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Abstract: It is shown that if cell weights may be calculated from the data the chance-
corrected Zegers-ten Berge coefficients for metric scales are special cases of Cohen’s
weighted kappa. The corrected coefficients include Pearson’s product-moment corre-
lation, Spearman’s rank correlation and the intraclass correlation ICC(3, 1).
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1. Introduction

In behavioral and biomedical sciences it is frequently required that
multiple raters each independently rate the same set of targets on a certain
characteristic. The raters may be clinicians who classify children on asthma
severity, pathologists that rate the severity of lesions from scans, competing
diagnostic devices that classify the extent of disease in patients into ordinal
categories, or biologists watching gibbons that count the number of times a
given behavior occurs. The correspondence between the scores of the raters
can be expressed by means of agreement coefficients (Zegers 1986a, 1991;
Stine 1989). Separate approaches exist for numerical and categorical scales
(Schuster and Smith 2005). While association coefficients and intraclass
correlations are preferred for numerical scales (Zegers and ten Berge 1985;
Zegers 1986b; Fagot 1993; McGraw and Wong 1996), unweighted kappa
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and weighted kappa (Cohen 1960, 1968) are popular descriptive statistics for
ratings on nominal and ordinal scales (Graham and Jackson 1993; Vanbelle
and Albert 2009a; Warrens 2013).

Since agreement is of concern with both numerical and categorical
scales, one expects clear connections between the coefficients for numerical
scales on the one hand, and weighted kappas for categorical scales on the
other hand (Schuster and Smith 2005). Indeed, various authors have found
connections between the two approaches (Cohen 1960, 1968; Fleiss and Co-
hen 1973; Schuster and Smith 2005). However, these results hold approx-
imately, since they require a large sample size n. In this paper we present
exact relations between the two approaches. It is shown that if cell weights
may be calculated from the data the chance-corrected Zegers-ten Berge co-
efficients for metric scales (Zegers and ten Berge 1985; Zegers 1986b; Fagot
1993) are special cases of weighted kappa. The corrected Zegers-ten Berge
coefficients include Pearson’s product-moment correlation and the intraclass
correlation ICC(3, 1) in Shrout and Fleiss (1979).

The paper is organized as follows. In the next section we introduce
notation. In Section 3 we consider the Zegers-ten Berge family of corrected
coefficients, including the generalizations to multiple raters presented by
Fagot (1993). In Section 4 we introduce weighted kappa and two extensions
to the case of multiple raters. In Section 5 it is shown that the families of cor-
rected coefficients from Section 3 are special cases of the weighted kappas
presented in Section 4. In Sections 6 and 7 we discuss for the product-
moment correlation and two intraclass correlations the new connections in
the context of the previous connections. In Section 8 we discuss the useful-
ness of Cohen’s weighted kappa for ordinal scales, given the exact relations
presented in this paper.

2. Notation

In this section we introduce the notation that is used in this paper.
Suppose that n targets are classified independently by h ≥ 2 raters into the
same m ≥ 2 categories. The targets, raters and categories are indexed by, re-
spectively, i ∈ {1, 2, . . . , n}, a, b ∈ {1, 2, . . . , h} and j, k ∈ {1, 2, . . . ,m}.
If the categories can be ordered then it is assumed that they are in their nat-
ural ordering. Let z = (z1, z2, . . . , zm) be a m-tuple of category scores
where zj denotes the score used by the raters for coding category j. If
z = (1, 2, . . . ,m) the category scores are consecutive integers, also known
as rank scores.

Let x1, . . . , xh be n-tuples containing the scores assigned to the tar-
gets by the h raters, where xa = (x1a, . . . , xna) and where xia is the score
assigned to target i by rater a. Note that the elements of the xa are elements
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of z. In the context of association coefficients in the next section the xa can
be considered variables. The mean score of xa is denoted by x̄a, the unbi-
ased sample variance by s2a, and the unbiased sample covariance of xa and
xb by sab. The mean squared value of xa is given by

t2a =
1

n

n∑
i=1

x2ia.

