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1. Introduction

In the last fifteen years, a new area of research in statistics has been
developed, called Functional Data Analysis (FDA), that emerges as a gener-
alization of multivariate data analysis techniques to the case where the data
are curves. The interested reader can consult the books Ramsay and Silver-
man (2002; 2005). Applications of FDA in different fields have been re-
cently developed. For example in spectroscopy, where data are curves mea-
sured as functions of wavelength, functional linear regression and ANOVA
models with B-splines expansions have been used in Saeys, De Ketelaere,
and Dairus (2008). Kayano, Dozono, and Konishi (2010) use functional
cluster analysis to model the three-dimensional (3D) protein structural data
that determine the 3D arrangement of amino acids in individual protein.
Matsui, Araki, and Konishi (2011) use functional discriminant analysis to
classify handwritten characters written in the air with one finger. A success-
ful application of FPCA with Fourier basis expansions has been developed
in Valderrama, Ocaña, Aguilera, and Ocaña-Peinado (2010) to forecast air-
borne cypress pollen concentration from daily evolution of temperatures.
Moreover generalizations of classical multivariate techniques to FDA field
have been developed as was the case of the formulation and estimation of
functional PLS regression from basis expansion of sample curves boarded
in Aguilera, Escabias, Preda, and Saporta (2010).

In this paper we consider the related problem of prediction of a cat-
egorical response representing the class membership associated to an ob-
served curve. This problem could be also seen as a problem of curve classi-
fication or discrimination. This has been the objective of many researchers in
recent years from different points of view. Nonparametric FDA methodolo-
gies for curve classification of spectrometric food data were used by Ferraty
and Vieu (2003). FDA was also used by Preda, Saporta, and Lévéder (2007)
from the classical point of view of functional regression methods based on
PLS to make a classification of the quality of cookies from their resistance
of dough. Linear discriminant analysis has also been generalized for func-
tional data classification (James and Hastie 2001). A hidden process regres-
sion model for functional data was used by Chamroukhi, Samé, Govaert,
and Aknin (2010) based on an experimental study for curve discrimination.
As alternative to the classical multivariate methods of classification are the
regression methods for binary response (logistic regression model) or multi-
category response (multi-logit regression models) as can be seen in Hervás,
Silva, Gutiérrez, and Serrano (2008). These models have the advantage that
more than a pure classification method they also allow modeling variables
from a set of predictors and the interpretation of the relationship between
the categorical response and the functional predictor via the parameters of
the model.
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The logit regression model for predicting a binary response has been
generalized to the case of a functional response variable (Escabias, Aguil-
era, and Valderrama 2004). Examples of applications of this model in the
literature were developed in Ratcliffe, Leader, and Heller (2002) who used
it for predicting human foetal heart rate responses to repeated vibroacous-
tic stimulation, Escabias, Aguilera, and Valderrama (2005) who established
the relationship between the risk of drought and time evolution of temper-
atures, Aguilera, Escabias, and Valderrama (2008) where the probability of
lupus flare is estimated from time evolution of stress level and Escabias,
Valderrama, Aguilera, Santofimia, and Aguilera-Morillo (2013) where the
occurrence of airborne olive pollen peaks is modeled from curves of cli-
matic variables.

The natural generalization of the functional logit model for the case
of a categorical response variable with a finite set of categories greater than
two is the functional multinomial response model. This model allows curves
classification in more than two groups. Different types of logit transforma-
tions can be used depending of the type of response (nominal or ordinal).
A functional nominal logit model has been considered for predicting land
use with the temporal evolution of coarse resolution remote sensing data
(Cardot, Faivre, and Goulard 2003). In that paper authors propose a quadra-
ture method to approximate the linear predictor of the model from discrete
data and functional PCA to reduce the dimension of the problem, express-
ing the the functional parameters in terms of spline interpolated eigenfunc-
tions. In this paper we propose a different approach for base-line category
logit models based on basis expansions of the functional predictor and the
functional parameters that turns the functional model into a multiple one.
This consideration usually provides models with highly prediction ability
but non-smooth functional parameters. Two different functional PCAs of
the functional predictor will be considered to improve the estimation of the
functional parameters in the sense of being smooth. Different methods of se-
lection of components will also be introduced, which take into account not
only their explained variability but also their ability to predict the response
and to provide the best estimation of the functional parameters.

Three sections will be used to explain the methodology proposed in
the first one. The second section presents the model formulation and its es-
timation based on basis expansion methods. The third section contains an
alternative estimation based on different types of functional principal com-
ponent analysis. This method allows to reduce the dimension of the model
and to solve multicollinearity problems that arise due to the use of basis ex-
pansion methods. The proposed PCA approaches and the model selection
procedures will be compared on simulated and real data in the fourth, fifth
and sixth sections.

M. Escabias, A.M. Aguilera, and M.C. Aguilera-Morillo298



2. Theoretical Framework on Functional Nominal Response Models

In order to formulate the multinomial response model let us consider
a sample of observations {xi(t) : t ∈ T, i = 1, . . . , n} of a functional
predictor {X (t) : t ∈ T} , whose sample curves belong to the space L2(T )
of square integrable functions on T.

