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Abstract In a real-world data set there is always the possibility, rather high in our
opinion, that different features may have different degrees of relevance. Most ma-
chine learning algorithms deal with this fact by either selecting or deselecting fea-
tures in the data preprocessing phase. However, we maintainthat even among rele-
vant features there may be different degrees of relevance, and this should be taken
into account during the clustering process.

With over 50 years of history, K-Means is arguably the most popular partitional
clustering algorithm there is. The first K-Means based clustering algorithm to com-
pute feature weights was designed just over 30 years ago. Various such algorithms
have been designed since but there has not been, to our knowledge, a survey inte-
grating empirical evidence of cluster recovery ability, common flaws, and possible
directions for future research. This paper elaborates on the concept of feature weight-
ing and addresses these issues by critically analysing someof the most popular, or
innovative, feature weighting mechanisms based in K-Means.

Keywords Feature weighting· K-Means· partitional clustering· feature selection.

1 Introduction

Clustering is one of the main data-driven tools for data analysis. Given a data setY
composed of entitiesyi ∈ Y for i = 1, 2, ...,N, clustering algorithms aim to partition
Y into K clustersS = {S1,S2, ...,SK} so that the entitiesyi ∈ Sk are homogeneous
and entities between clusters are heterogeneous, according to some notion of simi-
larity. These algorithms address a non-trivial problem whose scale sometimes goes
unnoticed. For instance, a data set containing 25 entities can have approximately
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4.69x1013 different partitions ifK is set to four (Steinley 2006). Clustering has been
used to solve problems in the most diverse fields such as computer vision, text min-
ing, bioinformatics, and data mining (Vedaldi and Fulkerson 2010; Steinley 2006;
Jain 2010; Sturn, Quackenbush, and Trajanoski 2002; Huang et al. 2008; Gasch and
Eisen 2002; Mirkin 2012).

Clustering algorithms follow either a partitional or hierarchical approach to the
assignment of entities to clusters. The latter produces a set of clustersS as well as
a tree-like relationship between these clusters, which canbe easily visualised with a
dendogram. Hierarchical algorithms allow a given entityyi to be assigned to more
than one cluster inS, as long as the assignments occur at different levels in the tree.
This extra information regarding the relationships between clusters comes at a con-
siderable cost, leading to a time complexity ofO(N2), or evenO(N3) depending on
the actual algorithm in use (Murtagh 1984; Murtagh and Contreras 2011). Partitional
algorithms tend to converge in less time by comparison (details in Section 2), but
provide only information about the assignment of entities to clusters. Partitional al-
gorithms were originally designed to produce a set of disjoint clusters, in which an
entity yi ∈ Y could be assigned to a single clusterSk ∈ S. K-Means (MacQueen
1967; Ball and Hall 1967; Steinhaus 1956) is arguably the most popular of such algo-
rithms (for more details see Section 2). Among the many extensions to K-Means, we
have Fuzzy C-Means (Bezdek 1981) which applies Fuzzy set theory (Zadeh 1965)
to allow a given entityyi to be assigned to each cluster inS at different degrees of
membership. However, Fuzzy C-Means introduces other issues to clustering, falling
outside the scope of this paper.

The popularity of K-Means is rather evident. A search in scholar.google.com
for “K-Means” in May 2014 found just over 320, 000 results, the same search in
May 2015 found 442, 000 results. Adding to these impressive numbers, implementa-
tions of this algorithm can be found in various software packages commonly used to
analyse data, including SPSS, MATLAB, R, and Python. However, K-Means is not
without weaknesses. For instance, K-Means treats every single feature in a data set
equally, regardless of its actual degree of relevance. Clearly, different features in the
same data set may have different degrees of relevance, a prospect we believe should
be supported by any good clustering algorithm. With this weakness in mind research
effort has happened over the last 30 years to develop K-Meansbased approaches sup-
porting feature weighting (more details in Section 4). Sucheffort has lead to various
different approaches, but unfortunately not much guidanceon the choice of which to
employ in practical applications.

In this paper, we provide the reader with a survey of K-Means based weighting
algorithms. We find this survey to be unique because it does not simply explain some
of the major approaches to feature weighting in K-Means, butalso provides empirical
evidence of their cluster recovery ability. We begin by formally introducing K-Means
and the concept of feature weighting in Sections 2 and 3, respectively. We then criti-
cally analyse some of the major methods for feature weighting in K-Means in Section
4. We chose to analyse those methods we believe are the most used or innovative, but
since it is impossible to analyse all existing methods we arepossibly guilty of omis-
sions. The setting and results of our experiments can be found in Sections 5 and 6.
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The paper ends by presenting our conclusions and discussingcommon issues with
these algorithms that could be addressed in future research, in Section 7.