For two raters a and b the assignments can also be summarized in a square
contingency table N(ab) = {njk(ab)} where njk(ab) denotes the number
of targets assigned to category j by rater a and to category k by rater b. Let
nj(a) denote the total number of targets assigned to category j by rater a.
The quantities nj(a) and nj(b) are called the marginal totals of the contin-
gency table N(ab).

3. Association Coefficients for Metric Scales

Zegers and ten Berge (1985) presented a general formula for associa-
tion coefficients for metric scales. The formula has four specific coefficients
as special cases, one for each of the four metric scale types: identity, dif-
ference, ratio and interval scale. The scale type of a variable is defined by
the class of admissible transformations. For the absolute scale the identity
transformation is the only admissible transformation. The difference scale,
ratio scale and interval scale are only invariant under, respectively, additive
transformations, positive multiplicative transformations, and positive linear
transformations. Zegers (1986b) presented a chance-corrected version of the
general formula by Zegers and ten Berge (1985). Fagot (1993) presented ex-
tensions of both families to the case of multiple raters.

The general formula is based on uniforming or standardized trans-
formations for the scale types. An uniforming transformation is invariant
under all admissible transformations of the variables and sensitive to non-
admissible transformation (see Zegers and ten Berge 1985; Fagot 1993). Let
ua denote the uniformed version of xa. The mean value of ua is denoted by
ūa. The uniforming transformations are

ua = xa for the absolute scale, (1a)

ua = xa − x̄a for the difference scale, (1b)

ua = xa/ta for the ratio scale, (1c)

ua = (xa − x̄a)/sa for the interval scale. (1d)

For the interval scale the uniformed version of a variable in (1d) is identical
to the usual standardized version. The chance-corrected family of associa-
tion coefficients in Zegers (1986b, Equation (5)) is given by
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g =

2
n∑

i=1
uiauib − 2nūaūb

n∑
i=1

u2ia +
n∑

i=1
u2ib − 2nūaūb

. (2)

Inserting the uniforming transformations in (1) into (2) we obtain, respec-
tively, the corrected identity coefficient, the coefficient of additivity, the
corrected proportionality, and Pearson’s product-moment correlation. More
background on the coefficients can be found in Zegers and ten Berge (1985),
Zegers (1986a) and Fagot (1993). For ordinal scale data Spearman’s rank
correlation is commonly used. This correlation coefficient can be used to
assess how well the relationship between two variables can be described
using a monotonic function.

One generalization of coefficient (2) to multiple variables or raters
presented in Fagot (1993, Equation (7)) is given by

g =

2
h∑

a<b

n∑
i=1

uiauib − 2n
h∑

a<b

ūaūb

(h− 1)
h∑

a=1

n∑
i=1

u2ia − 2n
h∑

a<b

ūaūb

. (3)

Inserting the uniforming transformations in (1) into (3) we obtain, respec-
tively, the coefficients of identity, additivity, proportionality, and linearity.
Some properties of these coefficients, including a partial ordering on the co-
efficients and limits of the coefficients, can be found in Fagot (1993). Fagot
(1993, p. 364, Appendix) showed that the coefficient of additivity is identi-
cal to the intraclass correlation ICC(3, 1) in Shrout and Fleiss (1979) (see
Section 7).

A second generalization of coefficient (2) is given by

g′ =
2

h(h − 1)

h∑
a<b

2
n∑

i=1
uiauib − 2nūaūb

n∑
i=1

u2ia +
n∑

i=1
u2ib − 2nūaūb

. (4)

The multi-rater coefficient in (4) is a mean of ratios. It is a chance-corrected
version of a coefficient in Fagot (1993, p. 364). For ratio and interval scales
the coefficients in (3) and (4) are identical (Fagot 1993, p. 364).