Let {(yi1, . . . , yiS)′ : i = 1, . . . , n} be a set of n vectors sampled from
a categorical response variable Y with S categories, defined for each s =
1, . . . , S by

yis =

{
1 if category s is observed for X(t) = xi(t)
0 other case

so that each observation is generated by a multinomial distribution M(1;πi1,

. . . , πiS) with πis = P [Y = s|X(t) = xi(t)] and
∑S

s=1 πis = 1 ∀i =
1, . . . , n.

As in any multinomial regression model (see Agresti 2002), yiS is
redundant, so let denote by yi = (yi1, . . . , yi,S−1)

′ the response vector for
subject i, with mean vector μi = E[Yi] = (πi1, . . . , πi,S−1)

′.
The base-line category logit model for nominal responses can be ex-

tended to the functional case as a functional generalized linear model (James
2002) whose link function is given by the baseline-category logit transfor-
mations lis that pairs each response with a baseline category (usually the last
one)

lis = log [πis/πiS ] = αs +

∫
T
xi (t)βs (t) dt.

Then, the probabilities of the multinomial response are modeled in terms of
the functional predictor and the parameters (functional and non-functional)
as

πis =
exp

{
αs +

∫
T xi (t) βs (t) dt

}∑S
s=1 exp

{
αs +

∫
T xi (t) βs (t) dt

} , s = 1, . . . , S, i = 1, . . . , n,

(1)

with αS = 0 = βS(t).
This model formulation leads to an interpretation of the relationship

between the nominal response and the functional predictor. For example, the
exponential of the integral

∫ t0+h
t0

βs (t) g (t) dt is the multiplicative change
in the odds of response (Y = s) against response (Y = S) provided by a
change of the curve xi (t) according to a function g (t) in the interval [t0, t0+
h] (see Aguilera, Escabias and Valderrama (2008) for a detailed explanation
of this type of interpretation with the binary response logit model).
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The estimation of the parameters of this model is an ill-posed prob-
lem due to the infinite dimension of the predictor space (see Ramsay and
Silverman (2005) for a discussion on the functional linear model). In addi-
tion, the functional predictor can not be observed continuously in time but
in a set of discrete time points {tik : k = 1, . . . ,mi} that could be different
for each sampled individual. Basis expansion methods allow us to over-
come these two problems. The most used approach is to reduce dimension
by performing an orthonormal basis expansion of the functional predictor.
Then, a finite number of coefficients of such orthonormal representations are
used as predictor variables of the functional regression model that becomes a
multiple regression model whose parameters are estimated as usual by least
squares or maximum likelihood. This dimension reduction approach has
been studied by Müller and Stadtmüller (2005) in the theoretical framework
of functional generalized linear models where asymptotic tests and simul-
taneous confidence bands for the parameter function have been obtained.
On the other hand, an alternative estimation procedure based on B-spline
expansion of the functional parameter (but not the predictor curves) that
maximizes the penalized log-likelihood has been studied in Marx and Eilers
(1999) for a functional binomial response model and in Cardot and Sarda
(2005) for the general context of functional generalized linear models.

Let us consider that both the predictor curves and functional parame-
ters belong to a finite space generated by a basis of functions

xi (t) = a′iΦ (t) , βs (t) = β′
sΦ (t) ,

with Φ (t) = (φ1 (t) , . . . , φp (t))
′ being a vector of basic functions that

generate the space where x (t) belongs to, and ai = (ai1, . . . , aip)
′ and

βs = (βs1, . . . , βsp)
′ being the vectors of basis coefficients of the sample

curves and parameter functions, respectively.
This way the functional model turns to a multiple one given by

lis = αs +

∫
T
xi (t)βs (t) dt = αs + a′iΨβs

s = 1, . . . , S − 1, i = 1, . . . , n,

with Ψ = (ψuv) being the p× p matrix of inner products

ψuv =
∫
T φu (t)φv (t) dt.

In matrix form each vector of logit transformations Ls = (l1s, . . . , lns)
′

can be expressed as

Ls = αs1+AΨβs, s = 1, . . . , S − 1. (2)
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In spite of having considered the same type of basis for sampled curves and
functional parameters, they could be different. In this case Ψ matrix would
have as entries the between-basis inner products.

The estimation of this multicategory logit model is carried out by
maximizing the multinomial log likelihood

log

[
n∏

i=1

[
S∏

s=1

πyis

ij

]]
under model (1). Newton-Raphson is the most used method that yields the
ML parameter estimates because of the concavity of the log-likelihood equa-
tion.

Before estimating the parameters of this multiple model (basis coeffi-
cients of the parameter functions) it is mandatory to obtain the sample curves
basis coefficients from the sample information xi = (xi1, . . . , ximi

) avail-
able for each sample curve xi(t) at a discrete set of knots (ti1, . . . , timi

) .
Different numerical procedures as interpolation (data observed without er-
ror) or least squares approximation (noisy data) can be used to compute
these basis coefficients in practice. Natural cubic spline interpolation was
first considered to estimate functional PCA (Aguilera, Gutiérrez, and Valder-
rama 1996). Quasi natural cubic spline interpolation has been introduced to
estimate the risk of drought from time evolution of temperatures (Escabias,
Aguilera, and Valderrama 2005). Least squares approximation with both
B-splines and trigonometric functions has been recently used for interpret-
ing the relationship between time evolution of stress and flares in Systemic
Lupus Erythematosus patients (Aguilera, Escabias, and Valderrama 2008).

