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Weighted graphs with distances in given ranges

Elena Rubei

Abstract

Let G = (G,w) be a weighted simple finite connected graph, that is, let G be a simple finite connected
graph endowed with a function w from the set of the edges of G to the set of real numbers. For any
subgraph G′ of G, we define w(G′) to be the sum of the weights of the edges of G′. For any i, j vertices
of G, we define D{i,j}(G) to be the minimum of the weights of the simple paths of G joining i and j.
The D{i,j}(G) are called 2-weights of G. Weighted graphs and their reconstruction from 2-weights have
applications in several disciplines, such as biology and psychology.

Let {mI}I∈({1,...,n}
2

) and {MI}I∈({1,...,n}
2

) be two families of positive real numbers parametrized by the

2-subsets of {1, ..., n} with mI ≤ MI for any I; we study when there exist a positive-weighted graph G

and an n-subset {1, ..., n} of the set of its vertices such that DI(G) ∈ [mI ,MI ] for any I ∈
(

{1,...,n}
2

)

. Then
we study the analogous problem for trees, both in the case of positive weights and in the case of general
weights.

1 Introduction

For any graph G, let E(G), V (G) and L(G) be respectively the set of the edges, the set of the vertices and the
set of the leaves of G. A weighted graph G = (G,w) is a graph G endowed with a function w : E(G) → R.
For any edge e, the real number w(e) is called the weight of the edge. If all the weights are nonnegative
(respectively positive), we say that the graph is nonnegative-weighted (respectively positive-weighted).
Throughout the paper we will consider only simple finite connected graphs.
For any subgraph G′ of G, we define w(G′) to be the sum of the weights of the edges of G′.

Definition 1. Let G = (G,w) be a weighted graph. For any distinct i, j ∈ V (G), we define

D{i,j}(G) = min{w(p)| p a simple path of G joining i and j}.

More simply, we denote D{i,j}(G) by Di,j(G) for any order of i, j. We call the Di,j(G) the 2-weights (or
distances) of G.

Observe that in the case G is a tree, Di,j(G) is the weight of the unique path joining i and j.

If S is a subset of V (G), the 2-weights give a vector in R(
S

2). This vector is called 2-dissimilarity vector

of (G, S). Equivalently, we can speak of the family of the 2-weights of (G, S).
We can wonder when a family of real numbers is the family of the 2-weights of some weighted graph and of
some subset of the set of its vertices. If S is a finite set of cardinality greater than 2, we say that a family
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of real numbers {DI}I∈(S2)
is graphlike (respectively p-graphlike, nn-graphlike) if there exist a weighted

graph (respectively a positive-weighted graph, a nonnegative-weighted graph) G = (G,w) and a subset S of
the set of its vertices such that DI(G) = DI for any 2-subset I of S. If the graph is a weighted (respectively
positive-weighted, nonnegative-weighted) tree T = (T,w) we say that the family is treelike (respectively p-
treelike, nn-treelike). If, in addition, S ⊂ L(T ), we say that the family is l-treelike (respectively, p-l-treelike,
nn-l-treelike).
Weighted graphs have applications in several disciplines, such as biology and psychology. Phylogenetic trees
are weighted graphs whose vertices represent species and the weight of an edge is given by how much the
DNA sequences of the species represented by the vertices of the edge differ. Dissimilarity families arise
naturally also in psychology, see for instance the introduction in [8]. There is a wide literature concerning
graphlike dissimilarity families and treelike dissimilarity families, in particular concerning methods to recon-
struct weighted trees from their dissimilarity families; these methods are used by biologists to reconstruct
phylogenetic trees. See for example [15], [21] and [9], [19] for overviews.
The first contribution to the characterization of graphlike families of numbers dates back to 1965 and it is
due to Hakimi and Yau, see [12]:

Theorem 2. (Hakimi-Yau) A family of positive real numbers {DI}I∈({1,...,n}
2 ) is p-graphlike if and only if

the DI satisfy the triangle inequalities, i.e. if and only if Di,j ≤ Di,k +Dk,j for any distinct i, j, k ∈ [n].