2 K-Means clustering

K-Means is arguably the most popular partitional clustering algorithm (Jain 2010;
Steinley 2006; Mirkin 2012). For a given data setY, K-Means outputs a disjoint set
of clustersS = {S1,S2, ...,SK}, as well as a centroidck for each clusterSk ∈ S.
The centroidck is set to have the smallest sum of distances to allyi ∈ Sk, making
ck a good general representation ofSk, often called a prototype. K-Means partitions
a given data setY by iteratively minimising the sum of the within-cluster distance
between entitiesyi ∈ Y and respective centroidsck ∈ C. Minimising the equation
below allows K-Means to show the natural structure ofY.

W(S,C) =
K
∑

k=1

∑

i∈Sk

∑

v∈V

(yiv − ckv)2, (1)

whereV represents the set of features used to describe eachyi ∈ Y. The algorithm
used to iteratively minimise (1) may look rather simple at first, with a total of three
steps, two of which iterated until the convergence. However, this minimisation is a
non-trivial problem, being NP-Hard even ifK = 2 (Aloise et al. 2009).

1. Select the values ofK entities fromY as initial centroidsc1, c2, ..., cK. SetS← ∅.
2. Assign each entityyi ∈ Y to the clusterSk represented by its closest centroid. If

there are no changes inS, stop and outputS andC.
3. Update each centroidck ∈ C to the centre of its clusterSk. Go to Step 2.

The K-Means criterion we show, (1), applies the squared Euclidean distance as in
its original definition (MacQueen 1967; Ball and Hall 1967).The use of this particular
distance measure makes the centroid update in Step three of the algorithm above
rather straightforward. Given a clusterSk with |Sk| entities,ckv =

1
|Sk|

∑

i∈Sk
yiv, for

eachv ∈ V.
One can clearly see that K-Means has a strong relation with the Expectation Max-

imisation algorithm (Dempster, Laird, and Rubin 1977). Step two of K-Means can be
seen as the expectation by keepingC fixed and minimising (1) in respect toS, and
Step three can be seen as the maximisation in which one fixesS and minimises (1) in
relation toC. K-Means also has a strong relation with Principal Component Analy-
sis, the latter can be seen as a relaxation of the former (Zha et al. 2001; Drineas et al.
2004; Ding and He 2004).

K-Means, very much like any other algorithm in machine learning, has weak-
nesses. These are rather well-known and understood thanks to the popularity of this
algorithm and the considerable research effort done by the research community. Among
these weaknesses we have: (i) the fact that the number of clustersK has to be known
beforehand; (ii) K-Means will partition a data setY into K partitions even if there is
no clustering structure in the data; (iii) this is a greedy algorithm that may get trapped
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in local minima; (iv) the initial centroids, found at randomin Step one heavily in-
fluence the final outcome; (v) it treats all features equally,regardless of their actual
degree of relevance.

Here we are particularly interested in the last weakness. Regardless of the prob-
lem at hand and the structure of the data, K-Means treats eachfeaturev ∈ V equally.
This means that features that are more relevant to a given problem may have the
same contribution to the clustering as features that are less relevant. By consequence
K-Means can be greatly affected by the presence of totally irrelevant features, includ-
ing features that are solely composed of noise. Such features are not uncommon in
real-world data. This weakness can be addressed by setting weights to each feature
v ∈ V, representing its degree of relevance. We find this to be a particularly important
field of research, we elaborate on the concept of feature weighting in the next section.

3 Feature Weighting

New technology has made it much easier to acquire vast amounts of real-world data,
usually described over many features. Thecurse of dimensionality(Bellman 1957)
is a term usually associated with the difficulties in analysing such high-dimensional
data. As the number of featuresv ∈ V increases, the minimum and maximum dis-
tances become impossible to distinguish as their difference, compared to the mini-
mum distance, converges to zero (Beyer et al. 1999).

lim
|V|→∞

distmax− distmin

distmin
= 0 (2)

Apart from the problem above, there is a considerable consensus in the research com-
munity that meaningful clusters, particularly those in high-dimensional data, occur in
subspaces defined by a specific subset of features (Tsai and Chiu 2008; Liu and Yu
2005; Chen et al. 2012; De Amorim and Mirkin 2012). In clusteranalysis, and in fact
any other pattern recognition task, one should not simply use all features available as
clustering results become less accurate if a significant number of features are not rel-
evant to some clusters (Chan et al. 2004). Unfortunately, selecting the optimal feature
subset is NP-Hard (Blum and Rivest 1992).