3. Functional PCA Based Solutions

As set out in the two previous sections, in addition to a classifica-
tion method, multinomial logit models allow to interpret the relationship
between the categorical response variable (that defines the groups where the
predictor variable observations belong to) and the functional predictor. This
interpretation is carried out by using the slope parameters of the model, that
in the case of functional multinomial logit model are a set of functions. With
this objective in mind an accurate and interpretable estimation of these func-
tional parameters is very important with interpretability being synonymous
of smoothness in functional data analysis. As in the binary response case
(Escabias, Aguilera, and Valderrama 2004), basis expansion estimation of
logit models usually provides good predictions of the response and conse-
quently a fair classification rule but an inaccurate parameter estimation with
high variability (due to multicollinearity). It makes the interpretability dif-
ficult of the relationship between variables so that the equilibrium between
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smooth estimation of the (functional) parameters of the model and accurate
prediction of the response is our aim in this paper.

A well-known solution to reduce dimension and solve multicollinear-
ity problems in functional data analysis is to use as regressors a reduced set
of uncorrelated components instead of the columns of the AΨ matrix. In
the particular case of binary response, we can find in the literature differ-
ent approaches based on PCR and PLS (Escabias, Aguilera, and Valderrama
2007). Two different functional PCA approaches that agree with orthonor-
mal basis functions are compared in this paper to get accurate estimations of
both the functional parameter and the categorical nominal response.

3.1 Overview on Functional PCA

In this section we will present a brief summary of basic ideas on func-
tional PCA obtained as a generalization of multivariate PCA to the func-
tional case (data are curves). Without loss of generality and in order to
clarify the theoretical aspects, we consider in this summary that curves are
centered, that is, x(t) =

∑n
i=1 xi(t) = 0.

Given a sample of centered curves
{
xi(t) ∈ L2[T ] : i = 1, . . . , n

}
,

the j-th principal component is given by

ξij =

∫
T
xi (t) fj (t) dt, i = 1, . . . , n,

where the weight function fj is obtained by maximizing

MaxfV ar

[∫
T
xi (t) f (t) dt

]

r.t.

{
‖f‖2 = 1 and

∫
f� (t) f (t) dt = 0 ∀� = 1, . . . , j − 1

}
.

The weight functions are obtained as the eigenfunctions of the covariance
operator C defined by

Cf(s) =

∫
c (t, s) f (t) dt s ∈ T

in terms of the sample covariance function

c (t, s) =
1

n− 1

n∑
i=1

xi (t)xi (s) .

That is, Cfi = λifi. The principal components ξi are uncorrelated and their
variances are given by the eigenvalues V ar[ξi] = λi.
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Then, the sample curves admit the following principal component de-
composition

xi (t) =

n−1∑
i=1

ξijfj (t) . (3)

By truncating this representation in terms of the first q principal components,
we can obtain an approximation of the sample curves whose explained vari-
ance is given by

∑q
i=1 λi.

Let us now suppose that the sample paths belong to a finite dimension
space spanned by a basis xi (t) = a′iΦ (t) with Φ (t) = (φ1 (t) , . . . , φp (t))

′

being the vector of basic functions. Then, the theoretical results shown in
Ocaña, Aguilera, and Escabias (2007) set up the following equivalences be-
tween different functional and multivariate PCAs with respect to the usual
inner products in L2[T ] and R

p.

1. Multivariate PCA of AΨ matrix with respect to the usual metric in
R
p is equivalent to functional PCA of the transformed sample curves

L(xi) = Φ′Ψ1/2ai with respect to the usual metric in L2[T ].

The matrix whose columns are the principal components is given by
Γ = AΨV with V being the matrix of eigenvectors (V V ′ = I) of
the sample covariance matrix of AΨ. Then, the eigenfunctions of the
principal component decomposition given by equation (3) admits a
basis expansion given by fj = Φ′Ψ−1vj , with vj being the columns
of the matrix V of eigenvectors.

2. Functional PCA of the sample curves with respect to the usual inner
product in L2 (T ) is equivalent to multivariate PCA of matrix AΨ1/2

with respect to the usual inner product in R
p.

In this case the matrix of principal components is given by Γ =
AΨV = AΨ1/2U where V = Ψ−1/2U and U is the matrix of eigen-
vectors (UU ′ = I) of the sample covariance matrix of AΨ1/2. The
basis expansion expression for the eigenfunctions is now given by
fj = Φ′Ψ−1/2uj, where uj are the columns of the eigenvector ma-
trix U.

Let us observe that these two versions of functional PCA match when
the basis Φ is orthonormal. In this case, functional PCA with the usual
metric in L2[T ] is equivalent to multivariate PCA of the matrix A of sample
curves basis coefficients with respect to the usual metric in R

p.
Different basis (B-splines, wavelets, trigonometric, ...) can be used

depending of smoothness and performance of sample functions.
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3.2 Functional Principal Component Estimation

Following the idea of principal component regression (Massy 1965),
in this paper we propose to use as regressors of the base-line category re-
sponse model, a reduced set of functional principal components of the sam-
ple curves. We will consider the two different functional PCAs described
above that will be referred as PCA1 and PCA2 based solutions, respectively.

Let Γ = AΨV be a matrix of functional principal components com-
puted by using PCA1 or PCA2 approaches. Then, the multinomial logit
model (2) can be equivalently expressed in terms of all principal compo-
nents as

Ls = αs1+ Γγs, , (4)

so that the ML estimation of the basis coefficients of the functional param-
eters can be obtained through the estimation of the parameter of model (4)
by

β̂s = V γ̂s.