In the same years, also a criterion for a metric on a finite set to be nn-l-treelike was established, see [6], [20],
[22]:

Theorem 3. (Buneman-SimoesPereira-Zaretskii) Let {DI}I∈({1,...,n}
2 ) be a set of positive real numbers

satisfying the triangle inequalities. It is p-treelike (or nn-l-treelike) if and only if, for all distinct i, j, k, h ∈
{1, ..., n}, the maximum of

{Di,j +Dk,h,Di,k +Dj,h,Di,h +Dk,j}

is attained at least twice.

Also the case of not necessarily nonnegative weights has been studied. In 1972 Hakimi and Patrinos proved
the following theorem (see [11]):

Theorem 4. (Hakimi-Patrinos) A family of real numbers {DI}I∈({1,...,n}
2 ) is always the family of the

2-weights of some weighted graph and some subset {1, ...., n} of its vertices

In [4], Bandelt and Steel proved a result, analogous to Theorem 3, for general weighted trees:

Theorem 5. (Bandelt-Steel) For any set of real numbers {DI}I∈({1,...,n}
2 ), there exists a weighted tree T

with leaves 1, ..., n such that DI(T ) = DI for any 2-subset I of {1, ..., n} if and only if, for any distinct
a, b, c, d ∈ {1, ..., n}, we have that at least two among

Da,b +Dc,d, Da,c +Db,d, Da,d +Db,c

are equal.
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Recently Baldisserri characterized the families {DI}I∈({1,...,n}
2 ) that are the families of the 2-weights of

positive-weighted trees with exactly n vertices, see [1].
Finally we want to mention that recently k-weights of weighted graphs for k ≥ 3 have been introduced and
studied; in particular there are some results concerning the characterization of families of k-weights, see for
instance [5], [2], [3], [10], [13], [14], [16], [17], and [18].
In this paper, we study when there exists a weighted graph with 2-weights in given ranges; this problem
can be of interest because the data one can get from experiments are obviously not precise, on the contrary
they can vary in a range. Precisely, let {mI}I∈({1,...,n}

2 ) and {MI}I∈({1,...,n}
2 ) be two families of positive real

numbers parametrized by the 2-subsets of {1, ..., n} with mI ≤ MI for any I; in §3 we study when there
exist a weighted graph G and an n-subset {1, ..., n} of the set of its vertices such that DI(G) ∈ [mI ,MI ]
for any I ∈

({1,...,n}
2

)

. Finally, in §4 we study the analogous problem for trees, both in the case of positive
weights and in the case of general weights. The treatment of the case of trees turns out to be much more
complicated and long than the case of graphs.

2 Preliminaries

Notation 6. • For any n ∈ N− {0}, let [n] = {1, ..., n}.
• For any set S and k ∈ N, let

(

S
k

)

be the set of the k-subsets of S.

• For any family of real numbers or unknowns parametrized by
([n]
2

)

, {x{i,j}}{i,j}∈([n]
2 )

, we denote x{i,j} by

xi,j for any order of i and j.
• Throughout the paper, the word “graph” will denote a finite simple connected graph.
• Let T be a tree and let S be a subset of L(T ). We denote by T |S the minimal subtree of T whose set of
vertices contains S.
• Let T be a tree. We say that two leaves i and j of T are neighbours if in the path joining i and j there is
only one vertex of degree greater than or equal to 3.

The following theorem (see [7]) and the following lemma will be useful to solve our problem in the case of
trees.

Theorem 7. (Carver) Let Li(x1, ...., xt) for i = 1, ...., s be polynomials of degree 1 in x1, ....., xt. The
system of inequalities















L1(x1, ...., xt) > 0
......

......

Ls(x1, ...., xt) > 0

is solvable if and only if there does not exist a set of s+ 1 constants, c1, ....., cs+1, such that

∑

i=1,....,s

ciLi(x1, ...., xt) + cs+1 ≡ 0,

at least one of the c’s being positive and none of them being negative.
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Remark 8. Let S be a system of linear inequalities in x1, ...., xt. We can write it as follows:


















































































xt > L1(x1, ...., xt−1)
.......

.......

xt > Ls(x1, ...., xt−1)
xt < M1(x1, ...., xt−1)
.......

.......

xt < Mr(x1, ...., xt−1)
N1(x1, ...., xt−1) > 0
.......

.......