Feature weighting can be thought of as a generalization of feature selection (Wettschereck,
Aha, and Mohri 1997; Modha and Spangler 2003; Tsai and Chiu 2008). The latter has
a much longer history and it is used to either select or deselect a given featurev ∈ V, a
process equivalent to assigning a feature weightwv of one or zero, respectively. Fea-
ture selection methods effectively assume that each of the selected features has the
same degree of relevance. Feature weighting algorithms do not make such assump-
tion as there is no reason to believe that each of the selectedfeatures would have
the same degree of relevance in all cases. Instead, such algorithms allow for a fea-
ture weight, normally in the interval [0, 1]. This may be a feature weightwv, subject
to
∑

v∈V wv = 1, or even a cluster dependant weightwkv, subject to
∑

v∈V wkv = 1 for
k = 1, 2, ...,K. The idea of cluster dependant weights is well aligned with the intuition
that a given featurev may have different degrees of relevance at different clusters.
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Feature selection methods for unlabelled data follow either a filter or wrapper ap-
proach (Dy 2008; Kohavi and John 1997). The former uses properties of the data itself
to select a subset of features during the data pre-processing phase. The features are
selected before the clustering algorithm is run, making this approach usually faster.
However, this speed comes at price. It can be rather difficultto define whether a
given feature is relevant without applying clustering to the data. Methods following a
wrapper approach make use of the information given by a clustering algorithm when
selecting features. Often, these methods lead to better performance when compared
to those following a filter approach (Dy 2008). However, these also tend to be more
computationally intensive as the clustering and the feature selection algorithms are
run. The surveys by Dy (2008), Steinley and Brusco (2008), and Guyon and Elisseeff
(2003) are, in our opinion, a very good starting point for those readers in need of
more information.

Feature weighting and feature selection algorithms are notcompeting methods.
The former does not dismiss the advantages given by the latter. Feature weighting
algorithms can still deselect a given featurev by setting its weightwv = 0, bring-
ing benefits traditionally related to feature selection. Such benefits include those dis-
cussed by Guyon and Elisseeff (2003) and Dy (2008), such as a possible reduction in
the feature space, reduction in measurement and storage requirements, facilitation of
data understanding and visualization, reduction in algorithm utilization time, and a
general improvement in cluster recovery thanks to the possible avoidance of thecurse
of dimensionality.

Clustering algorithms recognise patterns under an unsupervised learning frame-
work, it is only fitting that the selection or weighting of features should not require
labelled samples. There are a considerable amount of unsupervised feature selection
methods, some of which can be easily used in the data pre-processing stage (Devaney
and Ram 1997; Talavera 1999; Mitra, Murthy, and Pal 2002) to either select or dese-
lect features fromV. Feature weighting algorithms for K-Means have thirty years of
history, in the next section we discuss some what we believe to be the main methods.

4 Major approaches to feature weighting in K-Means

Work on feature weighting in clustering has over 40 years of history (Sneath and
Sokal 1973), however, only in 1984 (DeSarbo et al. 1984) feature weighting was ap-
plied to K-Means, arguably the most popular partitional clustering algorithm. Many
feature weighting algorithms based on K-Means have been developed since, here we
chose nine algorithms for our discussion. These are either among the most popular,
or introduce innovative new concepts.

4.1 SYNCLUS

Synthesized Clustering (SYNCLUS) (DeSarbo et al. 1984) is,to our knowledge, the
first K-Means extension to allow feature weights. SYNCLUS employs two types of
weights by assuming that features, as well as groups of features, may have different
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degrees of relevance. This algorithm requires the user to meaningfully group features
into T partitionsG = {G1,G2, ...,GT}. We represent the degree of relevance of the
feature groupGt with ωt, where 1≤ t ≤ T. The feature weight of any given feature
v ∈ V is represented bywv.

In its first step, very much like K-Means, SYNCLUS requests the user to provide
a data setY and the desired number of partitionsK. Unlike K-Means, the user is also
requested to provide information regarding how the features are grouped, and a vector
ω containing the weights of each feature group. This vectorω is normalised so that
∑T

t ωt = 1. DeSarbo suggests that eachwv, the weight of a given featurev ∈ V, can
be initialised so that it is inversely proportional to the variance ofv over all entities
yi ∈ Y, or are all equal.