In spite of the orthogonality of functional principal components, the
exact equivalence between models 2 and 4 makes the estimations to be iden-
tical and the problems of multicollinearity to be kept. In the simulation study
developed in the next section, we will see that the ML estimation of the
functional parameter provided by using all PCs as predictor variables is very
rough and inaccurate. Because of this we propose to use as predictors an op-
timum set of m PCs contained in the columns of matrix Γ(m) = (AΨ)V (m).
Then, the functional principal component nominal response logit model is
given by

L(m)
s = α(m)

s 1+ Γ(m)γ(m)
s ,

and provides a ML estimation of the functional parameter given by

β̂(m)
s (t) = Φ′(t)β̂(m)

s

with β̂
(m)
s = V (m)γ̂

(m)
s .

3.3 Principal Components Selection

An important problem in principal component regression is to select
the optimum number of functional principal component (of any type) to use
and the order in which they must be included in the model. Following the
methodology considered in Aguilera, Escabias, and Valderrama (2006) for
the multiple binary logit model, in this paper we have considered with each
type of PCA two different ways for including PCs in the model. The first
one consists of including principal components in the order given by their
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explained variability. In the second one, PCs are included by a forward
stepwise method based on conditional likelihood ratio test that takes into
account their relationship with the response variable.

In relation to the number of components to retain two methods will be
compared. the first one is the classical method used in principal component
regression based on minimization the leave-one-out prediction error or the
leave-one-out misclassification rate via cross-validation. The second con-
sist of selecting the number of components that provide the most accurate
estimation of the functional parameters. Different measures can be used to
evaluate the accuracy of estimated functional parameters and the fit of the
different considered models.

As goodness of fit measures we have considered

• The correct classification rate (CCR) defined as the rate of agree-
ments between the observed and predicted category of the response,
by considering the predicted category of an individual the one associ-
ated with the highest predicted probability.

• The probabilities mean square error (PMSE) for simulated examples
defined as

PMSE(m) =
1

S

1

n

S∑
s=1

n∑
i=1

(
πis − π̂

(m)
is

)2
.

• The leave-one-out cross-validation mean squared error of prediction
defined as

CVMSE(m) =
1

S

1

n

S∑
s=1

n∑
i=1

(
yis − π̂

(m)
(−i)s

)2
,

where π̂(−i)s is the probability of the s category predicted for the ith
individual by using the model fitted after removing the ith individual
from the data.

• The leave-one-out cross-validation correct classification rate
(CV CCR) defined as the rate of agreements between the observed
category for an individual and the predicted category (that associated
with the highest predicted probability) with the model estimated with-
out taking into account that individual in the estimation process.

As accuracy measures of the estimation of the functional parameters
we have considered

• The mean of the integrated mean square error of the parameter func-
tions (IMSE) for simulated examples defined as
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IMSE(m) =
1

S − 1

S−1∑
s=1

1

T

∫
T

(
βs (t)− β̂(m)

s (t)
)2

dt.

• The estimated variance of the estimated parameter functions (VAR)
given by the mean of the sum of variances of intercepts and parameter
function basis coefficients

V AR(m) =
1

S − 1

S−1∑
s=1

⎡⎣V ar[α̂(m)
s ] +

p∑
j=1

V ar[β̂
(m)
sj ]

⎤⎦ ,

where V ar[α̂
(m)
s ] and V ar[β̂

(m)
sj ] are the variance of the estimators,

obtained in the estimation process as a sub-product of the Newton-
Raphson method. Their estimates should be used in practice.

The optimum number of principal components can be fixed by two
different types of criteria; the response prediction-type criterium and the
functional parameters-type criterium. Taking into account the response, the
classic cross-validation method selects the number of components that op-
timizes (maximize or minimize) some leave-one-out error term (CVMSE or
CVCCR). From this point of view we can consider as optimum the num-
ber of components that firstly locally minimize the CVMSE or maximize
the CVCCR. On the other hand, thinking in the functional parameter-type
criterium we should consider as optimum the number of components that
minimize the IMSE because it provides the best estimation of the functional
parameters. Associated to the estimated parameters are their estimated vari-
ances (VAR), that can help us to detect excessive fluctuations that denote
inaccuracy.

4. Simulation Study

In this section, we will present the results of a simulation study de-
veloped to show how functional principal component analysis improves the
estimation of the functional parameters of a functional multinomial logit
model with nominal response. The two types of functional PCA previously
considered and the two methods of inclusion of components in the regres-
sion model are compared. The ability of leave-one-out cross-validation for
selecting the number of PCs that provides the most accurate estimation of
the functional parameters is also discussed.

The functional predictor considered in the study is the stochastic pro-
cess

X (t) = Z (t) +
t

4
+ 5B,
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Figure 1. Simulated curves of the functional predictor variable (top left). Original
trigonometric parameter functions (solid line) and their basis expansion estimation without
using PCA (dashed line) for the functional multinomial logit model

with Z (t) being a centered gaussian process that has as covariance function
C (s, t) = 0.580|t−s| and B being a Bernouilli random variable with proba-
bility 0.1. The domain of the considered functional variable is T = [0, 12]
interval.