4. Weighted Kappas

Weighted kappa statistics are usually defined using the cells njk(ab)
and marginal totals nj(a) and nj(b) of the contingency table N(ab) (Warrens
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2011, 2013). Let the real number wjk ≥ 0 denote the disagreement weight
between categories j and k. The equality wjk = 0 reflects that there is
no disagreement when a target is assigned to category j and category k,
whereas wjk > 0 reflects some disagreement when a target is assigned to
different categories by the raters. It is convenient, but not necessary, to
assign zero to the agreement diagonal (Cohen 1968, p. 215), that is, wjj = 0
for all j. For two raters a and b weighted kappa (Cohen 1968) is defined as

κw = 1−
n

m∑
j=1

m∑
k=1

njk(ab)wjk

m∑
j=1

m∑
k=1

nj(a)nk(b)wjk

. (5)

By specifying the weights wjk in (5) we obtain specific cases of weighted
kappa. Examples of weights are, the linear weights wjk = |j − k| (Ci-
cchetti and Allison 1971; Vanbelle and Albert 2009b; Warrens 2011), the
quadratic weights wjk = (j − k)2 (Fleiss and Cohen 1973; Graham and
Jackson 1993; Warrens 2012a), the generalized linear weights discussed in
Cicchetti (1976), and the dispersion weights wjk = (zj − zk)

2 (Schuster
and Smith 2005; Janson and Olsson 2001). For example, the dispersion-
weighted kappa for two raters a and b is given by

κd = 1−
n

m∑
j=1

m∑
k=1

njk(ab)(zj − zk)
2

m∑
j=1

m∑
k=1

nj(a)nk(b)(zj − zk)2
. (6)

If we replace the category scores by their rank scores z = (1, 2, . . . ,m),
then the dispersion-weighted kappa in (6) is identical to the well-known
quadratically weighted kappa (Graham and Jackson 1993; Warrens 2012a).
Various issues related to the application of weighted kappa are discussed in
Crewson (2005) and Cicchetti et al. (2006).

For the case of multiple raters there are different views on how to de-
fine agreement (Hubert 1977; Conger 1980; Popping 2010; Warrens 2012b).
With pairwise agreement there is already agreement if only two raters cat-
egorize a subject consistently. With simultaneous agreement there is only
agreement if all raters assign a subject to the same category. This type of
agreement is called DeMoivre’s definition of agreement in Hubert (1977, p.
296). Conger (1980) argued that agreement among raters can actually be
considered to be an arbitrary choice along a continuum ranging from pair-
wise agreement to simultaneous agreement.

For weighted kappas based on pairwise agreement we use the cells of
all h(h−1)/2 pairwise contingency tables N(ab) that can be formed between
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the h raters. A multi-rater weighted kappa based on pairwise agreement is
given by

κw = 1−
n

h∑
a<b

m∑
j=1

m∑
k=1

njk(ab)wjk

h∑
a<b

m∑
j=1

m∑
k=1

nj(a)nk(b)wjk

. (7)

The weighted kappa in (7) is considered in Abraira and Pérez de Vargas
(1999), Janson and Olssen (2001), and Warrens (2012c). The weights

wjk =

{
0 if j = k

1 otherwise
(8)

only discriminate between agreements and disagreements. If we use the
weights in (8) in (7) we obtain the unweighted kappa for multiple raters
that was first considered in Hubert (1977, p. 296, 297) and has been in-
dependently proposed by Conger (1980). This unweighted kappa is also
discussed in Davies and Fleiss (1982), Popping (1983), Heuvelmans and
Sanders (1993) and Warrens (2010), and is a special case of the descriptive
statistics discussed in Berry and Mielke (1988).

An alternative pairwise generalization for multiple raters is given by

κ′w = 1− 2

h(h− 1)

h∑
a<b

n
m∑
j=1

m∑
k=1

njk(ab)wjk

m∑
j=1

m∑
k=1

nj(a)nk(b)wjk

. (9)

The weighted kappa in (9) is a mean of ratios. If we use the weights in (8)
in (9) we obtain the unweighted kappa for multiple raters proposed in Light
(1971).