Np(x1, ...., xt−1) > 0

for some linear polynomials Li,Mj , Nl in x1, ...., xt−1. The system S is solvable if and only if the system in
x1, ..., xt−1 given by the inequalities

Mj(x1, ...., xt−1) > Li(x1, ...., xt−1),

for i = 1, ...., s, j = 1, ...., r, and the inequalities

Nl(x1, ...., xt−1) > 0,

for l = 1, ....., p, is solvable. We get an analogous statement if we replace some of the strict inequalities with
nonstrict inequalities.

Lemma 9. Let z1, ...., zs, t ∈ N− {0} and let Li(x1, ..., xt) for i = 1, ...., r be polynomials of degree 1 in the
unknowns x1, ...., xt. If, for any ε > 0, the system















































L1(x1, ...., xt) > −z1ε

.......

.......

Ls(x1, ...., xt) > −zsε

Ls+1(x1, ...., xt) ≥ 0
.......

.......

Lr(x1, ...., xt) ≥ 0

(1)

is solvable, then also the system














































L1(x1, ...., xt) ≥ 0
.......

.......

Ls(x1, ...., xt) ≥ 0
Ls+1(x1, ...., xt) ≥ 0
.......

.......

Lr(x1, ...., xt) ≥ 0

(2)

is solvable.
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Proof. We prove the statement by induction on t.
The statement in the case t = 1 is easy to prove. Let us prove the induction step t−1 ⇒ t. Suppose that, for
any ε > 0, the system (1) is solvable; then also the system (in x1, ...., xt−1) we get from it by “eliminating”
the unknown xt (see Remark 8) is solvable. By induction assumption also the system we get from it by
replacing > with ≥ and putting ε = 0 is solvable. But this last system is exactly the system we get from
(2) by eliminating the unknown xt. So also (2) is solvable.

3 The case of graphs

Theorem 10. Let {mI}I∈([n]
2 )

and {MI}I∈([n]
2 )

be two families of positive real numbers with mI ≤ MI

for any I. There exist a positive-weighted graph G and an n-subset [n] of the set of its vertices such that
DI(G) ∈ [mI ,MI ] for any I ∈

(

{1,...,n}
2

)

if and only if for any i, j ∈ [n] with i 6= j we have

mi,j ≤ Mi,t1 +Mt1,t2 + ...+Mtk−1,tk +Mtk ,j

for any k ∈ N and t1, ..., tk ∈ [n]− {i, j} with tα 6= tα+1 for any α = 1, ..., k − 1.

Proof. ⇒ Suppose there exist a positive-weighted graph G and an n-subset {1, ..., n} of the set of its vertices
such that DI(G) ∈ [mI ,MI ] for any I ∈

(

{1,...,n}
2

)

. We recall that, for the DI(G), the triangle inequalities
hold, see Theorem 2. Then, for any i, j ∈ [n] with i 6= j,

mi,j ≤ Di,j(G) ≤ Di,t1(G) +Dt1,j(G) ≤
≤ ............................. ≤
≤ Di,t1(G) +Dt1,t2(G) + .....+Dtk−1,tk(G) +Dtk ,j(G) ≤
≤ Mi,t1 +Mt1,t2 + ..... +Mtk−1,tk +Mtk,j

for any k ∈ N and t1, ..., tk ∈ [n]− {i, j} with tα 6= tα+1 for any α = 1, ..., k − 1.
⇐ Let us define, for any i, j ∈ [n] with i 6= j,

M̃i,j := min{Mi,t1 +Mt1,t2 + ...+Mtk−1,tk +Mtk ,j}k∈N, t1,...,tk∈[n]−{i,j}, tα 6=tα+1 ∀α=1,...,k−1.