Taking into account that usually it is impossible to record the func-
tional form of the curves of a functional variable and we only have discrete
observations at different points of the domain interval, n = 80 curves have
been simulated from the defined process at the set of unequally-spaced nodes
Π = {0, 1.1, 2.5, 3.7, 5.1, 7.3, 8.5, 9.6, 12} . The true functional forms of the
curves have been reconstructed via quasi-natural cubic spline interpolation
and they can be seen in Figure 1.

A nominal random variable with four categories was considered as the
response variable. The response probabilities have been simulated by using
the functional multinomial logit model for nominal response (1) in terms of
cubic B-spline expansion of sample curves and parameter functions. The
intercept parameter is (α1, α2, α3) = (0.30, 0.19, 0.20) and the slope func-
tional parameters are the quasi-natural cubic spline interpolation at the knots
of partition Π of sinusoidal functions
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β1 (t) = cos
(
t− π

4

)
β2 (t) = sin

(
t− π

4

)
β3 (t) = cos

(
t− π

4

)
− sin

(
t− π

4

)
.

Finally, the observations of the response are randomly simulated from
a multinomial distribution with the simulated probabilities as parameters.

After data simulation the nominal response functional logit model
(2) was fitted, the parameter functions reconstructed (see Figure 1) and the
goodness of fit statistics as the correct classification rate (CCR) and PMSE
calculated. All these measures suggested a good prediction ability of the
model (CCR=87.5, PMSE=0.0471) but the form of the estimated functional
parameters and the accuracy measure (IMSE=3.94E+4) showed a bad es-
timation of the functional parameters. The problem of multicollinearity is
clear in this example with estimated variance of the estimated parameter
functions very high (VAR=801.979).

In order to improve the estimation of the functional parameters two
functional principal component solutions (PCA1 and PCA2) were adopted.
The nominal response models with different number of functional PCs of
each type as predictors were fitted by using two orders for including PCs in
the model (variability and forward stepwise). Then, the parameter functions
basis coefficients were approximated in each case and the accuracy measures
calculated. The results can be seen in Tables 1 and 2 for PCA1 and PCA2,
respectively. Figures 2, 3 and 4 display the graphs of the estimation of the
functional parameters en terms of different number of PCs included in the
model with variability and stepwise orders.

To select the optimal model (number of PCs) in each case two main
criteria were considered. In the first the number of PCs is select by minimiz-
ing the IMSE and in the second by the first local minimum of the CVMSE.
Let us observe that in the case of PCA1 the number of components selected
with these two criteria with both orders of inclusion of components in the
model (variability and stepwise) is very similar. However, in the case of
PCA2, the number of components selected by minimizing CVMSE is lower
and, as a consequence, the PMSE and IMSE errors are bigger. Let us also
observe that the best parameter function estimation provides also the best
prediction of probabilities with both PCA approaches. The criterium based
on the first local maximum of the CVCCR is not discussed because it gives
results very similar to CVMSE.

Another important aspect observed in both tables is that the best esti-
mation of the parameter function is sometimes followed by a big increment
in the variance of the estimated parameters. Because of this we have also
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Table 1. Goodness of fit measures (CCR and PMSE) and accuracy measures (IMSE) of
PCA1-type models in terms of different number of FPCs included by variability and step-
wise orders. Each row presents the measures associated to the model with as many FPCs as
indicates the first column. The cumulated variance of the different number of FPCs is also
included. The last two columns present the results of cross-validation.

Variability order
s CumVar IMSE Var RIVAR CCR PMSE CVCCR CVMSE
1 24.79 6.9735 3.5614 0.82 61.25 0.0954 61.25 0.1502
2 43.12 7.0011 6.4650 0.15 66.25 0.0870 66.25 0.1372
3 57.53 6.6084 7.4094 0.39 70.00 0.0747 67.50 0.1269
4 71.23 5.6383 10.3300 1.67 71.25 0.0624 66.25 0.1208
5 83.19 1.2354 27.6207 0.63 76.25 0.0410 63.75 0.1180
6 90.61 2.6581 44.8871 0.21 80.00 0.0400 63.75 0.1150
7 95.23 2.7261 54.3180 0.83 77.50 0.0408 65.00 0.1237
8 98.19 6.0630 99.3756 0.94 78.75 0.0385 63.75 0.1360
9 100.0 16.6856 192.5328 0.00 82.50 0.0399 63.75 0.1398

10 100.0 19.3837 192.8865 3.16 82.50 0.0399 66.25 0.1424
11 100.0 3.94E+4 801.9790 87.50 0.0471 66.25 0.1387

Stepwise order
s pc’s CumVar IMSE Var RIVAR CCR PMSE CVCCR CVMSE
1 2 18.3310 7.2975 3.8663 0.21 67.50 0.0904 66.25 0.1365
2 5 30.2940 6.5001 4.6843 0.43 66.25 0.0725 63.75 0.1250
3 3 44.7006 5.3616 6.7150 0.44 67.50 0.0583 68.75 0.1169
4 4 58.3972 4.1622 9.7008 0.09 73.75 0.0494 66.25 0.1107
5 10 58.3979 4.40E+4 10.5996 0.21 78.75 0.0549 63.75 0.1180
6 6 65.8190 2.47E+4 12.8172 0.94 81.25 0.0519 63.75 0.1150
7 8 68.7849 5.01E+4 24.8142 81.25 0.0534 61.25 0.1270

considered an ”ad hoc” selection model criterion based on quantifying the
relative importance of this increment. So, we will select as optimal the num-
ber s of PCs such that RIV AR(s) = [V AR(s+1)−V AR(s)]/V AR(s)] ≥
1 what would mean a doubled increment in the variance.