The distance between two objectsyi andy j is defined, in each feature group, as
their weighted squared distanced(yi, y j)(t)

=

∑

v∈Gt
wtv(yiv − y jv)2. Givenω, w, Y, K,

andd(yi, y j)(t), for i, j = 1, 2, ...,N, SYNCLUS optimises the weighted mean-square,
stress-like objective function below.

W(S,C,w, ω) =

∑T
t ωt
∑

i∈Y
∑

j∈Y(δi j − d(yi , y j)(t))
∑

i∈Y
∑

j∈Y δ
2
i j

, (3)

subject to a disjoint clustering so thatSk ∩ Sl = ∅ for k, l = 1, 2, ...,K andk , l, as
well as

∑

i∈Y
∑

j∈Y δ
2
i j , 0, δi j = αa∗i j + β (details regardingα andβ in DeSarbo et al.

1984) where,

a∗i j =















1
|Sk|
, if {yi , y j} ⊆ Sk,

0, otherwise.
(4)

Although an icon of original research, SYNCLUS does have some weaknesses. This
computationally expensive algorithm presented mixed results on empirical data sets
(Green, Kim, and Carmone 1990), and there have been other claims of poor perfor-
mance (Gnanadesikan, Kettenring, and Tsao 1995). SYNCLUS is not appropriate for
clusterwise regression context with both dependent and independent variables (De-
Sarbo and Cron 1988).

Nevertheless, SYNCLUS has been a target to various extensions. DeSarbo and
Mahajan (1984) extended this method to deal with constraints, different types of clus-
tering schemes, as well as a general linear transformation of the features. It has also
been extended by Makarenkov and Legendre (2001) by using thePolak-Ribiere op-
timisation procedure (Polak 1971) to minimise (3). However, this latter extension
seemed to be particularly useful only when ‘noisy’ features(those without cluster
structure) existed. The authors recommended using equal weights (ie. the original
K-Means) when data are error-perturbed or contained outliers.

The initial work on SYNCLUS also expanded into a method to findoptimal fea-
ture weights for ultrametric and additive tree fitting (De Soete 1986; De Soete 1988).
However, this work lies outside the scope of this paper as themethod was applied in
hierarchical clustering.

SYNCLUS marked the beginning of research on feature weighting in K-Means,
and it is possible to see its influences in nearly all other algorithms in this particular
field.
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4.2 Convex K-Means

Modha and Spangler (2003) introduced the convex K-Means (CK-Means) algorithm.
CK-Means presents an interesting approach to feature weighting by integrating mul-
tiple, heterogeneous feature spaces into K-Means. Given the two entities{yi , y j} ⊆ Y,
each described over the featuresv ∈ V, the dissimilarity between these two entities is
given by the distortion measure below.

Dw(yi , y j) =
∑

v∈V

wvDv(yiv, y jv), (5)

whereDv depends on the feature space in use. Modha and Spangler present two
generic examples.

Dv(yiv, y jv) =















(yiv − y jv)T(yiv − y jv), in the Euclidean case

2(1− yT
ivy jv), in the Spherical case.

(6)

Equation (5) allows calculating the distortion of a specificcluster
∑

yi∈Sk
Dw(yi, ck),

and the quality of the clusteringS = {S1,S2, ...,SK}, given by
∑K

k=1
∑

yi∈Sk
Dw(yi, ck).

CK-Means determines the optimal set of feature weights thatsimultaneously min-
imises the average within-cluster dispersion and maximises the average between-
cluster dispersion along all of the feature spaces, by consequence minimising the
criterion below.

W(S,C,w) =
K
∑

k=1

∑

yi∈Sk

Dw(yi , ck). (7)

This method finds the optimal weightwv for eachv ∈ V from a pre-defined set of
feature weights∆ = {w :

∑

v∈V wv = 1,wv ≥ 0, v ∈ V}. Each partitionS(w)
=

{S(w)
1 ,S

(w)
2 , ...,S

(w)
K } generated by minimising (7) with a different set of weightsw ∈ ∆

is then evaluated with a generalization of Fisher’s discriminant analysis. In this, one
aims to minimise the ratio between the average within-cluster distortion and the av-
erage between-cluster distortion.