It is easy to see that the M̃i,j satisfy the triangle inequalities M̃i,j ≤ M̃i,o+ M̃o,j for any distinct i, j, o ∈ [n],
in fact:

min{Mi,t1 +Mt1,t2 + .....+Mtk−1,tk +Mtk ,j}k∈N, t1,...,tk∈[n]−{i,j}, tα 6=tα+1 ∀α=1,...,k−1 ≤

≤ Mi,v1 +Mv1,v2 + .....+Mvr−1,vr +Mvr ,o +Mo,w1 +Mw1,w2 + .....+Mws−1,ws +Mws,j

for any r, s ∈ N, vα ∈ [n] − {i, o} for α = 1, ....., r, vα 6= vα+1 for α = 1, ....., r − 1 , wα ∈ [n] − {o, j} for
α = 1, ....., s, wα 6= wα+1 for α = 1, ....., s − 1 (consider two cases: the case where no one of the vα and the
wα is in {i, j} and the case where at least one of the vα or the wα is in {i, j}). So, by Theorem 2, there
exists a positive-weighted graph G such that Di,j(G) = M̃i,j for any i, j ∈ [n] with i 6= j. By our assumption,
we have that M̃i,j ≥ mi,j for any i, j ∈ [n] with i 6= j and obviously M̃i,j ≤ Mi,j for any i, j ∈ [n] with i 6= j,
so we conclude.
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4 The case of trees

Definition 11. Let X be a set and let Y be a 4-subset of X (a quartet). A (quartet) split of Y is a
partition of Y into two disjoint 2-subsets. We denote the split {{a, b}, {c, d}} simply by (a, b | c, d).
Let S be a system (that is, a set) of splits of the quartets of X.
We say that S is fat if, for every quartet of X, either exactly one of its splits or all its splits are in S.
Following [9], Ch. 3, we say that S is transitive if, for any distinct a, b, c, d, e ∈ X, the following implication
holds:

(a, b | c, d) ∈ S and (a, b | c, e) ∈ S =⇒ (a, b | d, e) ∈ S.

Following again [9], we say that S is saturated if, for any distinct a1, a2, b1, b2, x ∈ X, the following
implication holds:

(a1, a2 | b1, b2) ∈ S =⇒ either (a1, x | b1, b2) ∈ S or (a1, a2 | b1, x) ∈ S.

The statement of the following lemma is similar to the characterization of the system of the splits of the
quartets coming from trees (with a slight difference in the definition of the splits of a quartet of leaves of a
tree), see [9] Thm. 3.7 and [8].

Lemma 12. Let n ∈ N, n ≥ 4. Let S be a system of splits of the quartets of [n]. Suppose S is fat, transitive
and saturated. Then the linear system in the unknowns xI for I ∈

([n]
2

)

given by the equations

xa,c − xb,c = xa,d − xb,d

for any (a, b | c, d) ∈ S has a nonzero solution.

Proof. We prove the statement by induction on n. If n = 4, the statement is obvious. Let us prove the
induction step. Suppose that DI for I ∈

([n−1]
2

)

solve the equations

xa,c − xb,c = xa,d − xb,d

for any (a, b | c, d) ∈ S with a, b, c, d ∈ [n − 1] and that they are not all zero. We want to find Dn,i for

i = 1, ..., n − 1 such that the DI for I ∈
([n]
2

)

solve the linear system given by all the elements of S.
Let us define Dn,1 at random.
Let us define Dn,2 as follows:
if there does not exist x ∈ [n− 1]− {1, 2} such that (n, x | 1, 2) ∈ S, we define Dn,2 at random;
if there exists x ∈ [n− 1]− {1, 2} such that (n, x | 1, 2) ∈ S, we set

Dn,2 := Dn,1 +Dx,2 −Dx,1;

it is a good definition, in fact if there exists y ∈ [n− 1]− {x, 1, 2} such that (n, y | 1, 2) ∈ S, we have that,
by the transitivity of S, (x, y | 1, 2) ∈ S, so

Dn,1 +Dx,2 −Dx,1 = Dn,1 +Dy,2 −Dy,1.

In an analogous way we define the other Dn,i; precisely, suppose we have defined Dn,1, .......,Dn,k−1 in
such a way that Dn,1, .......,Dn,k−1 and Di,j for i, j ∈ [n − 1] satisfy the equations induced by S involving
xn,1, ......., xn,k−1 and xi,j for i, j ∈ [n− 1]; we define Dn,k as follows:
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if there do not exist x ∈ [n − 1] and i ∈ [k − 1] with x 6= k, i and such that (n, x | k, i) ∈ S, we define Dn,k

at random;
if there exist x ∈ [n− 1] and i ∈ [k − 1] with x 6= k, i such that (n, x | k, i) ∈ S, we set

Dn,k := Dn,i +Dx,k −Dx,i.