In order to extract conclusions on the good performance of the FPCA-
based estimation approaches, we have repeated this simulation 500 times:
simulation of predictor curves and response, computation of principal com-
ponents with PCA1 and PCA2 approaches, fit of multinomial models with
different number of principal components and different inclusion orders
(variability and stepwise), reconstruction of the functional parameters’s ba-
sis coefficients and computation of the different accuracy measures. For
each repetition and in each one of the four kinds of fit (Variability order
with PCA1, stepwise order with PCA1, Variability order with PCA2 and
stepwise order with PCA2) we have considered three optimal models (num-
ber of principal components) according to the minimum IMSE, the first min-
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Table 2. Goodness of fit measures (CCR and PMSE) and accuracy measures (IMSE) of
PCA2-type models in terms of different number of FPCs included by variability and step-
wise orders. Each row presents the measures associated to the model with as many FPCs as
indicates the first column. The cumulated variance of the different number of FPCs is also
included. The last two columns present the results of cross-validation.

Variability order
s CumVar IMSE Var RIVAR CCR PMSE CVCCR CVMSE
1 18.57 6.8012 2.6425 0.85 61.25 0.0946 60.00 0.1491
2 33.07 5.1100 4.8888 0.29 68.75 0.0578 58.75 0.1216
3 46.26 4.7895 6.2946 1.82 70.00 0.0552 66.25 0.1149
4 58.21 4.7710 17.7397 0.28 75.00 0.0457 68.75 0.1057
5 69.24 4.0829 22.6267 0.89 73.75 0.0447 66.25 0.1093
6 79.50 2.0182 42.6916 0.62 77.50 0.0376 65.00 0.1227
7 88.59 4.4536 69.2549 0.35 76.25 0.0382 63.75 0.1275
8 95.34 3.6707 93.1771 2.33 77.50 0.0379 63.75 0.1393
9 99.98 16.6261 310.7311 3.3E+6 82.50 0.0399 63.75 0.1398
10 100.0 3.24E+5 1.04E+9 0.61 87.50 0.0498 68.75 0.1413
11 100.0 4.26E+5 1.67E+9 90.00 0.0509 67.50 0.1432

Stepwise order
s pc’s CumVar IMSE Var RIVAR CCR PMSE CVCCR CVMSE
1 2 14.51 5.6082 2.9154 2.56 62.50 0.0609 57.50 0.1190
2 4 26.45 6.0207 10.3871 0.07 71.25 0.0524 65.00 0.1102
3 3 39.64 5.6558 11.1028 0.31 73.75 0.0504 67.50 0.1031
4 6 49.90 4.5572 14.5873 6.6E+6 73.75 0.0475 68.75 0.1057
5 10 49.92 2.48E+5 9.57E+7 11.85 72.50 0.0517 62.50 0.1195
6 11 49.93 2.22E+5 1.23E+9 0.04 75.00 0.0508 66.25 0.1203
7 8 56.67 2.82E+5 1.28E+9 78.75 0.0521 66.25 0.1239

imum of CVMSE and the first time that RIVAR is greater than one. In order
to compare the results we have obtained box-plots for the different measures
(number of PCs, IMSE, CCR, CVMSE, VAR) of the optimal models in each
combination of PCA and order of inclusion of components. See Figures 5
and 6 for comparing IMSE with CVMSE and with RIVAR, respectively.

Let us observe that with both PCA approaches the results are very
similar. In variability order, the number of PCs selected by minimizing
CVMSE is significantly lower than minimizing IMSE. Therefore, the ac-
curacy of the estimated parameter functions is significantly smaller (bigger
IMSE) and the prediction errors (CVMSE, PMSE and CCR) are also bigger.
On the other hand, forward stepwise order selects a similar number of PCs
with both, IMSE and CVMSE criteria with slightly bigger IMSE and simi-
lar prediction errors. Let us also observe that the number of pc’s needed to
minimize IMSE with stepwise selection is lower than with variability order
but the prediction and IMSE errors are not significantly larger.

With respect to the criterium based on the relative increment in the
estimated variance of the functional parameters, we can see that when PCs
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Figure 2. Simulated functional parameters (solid line) and their estimations in terms of
different number of principal components included by variability order of PCA1-type
(dashed line) and PCA2-type (dotted line).

are introduced in variability order the selected model provides better func-
tional parameter estimation than CVMSE criterium with good prediction
ability. With stepwise selection the results given by CVMSE and RIVAR
are similar providing in both cases an acceptable degree of accuracy in both
parameter estimates and predictions.
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Figure 3. Simulated functional parameters (solid line) and their estimations in terms of dif-

ferent number of principal components included by variability order of PCA1-type (dashed

line) and PCA2-type (dotted line).

All previous comments are corroborated by the means of the estimated func-
tional parameters in the 500 simulations that are drawn in Figure 7.

In order to compare the classification ability of the functional multi-
nomial logit model with alternative methods as the functional linear dis-
criminant analysis proposed by James and Hastie in 2001, we obtained the
correct classification rates provided by this method in the 500 repetitions
of the simulation. The fits were obtained thanks to the S-PLUS code that
Professor James has free in his personal web page. The classification rates
provided by this method are summarized in Table 3. As we can see, our
method provides a bit better classification rates.
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Figure 4. Simulated functional parameters (solid line) and their estimations in terms of dif-

ferent number of principal components included by stepwise order of PCA1-type (dashed

line) and PCA2-type (dotted line).