CK-Means can be thought of as a gradient descent method that never increases
(7), and eventually converges to a local minima solution. This method has introduced
a very interesting way to cluster entities described over different feature spaces, some-
thing we would dare say is a common characteristic of modern real-world data sets.
CK-Means has also shown promising results in experiments (Modha and Spangler
2003), however, the way it finds feature weights has led to claims that generating∆
would be difficult in high-dimensional data (Tsai and Chiu 2008; Huang et al. 2005),
and that there is no guarantee the optimal weights would be in∆ (Huang et al. 2005).

4.3 Attribute weighting clustering algorithm

Another extension to K-Means to support feature weights wasintroduced by Chan
et al. (2004). This algorithm generates a weightwkv for each featurev ∈ V at each
cluster inS = {S1,S2, ...,Sk, ...,SK}, within the framework of K-Means. This method
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supports the intuitive idea that different features may have different degrees of rel-
evance at different clusters. This Attribute Weighting algorithm (AWK, for short)
attempts to minimise the weighted squared distance betweenentitiesyi ∈ Y and their
respective centroidsck ∈ C, as per the criterion below.

W(S,C,w) =
K
∑

k=1

∑

i∈Sk

∑

v∈V

wβkvd(yiv, ckv), (8)

whereβ is a user-defined parameter that is greater than 1,d(yiv, ckv) = |yiv − ckv|
2 for a

numericalv, and its the simple matching dissimilarity measure below for a categorical
v.

d(yiv, ckv) =















0, if yiv = ckv

1, if yiv , ckv.
(9)

The criterion (8) has a computational complexity complexity ofO(NMK) (Chan et al.
2004), whereM = |V| and is subject to:

1. A disjoint clustering, in whichSk ∩ Sl = ∅ for k, l = 1, 2, ...,K andk , l.
2. A crisp clustering, given by

∑K
k=1 |Sk| = N.

3.
∑

v∈V wkv = 1 for a given clusterSk.
4. {wkv} ≥ 0 for k = 1, 2, ...,K andv ∈ V.

Chan et al. (2004) minimises (8) under the above constraintsby using partial opti-
misation forS, C andw. The algorithm begins by setting eachwkv = 1/|V|, fixing C
andw in order to find the necessary conditions soS minimises (8). Then one fixesS
andw, minimising (8) in respect toC. Next, one fixesS andC and minimises (8) in
respect tow. This process is repeated until convergence.

The minimisations of the first and second steps are rather straight forward. The
assignment of entities to the closest clusterSk uses the weighted distanced(yi, ck) =
∑

v∈V wkv(yiv − ckv)2, and since (8) clearly uses the squared Euclidean distance,ckv =
1
|Sk|

∑

i∈Sk
yiv. The minimisation of (8) is respect tow depends on

∑

i∈Sk
(yiv − ckv)2,

generating the three possibilities below.

wkv =







































1
v∗ , if

∑

i∈Sk
(yiv − ckv)2

= 0, andv∗ = |{v′ :
∑

i∈Sk
(yiv′ − ckv′)2

= 0}|,

0, if
∑

i∈Sk
(yiv − ckv)2

, 0, but
∑

i∈Sk
(yiv′ − ckv′)2

= 0, for somev′ ∈ V,
1

∑

j∈V

[
∑

i∈Sk
(yiv−ckv)2

∑

i∈Sk
(yi j −ck j )

2

]
1
β−1

, if
∑

i∈Sk
(yiv − ckv)2

, 0.

(10)
The experiments in Chan et al. (2004) deal solely withβ > 1. This is probably to
avoid the issues related to divisions by zero thatβ = 1 would present in (10), and
the behaviour of (8) at other values (for details see Section4.4). It is interesting to
see that DeSarbo et al. (1984) suggested two possible cases for initial weights in
SYNCLUS (details in Section 4.1), either to set all weights to the same number, or to
be inversely proportional to the variance of the feature in question. It seems to us that
Chan’s method have used both suggestion, by initializing each weightwkv to 1/|V|
and by optimisingwkv so that it is higher when the dispersion ofv in yiv ∈ Sk is lower,
as the third case in (10) shows.
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There are some issues to have in mind when using this algorithm. The use of
(9) may be problematic in certain cases as the range ofd(yiv, ckv) will be different de-
pending on whetherv is numerical or categorical. Based on the work of Huang (1998)
and Ng and Wong (2002), Chan et al. introduces a new parameterto balance the nu-
merical and categorical parts of a mixed data set, in an attempt to avoid favouring
either part. In their paper they test AWK using different values for this parameter and
the best is determined as that resulting in the highest cluster recovery accuracy. This
approach is rather hard to follow in real-life clustering scenarios as no labelled data
would be present. This approach was only discussed in the experiments part of the
paper, not being present in the AWK description so it is ignored in our experiments.