We have to show that it is a good definition. Suppose y ∈ [n− 1] and j ∈ [k− 1] with y 6= k, j are such that
(n, y | k, j) ∈ S; we have to show that

Dn,i +Dx,k −Dx,i = Dn,j +Dy,k −Dy,j . (3)

Since S is saturated and transitive, from (n, x | k, i) ∈ S, we get:
either

(n, y | k, i) ∈ S and (x, y | k, i) ∈ S (4)

or
(n, x | k, y) ∈ S and (n, x | y, i) ∈ S. (5)

From (n, x | k, i) ∈ S, we get:
either

(n, j | k, i) ∈ S and (x, j | k, i) ∈ S (6)

or
(n, x | k, j) ∈ S and (n, x | j, i) ∈ S. (7)

From (n, y | k, j) ∈ S, we get:
either

(n, x | k, j) ∈ S and (x, y | k, j) ∈ S (8)

or
(n, y | k, x) ∈ S and (n, y | x, j) ∈ S. (9)

Finally, from (n, y | k, j) ∈ S, we get:
either

(n, i | k, j) ∈ S and (y, i | k, j) ∈ S (10)

or
(n, y | k, i) ∈ S and (n, y | i, j) ∈ S. (11)

If condition (8) holds, we get, from it and from the assumption (n, x | k, i) ∈ S, that also (n, x | i, j) ∈ S

holds (by the transitivity of S). So the statement (3) is equivalent to the equality

Dx,i +Dx,k −Dx,i = Dx,j +Dy,k −Dy,j ,

which follows from (x, y | k, j) ∈ S.
If condition (4) holds, we get our statement in an analogous way (swap i with j and x with y).
If condition (11) holds, we get, from it and from the assumption (n, x | k, i) ∈ S, that also (x, y | k, i) ∈ S

holds. From the condition that (n, y | i, j) ∈ S, the statement (3) is equivalent to the equality

Dy,i +Dx,k −Dx,i = Dy,j +Dy,k −Dy,j,
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which follows from (x, y | k, i) ∈ S.
If condition (7) holds, we get our statement in an analogous way (swap i with j and x with y).
So we can suppose that (9), (5), (10), (6) hold. From the fact that (n, j | k, i) ∈ S (which is true by (6)),
the fact that (n, i | k, j) ∈ S (which is true by (10)) and the fatness of S, we get that (n, k | i, j) ∈ S. From
the condition that (x, j | k, i) ∈ S (which is true by (6)), the statement (3) is equivalent to the equality

Dn,i +Dj,k −Dj,i = Dn,j +Dy,k −Dy,j .

By the condition (n, k | i, j) ∈ S, this equality is equivalent to

Dk,i +Dj,k −Dj,i = Dk,j +Dy,k −Dy,j.

which is true since (i, y | k, j) ∈ S (which follows from (10)).

Theorem 13. Let {mI}I∈({1,...,n}
2 ) and {MI}I∈({1,...,n}

2 ) be two families of real numbers with mI < MI for

any I. There exists a weighted tree T = (T,w) with L(T ) = [n] and such that DI(T ) ∈ (mI ,MI) for any
I ∈

({1,...,n}
2

)

if and only if there exists a set S of splits of the quartets of [n] such that
(i) S is fat, transitive and saturated,
(ii)

mσ1 + .....+mσr < Mτ1 + ..... +Mτr

for any r ∈ N − {0}, for any (σ1, ...., σr) and (τ1, ...., τr) partitions of the same 2r-subset of [n] into 2-sets
such that (σ1, ...., σr) can be obtained from (τ1, ...., τr) with transformations on the 2-sets of the following
kind:

(i, k), (j, l) 7→ (i, j), (k, l)

for any (j, k | i, l) ∈ S.