As conclusion, this simulated example has empirically demonstrated that:

• There is no difference between the type of PCA to improve the esti-
mation of functional parameters of the base-line logit model, the one
that is easiest to apply can be chosen.

• The inclusion of functional principal components should be done in
the order given by forward stepwise method based on conditional like-
lihood ratio test instead of variability order, mainly because we get
better estimations of the functional parameter with less principal com-
ponents. And what is more important IMSE and CVMSE criteria agree
to select the optimum estimation of the functional parameter.
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Figure 5. Box-plots of accuracy measures under the two different selection model criteria

(IMSE and CVMSE) with the two different PCA-type (PCA1 and PCA2) and order of inclu-

sion (Var=Variability and Step=Stepwise).

As summary this simulated example has shown that by including principal
components in the model in the order given by stepwise method we can use
the CVMSE and RIVAR measures to find an accurate estimation of the func-
tional parameters in real data examples where it is impossible to calculate
the IMSE.

5. Classification of Spectrometry Data

As was stated in the introduction section, spectrometric data consist
of curves of spectrometry (absorbance measured in terms of wavelength) of
different substances as for example food. In spectroscopy the most common
problem is calibration that consists of estimating an scalar response variable
from the spectrum. Despite of the functional nature of spectra data this prob-
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Figure 6. Box-plots of accuracy measures under the two different selection model criteria
(IMSE and RIVAR) with the two different PCA-type (PCA1 and PCA2) and order of inclusion
(Var=Variability and Step=Stepwise).

lem is usually analyzed with multivariate statistical methods such as Prin-
cipal Component Regression (PCR) and Partial Least Squares Regression
(PLS) that consider the spectrum as a vector associated with its measures
into a finite number of wavelengths. Taking into account that the absorbance
at two nearby wavelengths are highly correlated, it could provide better es-
timations the consideration of the spectrum as a curve instead of a vector.
The potential use of functional data analysis in spectroscopy and chemomet-
ric data was stated by Saeys, De Ketelaere, and Dairus (2008).

Chemometricians are also interested in the classification of chemo-
metric data (curves of spectrum) according to a characteristic of interest of
the substance that generated the curve (see for example Ferraty and Vieu
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Figure 7. Simulated functional parameters (solid line) and the average of their optimum esti-
mations in the 500 simulations with the two different orders of inclusion of PCs (variability
and stepwise) and the two different PCA: PCA1-type (dashed line) and PCA2-type (dotted
line).
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Table 3. Summary measures of correct classification rates provided by functional linear dis-
crimination analysis in the 500 repetitions of the simulation study.

Measure CCR
Min 32.50
1st Quartile 55.00
Median 58.75
Mean 58.76
3rd. Quartile 62.5
Max 75.00

40
50

60
70

2003). In this section a base-line category logit model is used to classify
near infrared (NIR) spectra of corn samples according to the spectrometer
that generates them. This is a retrospective study of curves of spectrum.

The NIR spectra of 80 corn samples were measured by three different
instruments at Cargill Inc. (m5, mp5 and mp6 spectrometers). The wave-
length domain was [1100, 2498] nm, measured at 2 nm intervals (700 ob-
servations). The data can be downloaded from the web site http://www.
eigenvector.com/data/Corn/index.html. The original 80 corn samples data
set was split into 60 samples for training purposes (training sample) and 20
samples for testing (test sample). These NIR spectra has been used in Tan
and Brown (2003) for predicting oil content of the corn samples (multivari-
ate calibration) and can be seen in Figure 8.

Least squares approximation on the basis of cubic B-splines with 30
equally spaced knots on the wavelength range has been used for reconstruct-
ing the sample curve of each NIR spectrum (Figure 9). A base-line category
logit model is considered for estimating the categorical response that repre-
sents the measuring instrument from the NIR spectrum. The estimation of
the parameters of this model will be performed by regressing the categorical
response on a set of functional principal components. Given that the results
provided by the two different forms of functional PCA considered in this
work are very similar, only the computationally simplest form (PCA1) is
presented.

From Table 4 we can observe the power of the base-line category
logit model as a classification method, giving in almost all cases (except the
trivial models with one PC) correct classification rates that are very close to
100%. From this table we could conclude that following the cross-validation
criterium the best possible response prediction (spectrometer classification)
would be provided by the model with 8 PC’s included by variability order
and by the model with 5 PC’s included by stepwise order. These two mod-
els provide CCR=100% in the training sample, and CVCCR of 99.44% and
96.67%, respectively. The CCR of the test sample is 100% in variability
order and 98% in stepwise order.
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Figure 8. Curves of corn spectrum measured with the 3 different spectrometers.
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Figure 9. Observed curves of the NIR spectrum of a corn sample measured with the 3 dif-
ferent spectrometers (a) and their least squares approximation on the basis of cubic B-splines
with 30 equally spaced knots (b).