For weighted kappas based on simultaneous agreement we use the
cells of the h-dimensional contingency table N(a1 · · · ah) = {nj1···jh(a1 · · ·
ah)} that summarizes the agreement between raters a1, . . . , ah. The cell
nj1···jh(a1 · · · ah) denotes the number of the targets assigned to category j1
by rater a1, to category j2 by rater a2, and so on, and to category jh by
rater ah. Let the real number wj1···jh ≥ 0 denote the disagreement weight
between categories j1, . . . , jh. A multi-rater weighted kappa based on si-
multaneous agreement is given by

κ′′w = 1−
nh−1

m∑
j1=1

· · ·
m∑

jh=1
nj1···jh(a1 · · · ah)wj1···jh

m∑
j1=1

· · ·
m∑

jh=1
nj1(a1) · · ·njh(ah)wj1···jh

. (10)
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The weighted kappa in (10) is considered in Schuster and Smith (2005),
Mielke et al. (2007, 2008) and Berry et al. (2008). If we use the weights

wj1···jh =

{
0 if j1 = · · · = jh

1 otherwise
(11)

in (10) we obtain the unweighted kappa for multiple raters proposed in Von
Eye and Mun (2006, p. 22). The simultaneous agreement weights wj1···jh
can also be based on the pairwise weights. Warrens (2012c) showed that if
we first specify the pairwise weights wjk for the weighted kappa in (7), and
then use the weights

wj1···jh =

h∑
a<b

wjajb (12)

in (10), the weighted kappas in (7) and (10) are identical. This approach
of defining weights for the weighted kappa in (10) is used in Schuster and
Smith (2005) and Mielke et al. (2007, 2008). Since the weighted kappas
in (7) and (10) are equivalent if we use the weights in (12), the value and
exact variance of (7) can be calculated using the software routines discussed
in Mielke, Berry and Johnston (2007, 2008).

5. Special Cases of Weighted Kappa

In this section we show that if cell weights may be calculated from
the data then the corrected Zegers-ten Berge coefficients are special cases of
weighted kappa. Weighted kappa is not defined in terms of the target scores
xa but can be related to the target scores by means of the category scores z.
We therefore extend the uniforming transformations to the category scores.
Let va denote the uniformed version of z for rater a. The uniforming trans-
formations are

va = z, for the absolute scale, (13a)

va = z − x̄a, for the difference scale, (13b)

va = z/ta, for the ratio scale, (13c)

va = (z − x̄a)/sa, for the interval scale. (13d)

Note that, since the values of the xa are elements of z, the values of the
ua are elements of the va. The following result shows how the uniforming
transformations for the category scores are related to the uniforming trans-
formations of the target scores.
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Lemma. For two raters a and b we have

m∑
j=1

m∑
k=1

njk(ab) (vja − vkb)
2 =

n∑
i=1

u2ia +

n∑
i=1

u2ib − 2

n∑
i=1

uiauib,

(14a)

1

n

m∑
j=1

m∑
k=1

nj(a)nk(b) (vja − vkb)
2 =

n∑
i=1

u2ia +

n∑
i=1

u2ib − 2nūaūb. (14b)

Proof: Since the values of ua are elements of va we have

m∑
j=1

m∑
k=1

njk(a) (vja − vkb)
2 =

n∑
i=1

(uia − uib)
2 ,

which is identity (14a), and also, for all a ∈ {1, 2, . . . , h}, the identities

m∑
j=1

nj(a) = n, (15a)

m∑
j=1

nj(a)vja =

n∑
i=1

uia, (15b)

m∑
j=1

nj(a)v
2
ja =

n∑
i=1

u2ia. (15c)

Using the identities in (15) we have

1

n

m∑
j=1

m∑
k=1

nj(a)nk(b) (vja − vkb)
2

=
1

n

m∑
j=1

nj(a)v
2
ja

m∑
k=1

nk(b) +
1

n

m∑
j=1

nj(a)

m∑
k=1

nk(b)v
2
kb

− 2

n

m∑
j=1

nj(a)vja

m∑
k=1

nk(b)vkb

=

n∑
i=1

u2ia +

n∑
i=1

u2ib − 2nūaūb,

which is identity (14b).
�
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The proof of the lemma is a more general formulation of the arguments
on page 616 in Fleiss and Cohen (1973). It follows from the lemma that the
weighted kappa

κu = 1−
n

h∑
a<b

m∑
j=1

m∑
k=1

njk(ab) (vja − vkb)
2

h∑
a<b

m∑
j=1

m∑
k=1

nj(a)nk(b) (vja − vkb)
2

(16)

is identical to the coefficient in (3), that is, κu = g, and that the weighted
kappa

κ′u = 1− 2

h(h − 1)

h∑
a<b

n
m∑
j=1

m∑
k=1

njk(ab) (vja − vkb)
2

m∑
j=1

m∑
k=1

nj(a)nk(b) (vja − vkb)
2

(17)

is identical to the coefficient in (4), that is, κ′u = g′. Hence, both coefficients
(3) and (4) are special cases of weighted kappas. We obtain the weighted
kappas in (16) and (17) by using the weights wjk = (vja − vkb)

2 in (7) and
(9).