Proof. ⇒ Let T = (T,w) be a weighted tree with L(T ) = [n] and such that DI(T ) ∈ (mI ,MI) for any
I ∈

(

{1,...,n}
2

)

. We define S in the following way: for any quartet {a, b, c, d} in [n], we say that (a, b | c, d) ∈ S

if and only if a and b are neighbours and c and d are neighbours in T |a,b,c,d. It is easy to see that S is fat,
transitive and saturated. Furthermore, for any (σ1, ...., σr) and (τ1, ...., τr) partitions of the same subset of
[n] into 2-sets such that (σ1, ...., σr) can be obtained from (τ1, ...., τr) with transformations on the 2-sets of
the kind (i, k | j, l) 7→ (i, j |k, l) for any (j, k | i, l) ∈ S, we have:

mσ1 + .....+mσr < Dσ1(T ) + ...... +Dσr(T ) = Dτ1(T ) + ...... +Dτr(T ) < Mτ1 + ..... +Mτr ,

hence (ii) holds.
⇐ By Lemma 12, the linear system given by the equations

Da,c −Db,c = Da,d −Db,d

for any (a, b | c, d) ∈ S has nonzero solutions. So we can write some unknowns, DI1 , .....,DIs , in function of
some others: DJ1 , .........,DJt for some t ≥ 1: let

DIi = fIi(DJ1 , ........,DJt )
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for i = 1, ..., s. Consider the following system of inequalities in DJ1 , ........,DJt :



















































































































DJ1 −mJ1 > 0
........

........

DJt −mJt > 0
fI1(DJ1 , ........,DJt)−mI1 > 0
........

........

fIs(DJ1 , ........,DJt )−mIs > 0
−DJ1 +MJ1 > 0
........

........

−DJt +MJt > 0
−fI1(DJ1 , ........,DJt ) +MI1 > 0
........

........

−fIs(DJ1 , ........,DJt ) +MIs > 0

(12)

By condition (ii) there does not exist a set of 2t + 2s + 1 nonnegative constants, c1, ....., c2t+2s+1 , with at
least one of them positive, such that the linear combination of the first members of the inequalities of (12)
with coefficients c1, ....., c2t+2s plus c2t+2s+1 is identically zero. So, by Carver’s Theorem, the system (12) is
solvable. Let (DJ1 , .........,DJt) be a solution. By the fatness of S and by Theorem 5, for the dissimilarity
vector with entries

DJ1 , .........,DJt,DI1 := fI1(DJ1 , ........,DJt), .....,DIs := fIs(DJ1 , ........,DJt),

there exists a weighted tree T = (T,w) with L(T ) = [n] and such that DI(T ) = DI for any I ∈
({1,...,n}

2

)

, so

DI(T ) ∈ (mI ,MI) for any I ∈
(

{1,...,n}
2

)

.

Remark 14. Observe that the same technique can be useful to study the analogous problem for some kind
of tree. For instance we can prove easily in an analogous way that, given two families of real numbers,
{mI}I∈({1,...,n}

2 ) and {MI}I∈({1,...,n}
2 ) with mI < MI for any I, there exists a weighted star T = (T,w) with

L(T ) = [n] and such that DI(T ) ∈ (mI ,MI) for any I ∈
(

{1,...,n}
2

)

if and only if

mσ1 + .....+mσr < Mτ1 + ..... +Mτr

for any (σ1, ...., σr) and (τ1, ...., τr) partitions of the same subset of [n] into 2-sets.

Considering 2-weights in closed intervals, we get the following theorem.

Theorem 15. Let {mI}I∈({1,...,n}
2 ) and {MI}I∈({1,...,n}

2 ) be two families of real numbers with mI ≤ MI for

any I. There exists a weighted tree T = (T,w) with L(T ) = [n] and such that DI(T ) ∈ [mI ,MI ] for any
I ∈

({1,...,n}
2

)

if and only if there exists a system S of splits of the quartets of [n] such that
(i) S is fat, transitive and saturated,

9



(ii)
mσ1 + .....+mσr ≤ Mτ1 + ..... +Mτr

for any (σ1, ...., σr) and (τ1, ...., τr) partitions of the same subset of [n] into 2-sets such that (σ1, ...., σr) can
be obtained from (τ1, ...., τr) with transformations on the 2-sets of the following kind:

(i, k), (j, l) 7→ (i, j), (k, l)

for any (j, k | i, l) ∈ S.

