “Image Segmentation by a Fuzzy Clustering Algorithm Using Adaptive Spatially Constrained Membership Functions”, IEEE Transactions on Systems, Man, and Cybernetics A, 28, 359–369.

    Article  Google Scholar 

  • TRAN, T.N., WEHRENS, R., and BUYDENS, M.C. (2005), “Clustering Multispectral Images: A Tutorial”, Chemometrics and Intelligent Laboratory Systems, 77, 3–17.

    Google Scholar 

  • XIA, Y., FENG, D., WANG, T., ZHAO, R,. and ZHANG, Y. (2007), “Image Segmentation by Clustering of Spatial Patterns”, Pattern Recognition Letters, 28, 1548–1555.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Coppi.

Additional information

This research was partially supported by the grant PRIN 2005 of the Italian Ministry of Education, University and Research (“Models and methods to handle information and uncertainty in knowledge acquisition processes”), which is gratefully acknowledged. The authors also thank the Editor and three anonymous reviewers for their insightful comments, which improved the quality of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppi, R., D’Urso, P. & Giordani, P. A Fuzzy Clustering Model for Multivariate Spatial Time Series. J Classif 27, 54–88 (2010). https://doi.org/10.1007/s00357-010-9043-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-010-9043-y

Keywords

Navigation