6. The Product-Moment Correlation

As Jacob Cohen noted, “It is a frequent experience for the methodolo-
gist exploring an area apparently remote from the product-moment correla-
tion to turn a corner and find it confronting him” (Cohen 1968, p. 218). The
sample estimate of the product-moment correlation is r = sab/(sasb). Con-
nections between Pearson’s r and weighted kappa have been found by Co-
hen (1960, 1968) and Schuster (2004). Cohen (1960, p. 43) noted that for a
2×2 table with identical marginal distributions, the kappa coefficient is iden-
tical to the phi coefficient. Cohen (1968) noted that if z = (1, 2, . . . ,m) and
if the marginal totals of the contingency table N(ab) satisfy nj(a) = nj(b)
for all j, then the quadratically weighted kappa for two raters a and b

κq = 1−
n

m∑
j=1

m∑
k=1

njk(ab) (j − k)2

m∑
j=1

m∑
k=1

nj(a)nk(b) (j − k)2
(18)

is identical to the product-moment correlation applied to rank scores. In
other words, the weighted kappa with quadratic weights weights in (18) is
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identical to Spearman’s rank correlation. Using similar arguments as Cohen
(1968) it follows that if we have nj(a) = nj(b) for all j, then the dispersion-
weighted kappa in (6) is identical to the product-moment correlation. How-
ever, it follows from Section 5 that the weighted kappa

κr = 1−
n

m∑
j=1

m∑
k=1

njk(ab)
(
zj−x̄a

sa
− zk−x̄b

sb

)2

m∑
j=1

m∑
k=1

nj(a)nk(b)
(
zj−x̄a

sa
− zk−x̄b

sb

)2
(19)

is identical to Pearson’s r. Moreover, if we replace the category scores by
their rank scores z = (1, 2, . . . ,m), it follows from the results in Section 5
that

κs = 1−
n

m∑
j=1

m∑
k=1

njk

(
j−x̄a

sa
− k−x̄b

sb

)2

m∑
j=1

m∑
k=1

nj(a)nk(b)
(
j−x̄a

sa
− k−x̄b

sb

)2
(20)

is identical to Spearman’s rank correlation.
It follows from Section 5 that the dispersion-weighted kappa in (6) is

identical to the corrected identity coefficient

I =

2
n∑

i=1
xiaxib − 2nx̄ax̄b

n∑
i=1

x2ia +
n∑

i=1
x2ib − 2nx̄ax̄b

. (21)

Schuster (2004, Equation (5)) showed that coefficient (6) = (21) can also
be expressed as

2sab
s2a + s2b +

n
n−1(x̄a − x̄b)2

. (22)

Coefficient (22) is closely related to the coefficient proposed by Jobson
(1976). For large n, that is, if n/(n − 1) = 1, coefficient (22) is identi-
cal to Jobson’s coefficient. Alternatively, if we replace the unbiased sample
estimates of the variances and covariance by the so-called biased ones in
(22), we also obtain Jobson’s coefficient (Schuster 2004, p. 251). Since the
product-moment correlation exceeds the corrected identity coefficient in the
absolute sense (Zegers 1986b; Fagot 1993), the absolute value of (20) is an
upper bound to the absolute value of (18), and the absolute value of (19) is
an upper bound to the absolute value of (6) (= (21) = (22)).
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7. Intraclass Correlations

Intraclass correlations are often used when h ≥ 2 raters classify the
same n targets on a numerical scale. The average variance and average
covariance are

var =
1

h

h∑
a=1

s2a and cov =
2

h(h − 1)

h∑
a<b

sab.