Proof. The proof of the implication ⇒ is completely analogous to the proof of the same implication of
Theorem 13. Let us prove the other implication. By Lemma 12, the linear system given by the equations
Da,c −Db,c = Da,d −Db,d for any (a, b | c, d) ∈ S has nonzero solutions. So we can write some unknowns,
DI1 , .....,DIr , in function of some others DJ1 , .........,DJt for some t ≥ 1: let

DIi = fIi(DJ1 , ........,DJt )

for any i = 1, ...., r. Consider the system of inequalities



















































































































DJ1 −mJ1 + ǫ > 0
........

........

DJt −mJt + ǫ > 0
fI1(DJ1 , ........,DJt)−mI1 + ǫ > 0
........

........

fIs(DJ1 , ........,DJt )−mIs + ǫ > 0
−DJ1 +MJ1 + ǫ > 0
........

........

−DJt +MJt + ǫ > 0
−fI1(DJ1 , ........,DJt ) +MI1 + ǫ > 0
........

........

−fIs(DJ1 , ........,DJt ) +MIs + ǫ > 0

(13)

By condition (ii), we have that, for any ǫ > 0,

mσ1 + .....+mσr − (2r)ǫ < Mτ1 + ..... +Mτr

for any r ∈ N − {0}, for any (σ1, ...., σr) and (τ1, ...., τr) partitions of the same 2r-subset of [n] into 2-
sets such that (σ1, ...., σr) can be obtained from (τ1, ...., τr) with transformations on the 2-sets of the kind
(i, k | j, l) 7→ (i, j |k, l) for any (j, k | i, l) ∈ S. So there does not exist a set of 2t + 2s + 1 nonnegative
constants, c1, ....., c2t+2s+1 with at least one of them positive, such that the linear combination of the first
members of the inequalities of (13) with coefficients c1, ....., c2t+2s plus c2t+2s+1 is identically zero. So, by
Carver’s theorem, the system (13) is solvable for any ǫ > 0. Hence, by Lemma 9, the system we get from
(13) by replacing ≥ with > and ǫ with 0 is solvable. Let (DJ1 , .........,DJt) be a solution.
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By the fatness of S and by Theorem 5, for the dissimilarity vector with entries

DJ1 , .........,DJt,DI1 := fI1(DJ1 , ........,DJt), .....,DIs := fIs(DJ1 , ........,DJt),

there exists a weighted tree T = (T,w) with L(T ) = [n] and such that DI(T ) = DI for any I ∈
({1,...,n}

2

)

, so

DI(T ) ∈ [mI ,MI ] for any I ∈
(

{1,...,n}
2

)

.

By using Theorem 3, we get a theorem, analogous to the previous ones, for positive-weighted trees:

Theorem 16. Let {mI}I∈({1,...,n}
2 ) and {MI}I∈({1,...,n}

2 ) be two families of positive real numbers with mI < MI

for any I. There exists a positive-weighted tree T = (T,w) with L(T ) = [n] and such that DI(T ) ∈ (mI ,MI)
for any I ∈

(

{1,...,n}
2

)

if and only if there exists a system S of splits of the quartets of [n] such that the
condition (i) of Theorem 13 and the following condition hold:
(ii)

mσ1 + ..... +mσr < Mτ1 + ..... +Mτs

for any (σ1, ...., σr) and (τ1, ...., τs) partitions of subsets of [n] into 2-sets such that (τ1, ...., τs) can be obtained
from (σ1, ...., σr) with transformations on the 2-sets of the following kind:

(i, k), (j, l) 7→ (i, j), (k, l)

for any (j, k|i, l) ∈ S,
(i, k), (j, l) 7→ (i, j), (k, l)

for any (i, k|j, l) ∈ S such that (i, k|j, l) is the only split of {i, j, k, l} in S,

(a, b) 7→ (a, c), (c, b)

for any a, b, c ∈ [n].

The proof is very similar to the one of Theorem 13; the only difference is that in the system (12) we have
to consider also the inequalities induced (by replacing the DIi with the fIi) by the inequalities

Da,c +Dc,b −Da,b + ε > 0

for any distinct a, b, c ∈ [n] and the inequalities

Da,b +Dc,d < Da,c +Db,d

for any quartet {a, b, c, d} in [n] such that there is only one of its splits, (a, b | c, d), in S.
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