Looking for interpretability of the functional parameters, their smooth-
est estimations are achieved in all cases by the model with the first two prin-
cipal components (see Figure 10). This model would provide CCR=93.33%
in the test sample and provides an interpretation of the odds of selecting one
spectrometer instead other. The functional parameter beta1 is associated
with the odds of mp5spec against m5spec and beta2 is associated with the
odds of mp6spec against m5spec. From Figure 10 we can observe that in
low wavelengths (under 1950nm) beta1 is always over beta2 with negative
values and opposite in high wavelengths (over 1950nm). Moreover the form
of this estimated functional parameters is very similar to the observed NIR
spectra of the sample what could help the interpretation of the functional
parameters. So the form of the functional parameters could suggest that the
increment of NIR spectra in high wavelengths increases the odds that the
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Table 4. Goodness of fit measures (CCR and MSE) of models in terms of different number of
functional PCs included by variability order and stepwise order. FPCA1. Each row presents
the measures of the model with as many FPCs as indicates the first column. The cumulated
variance of the different number of FPCs is also included. The last two columns presents the
results of the crossvalidation.

s pc’s CumVar CCR MSE CVCCR CVMSE
Variability order

1 1 96.33 53.33 1.83E-1 52.78 0.1879
2 2 99.74 86.11 6.90E-2 84.44 0.0758
3 3 99.92 92.22 3.64E-2 90.00 0.0418
4 4 99.96 93.89 2.78E-2 93.33 0.0337
5 5 99.98 95.00 1.59E-2 93.89 0.0291
6 6 99.99 100.00 1.55E-6 96.67 0.0168
7 7 99.99 100.00 9.59E-12 98.89 0.0075
8 8 100.00 100.00 1.89E-11 100.00 1.2E-5
9 9 100.00 100.00 1.56E-11 99.44 0.0033

10 10 100.00 100.00 1.81E-11 99.44 0.0037
· · · · · · · · · · · · · · · · · · · · ·
32 32 100.00 100.00 1.001e-011 99.44 0.0037

Stepwise order
1 2 3.42 63.33 0.1425 62.22 0.1468
2 1 99.74 86.11 0.0690 84.44 0.0758
3 3 99.92 92.22 0.0364 90.00 0.0418
4 6 99.93 97.22 0.0142 95.56 0.0215
5 7 99.94 100.00 4.565E-5 96.67 0.0195

spectrum is generated by mp6spec or mp5spec instead of m5spec, with this
odds being higher for mp6spec than mp5spec. Just the opposite happens in
low wavelengths. In other words, high NIR spectra in high wavelengths are
associated with higher probability with mp6spec and mp5spec spectrome-
ters (in this order). Meanwhile in low wavelengths the highest values of
the spectrum are associated with higher probability with the reference spec-
trometer (m5spec).

In this example we have also obtained the correct classification rate
provided by functional linear discrimination analysis, that was 87.083%,
again a bit lower than the one obtained with functional multinomial logit
model.

6. Classification of the Phoneme Data

In this section we illustrate the ability of functional multinomial logit
model for classification in a classical example that has been widely used
in the literature. As described in Hastie, Tibshirani, and Friedman (2008),
the phoneme data consist of 4509 log-periodograms of length 256 associ-
ated with five known class (phoneme) memberships (sh, dcl, iy, aa and ao)
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Figure 10. Estimation of the parameter functions given by the base-line category logit model
in terms of the two first PCs. The function beta1 is associated with the odds of spectrometer
mp5spec against m5spec and beta2 is associated with the odds of mp6spec against m5spec.

selected from continuous speech of 50 male speakers, 4509 speech frames
of 32 msec duration with approximately 2 examples of each phoneme from
each speaker (more details in Hastie, Tibshirani, and Friedman 2008).

The log-periodograms curves were reconstructed by least squares ap-
proximation in terms of the cubic B-splines defined the unequally spaced
knots {0.00, 31.25, 62.50, 93.75, 125.00, 156.25, 187.50, 218.75, 250.00}
and five of them can be seen in Figure 11 with their associated raw data.

In this example the fitting of the functional model provides smooth
functional parameters (see Figure 12) and good classification rate (93.08%)
which makes it unnecessary to use functional principal components to get
these estimations. This rate is very similar and a bit better than the one
provided by Hastie, Tibshirani, and Friedman (2008) that was 92% by using
the alternative approach given by fused LASSO (see Tibshirani, Saunders,
Rosset, Zhu, and Knight 2005).

7. Conclusions

The problem of classification of curves is solved in this paper from a
functional data analysis point of view that takes into account the high cor-
relation between curves at nearby time points. A functional base-line cat-
egory logit model is considered to predict the class membership to which
a sample curve belongs to. This model also allows to establish the rela-
tionship between the multi-category response variable that represents the
class membership and the functional predictor variable that generates the
observed curves. Functional PCA and basis expansion of sample curves are
proposed to estimate the functional parameters of the model. This way the
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Figure 11. Five selected curves and raw data of periodograms associated with the five con-
sidered phonemes in the phoneme data.

functional model is reduced to logit regression on a set of functional princi-
pal components.

The power of FPCA to estimate the parameter function of functional
base-line logit models and to classify functional data is shown on a simu-
lation study where the performance of different model selection criteria is
studied. Two different FPCA approaches that agree with orthonormal basis
are compared with the cubic B-splines basis. After repeating the simula-
tion five hundred times, we can conclude that the results provided by both
FPCAs are very similar. With respect to the criterium for selecting the op-
timum PCs, it has been shown that stepwise selection and leave-one-out
cross-validation provides more parsimonious models than variability order
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Figure 12. Estimated functional parameters in the phoneme data example.

and the associated errors (IMSE, PMSE and CVMSE) are not significantly
larger.
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