Shrout and Fleiss (1979) consider several intraclass correlations and present
guidelines for choosing among them. Following Shrout and Fleiss (1979),
let BMS, JMS and EMS denote respectively the between targets, be-
tween raters and the residual mean sum of squares. Winer (1971, p. 271,
272) and Schuster (2004, p. 248) presented the formulas BMS = var +
(h − 1)cov and EMS = var − cov. We are interested in two estimates of
the intraclass correlations from Shrout and Fleiss (1979, p. 423), namely,

ICC(2, 1) =
BMS − EMS

BMS + (h− 1)EMS + (h/n)(JMS − EMS)
, (23)

and

ICC(3, 1) =
BMS − EMS

BMS + (h− 1)EMS
=

cov
var

. (24)

McGraw and Wong (1996, p. 35) discuss two analysis of variance models
and corresponding intraclass correlations for which ICC(2, 1) is the sample
estimate, and four analysis of variance models and corresponding intraclass
correlations for which ICC(3, 1) is the sample estimate. Instead of dis-
cussing all these models here we refer to McGraw and Wong (1996, p. 35).
Note that for large n we have ICC(2, 1) = ICC(3, 1).

Recall that if we use the weights in (12) in (10) then the weighted
kappas in (7) and (10) are identical (Warrens 2012c). Fleiss and Cohen
(1973) and Schuster and Smith (2005) show that the dispersion weighted
kappa

κd = 1−
n

h∑
a<b

m∑
j=1

m∑
k=1

njk(ab) (zj − zk)
2

h∑
a<b

m∑
j=1

m∑
k=1

nj(a)nk(b) (zj − zk)
2

(25)

can be expressed as

κd =
BMS − EMS

BMS + (h− 1)EMS + h
n−1JMS

. (26)
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Schuster (2004) and Schuster and Smith (2005) argue that for large n the co-
efficient in (26) is identical to ICC(2, 1). For large n we have ICC(2, 1) =
ICC(3, 1) and several models in McGraw and Wong (1996, p. 35) coincide.
Since we can not distinguish between ICC(2, 1) and ICC(3, 1) for large n
it is a moot point what the dispersion-weighted kappa in (25) (= (26)) ac-
tually estimates for small or moderate n. Because intraclass correlations are
often applied to small data sets (see, for example, Shrout and Fleiss 1979,
Table 2) the following exact connection is of interest. It follows from Sec-
tion 5 that the weighted kappa

κi = 1−
n

h∑
a<b

m∑
j=1

m∑
k=1

njk(ab)((zj − x̄a)− (zk − x̄b))
2

h∑
a<b

m∑
j=1

m∑
k=1

nj(a)nk(b)((zj − x̄a)− (zk − x̄b))2
(27)

is identical to the additivity coefficient. Since Fagot (1993, appendix)
showed that the additivity coefficient is identical to the intraclass correlation
ICC(3, 1), it follows that the weighted kappa in (27) is identical to the
intraclass correlation ICC(3, 1).

8. Usefulness of Weighted Kappa for Ordinal Scales

If we use the weights in (8) in the weighted kappa in (5) we obtain
Cohen’s unweighted kappa (Cohen 1960). Although unweighted kappa is a
standard tool for nominal scale data, the weights in (8) show that the statistic
is blind to differences in disagreement. The weighted kappa in (5) was meant
as an improvement over unweighted kappa for situations where the disagree-
ments between the raters are not all equally important. For example, when
categories are ordered, the seriousness of a disagreement depends on the
difference between the ratings. However, since the magnitude of weighted
kappa is greatly influenced by the relative magnitude of the weights (War-
rens 2013) a practical problem since its introduction has been, what weights
should be chosen? Fleiss and Cohen (1973) showed that for large n the
weighted kappa with quadratic weights can be interpreted as a proportion
of variances (intraclass correlation ICC(2, 1) or ICC(3, 1); see Section 7).
Since then the quadratically weighted kappa is the most often used weighted
kappa for ordinal scale in practice (Maclure and Willett 1987; Graham and
Jackson 1993), despite certain peculiar properties (Warrens 2012a). It is
somewhat peculiar that this standardization of the weighting scheme has
solely been based on the ‘proportion of variance’ argument. The exact re-
sults in this paper show that this argument is in some sense ‘more’ applicable
to other versions of weighted kappa, more precisely, the weighted kappas in

190



Special Cases Weighted Kappa

(19) and (27). This in turn indicates that for ordinal scales we may abandon
the weighted kappa methodology and replace it with the agreement coeffi-
cients discussed in Zegers and ten Berge (1985), Zegers (1986b, 1991) and
Fagot (1993). For example, with ordinal agreement data we may use Spear-
man’s rank correlation, which is a commonly used correlation coefficient for
assessing how well the relationship between two variables can be described
using a monotonic function.
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QÜESTIIÓ, 23, 561–571.

BERRY, K.J., and MIELKE, P.W. (1988), “A Generalization of Cohen’s Kappa Agreement
Measure to Interval Measurement and Multiple Raters”, Educational and Psycholog-
ical Measurement, 48, 921–933.

BERRY, K.J., JOHNSTON, J.E., and MIELKE, P.W. (2008), “Weighted Kappa for Multiple
Raters”, Perceptual and Motor Skills, 107, 837–848.

CICCHETTI, D V. (1976), “Assessing Inter-rater Reliability for Rating Scales: Resolving
Some Basic Issues”, British Journal of Psychiatry, 129, 452–456.

CICCHETTI, D.V., and ALLISON, T. (1971), “A New Procedure for Assessing Reliability
of Scoring EEG Sleep Recordings”, The American Journal of EEG Technology, 11,
101–110.

CICCHETTI, D., BRONEN, R., SPENCER, S., HAUT, S., BERG, A., OLIVER, P., and
TYRER, P. (2006), “Rating Scales, Scales of Measurement, Issues of Reliability. Re-
solving Some Critical Issues for Clinicians and Researchers”, The Journal of Nervous
and Mental Disease, 194, 557–564.

COHEN, J. (1960), “A Coefficient of Agreement for Nominal Scales”, Educational and
Psychological Measurement, 20, 37–46.

COHEN, J. (1968), “Weighted Kappa: Nominal Scale Agreement With Provision for Scaled
Disagreement or Partial Credit”, Psychological Bulletin, 70, 213–220.

CONGER, A.J. (1980), “Integration and Generalization of Kappas for Multiple Raters”,
Psychological Bulletin, 88, 322–328.

CREWSON, P.E. (2005), “Fundamentals of Clinical Research for Radiologists. Reader
Agreement Studies”, American Journal of Roentgenology, 184, 1391–1397.

DAVIES, M., and FLEISS, J.L. (1982), “Measuring Agreement for Multinomial Data”,
Biometrics, 38, 1047–1051.

FAGOT, R.F. (1993), “A Generalized Family of Coefficients of Relational Agreement for
Numerical Scales”, Psychometrika, 58, 357–370.

FLEISS, J.L., and COHEN, J. (1973), “The Equivalence of Weighted Kappa and the Intr-
aclass Correlation Coefficient as Measures of Reliability”, Educational and Psycho-
logical Measurement, 33, 613–619.

GRAHAM, P., and JACKSON, R. (1993), “The Analysis of Ordinal Agreement Data: Be-
yond Weighted Kappa”, Journal of Clinical Epidemiology, 46, 1055–1062.

HEUVELMANS, A.P.J.M., and SANDERS, P.F. (1993), “Beoordelaarsovereenstemming”,
in Psychometrie in de Praktijk, eds. T.J.H.M. Eggen and P.F. Sanders, Arnhem: Cito
Instituut voor Toestontwikkeling, pp. 443–470.

191



M.J. Warrens

HUBERT, L. (1977), “Kappa Revisited”, Psychological Bulletin, 84, 289–297.
JANSON, H., and OLSSON, U. (2001), “A Measure of Agreement for Interval or Nominal

Multivariate Observations”, Educational and Psychological Measurement, 61, 277–
289.

JOBSON, J.D. (1976), “A Coefficient of Equality for Questionnaire Items with Interval
Scales”, Educational and Psychological Measurement, 36, 271–274.

LIGHT, R.J. (1971), “Measures of Response Agreement for Qualitative Data: Some Gen-
eralizations and Alternatives”, Psychological Bulletin, 76, 365–377.

MACLURE, M., and WILLETT, W C. (1987), “Misinterpretation and Misuse of the Kappa
Statistic”, Journal of Epidemiology, 126, 161–169.

MCGRAW, K.O., and WONG, S.P. (1996), “Forming Inferences About Some Intraclass
Correlation Coefficients”, Psychological Methods, 1, 30–46.

MIELKE, P.W., BERRY, K.J., and JOHNSTON, J.E. (2007), “The Exact Variance of Weighted
Kappa With Multiple Raters”, Psychological Reports, 101, 655–660.

MIELKE, P.W., BERRY, K.J., and JOHNSTON, J.E. (2008), “Resampling Probability Val-
ues for Weighted Kappa With Multiple Raters”, Psychological Reports, 102, 606–
613.

POPPING, R. (1983), “Overeenstemmingsmaten voor Nominale Data”, PhD thesis, Rijk-
suniversiteit Groningen, Groningen.

POPPING, R. (2010), “Some Views on Agreement to Be Used in Content Analysis Stud-
ies”, Quality & Quantity, 44, 1067–1078.

SCHUSTER, C. (2004), “A Note on the Interpretation of Weighted Kappa and Its Relations
to Other Rater Agreement Statistics for Metric Scales”, Educational and Psycholog-
ical Measurement, 64, 243–253.

SCHUSTER, C., and SMITH, D.A. (2005), “Dispersion Weighted Kappa: An Integrative
Framework for Metric and Nominal Scale Agreement Coefficients”, Psychometrika,
70, 135-1-46.

SHROUT, P.E., and FLEISS, J.L. (1979), “Intraclass Correlations: Uses in Assessing Rater
Reliability”, Psychological Bulletin, 86, 420–428.

STINE, W.W. (1989), “Interobserver Relational Agreement”, Psychological Bulletin, 106,
341–347.

VANBELLE, S., and ALBERT, A. (2009a), “Agreement Between Two Independent Groups
of Raters”, Psychometrika, 74, 477–491.

VANBELLE, S., and ALBERT, A. (2009b), “A Note on the Linearly Weighted Kappa Co-
efficient for Ordinal Scales”, Statistical Methodology, 6, 157–163.

VON EYE, A., and MUN, E.Y. (2006), Analyzing Rater Agreement. Manifest Variable
Methods, New Jersey USA: Lawrence Erlbaum Associates.

WARRENS, M.J. (2010), “Inequalities Between Multi-rater Kappas”, Advances in Data
Analysis and Classification, 4, 271–286.

WARRENS, M.J. (2011), “Cohen’s Linearly Weighted Kappa Is a Weighted Average of
2× 2 Kappas”, Psychometrika, 76, 471–486.

WARRENS, M.J. (2012a), “Some Paradoxical Results for the Quadratically Weighted Kappa”,
Psychometrika, 77, 315–323.

WARRENS, M.J. (2012b), “A Family of Multi-rater Kappas That Can Always Be Increased
and Decreased by Combining Categories”, Statistical Methodology, 9, 330–340.

WARRENS, M.J. (2012c), “Equivalences of Weighted Kappas for Multiple Raters”, Statis-
tical Methodology, 9, 407–422.

192



Special Cases Weighted Kappa

WARRENS, M.J. (2013), “Conditional Inequalities Between Cohen’s Kappa and Weighted
Kappas”, Statistical Methodology, 10, 14–22.

WINER, B.L. (1971), Statistical Principles in Experimental Design (2nd ed.), New York:
McGraw-Hill.

ZEGERS, F.E. (1986a), A General Family of Association Coefficients, Groningen, Nether-
lands: Boomker.

ZEGERS, F.E. (1986b), “A Family of Chance-corrected Association Coefficients for Metric
Scales”, Psychometrika, 51, 559-562.

ZEGERS, F.E. (1991), “Coefficients for Interrater Agreement”, Applied Psychological Mea-
surement, 15, 321–333.

ZEGERS, F.E., and TEN BERGE, J.M.F. (1985), “A Family of Association Coefficients for
Metric Scales”, Psychometrika, 50, 17–24.

193