Another point to note is that their experiments using real-life data sets, despite all
explanations about feature weights, use two weights for each feature. One of these
relates to the numerical features while the other relates tothose that are categorical.
This approach was also not explained in the AWK original description and is ignored
in our experiments as well.

A final key issue to this algorithm, and in fact various others, is that there is no
clear method to estimate the parameterβ. Instead, the authors state that their method
is not sensitive to a range of values ofβ, but unfortunately this is demonstrated with
experiments on synthetic data in solely two real-world datasets.

4.4 Weighted K-Means

Huang et al. (2005) introduced the Weighted K-Means (WK-Means) algorithm. WK-
Means attempts to minimise the object function below, whichis similar to that of
Chan et al. (2004), discussed in Section 4.3. However, unlike the latter, WK-Means
originally sets a single weightwv for each featurev ∈ V.

W(S,C,w) =
K
∑

k=1

∑

i∈Sk

∑

v∈V

wβvd(yiv, ckv), (11)

The Equation above is minimised using an iterative method, optimising (11) forS, C,
andw, one at a time. During this process Huang et al. presents the two possibilities
below for the update ofwv, with S andC fixed, subject toβ > 1.

wv =























0, if Dv = 0
1

∑h
j=1

Dv
D j

1
β−1

, if Dv , 0, (12)

where,

Dv =

K
∑

k=1

∑

i∈Sk

d(yiv, ckv), (13)

andh is the number of features whereDv , 0. If β = 1, the minimisation of (11)
follows thatwv′ = 1, andwv = 0, wherev′ , v, andDv′ ≤ Dv, for eachv ∈ V (Huang
et al. 2005).



10 Renato Cordeiro de Amorim

The weightwβv in (11) makes the final clusteringS, and by consequence the cen-
troids inC, dependant of the value ofβ. There are two possible critical values forβ, 0
and 1. Ifβ = 0, Equation (11) becomes equivalent to that of K-Means (1). At β = 1,
the weight of a single featurev ∈ V is set to one (that with the lowestDv), while all
the others are set to zero. Settingβ = 1 is probably not desirable in most problems.

The above critical values generate three intervals of interest. Whenβ < 0, wv

increases with an increase inDv. However, the negative exponent makeswβv smaller,
so thatv has less of an impact on distance calculations. If 0< β < 1, wv increases
with an increase inDv, so doeswβv. This goes against the principle that a feature with
a small dispersion should have a higher weight, proposed by Chan et al. (2004) (per-
haps inspired by SYNCLUS, see Section 4.1), and followed by Huang et al. (2005).
If β > 1, wv decreases with an increase inDv, and so doeswβv, very much the desired
effect of decreasing the impact of a featurev in (11) whoseDv is high.

WK-Means was later extended to support fuzzy clustering (Liand Yu 2006),
as well as cluster dependant weights (Huang et al. 2008). Thelatter allows WK-
Means to support weights with different degrees of relevance at different clusters,
each represented bywkv. This required a change in the criterion to be minimised
to W(S,C,w) =

∑K
k=1
∑

i∈Sk

∑

v∈V wβkvd(yiv, ckv), and similar changes to other related
equations.

In this new version, the dispersion of a variablev ∈ V at a clusterSk is given by
Dkv =

∑

i∈Sk
(d(yiv, ckv) + c), wherec is a user-defined constant. The authors suggest

that in practicec can be chosen as the average dispersion of all features in thedata set.
More importantly, the adding ofc addresses a considerable shortcoming. A feature
whose dispersionDkv in a particular clusterSk is zero should not be assigned a weight
of zero when in factDkv = 0 indicates thatv may be an important feature to identify
clusterSk. An obvious exception is if

∑K
k=1 Dkv = 0 for a givenv, however, such

feature should normally be removed in the data pre-processing stage.

Although there have been improvements, the final clusteringis still highly depen-
dant on the exponent exponentβ. It seems to us that the selection ofβ depends on the
problem at hand, but unfortunately there is no clear strategy for its selection. We also
find that the lack of relationship betweenβ and the distance exponent (two in the case
of the Euclidean squared distance) avoids the possibility of seen the final weights as
feature re-scaling factors. Finally, although WK-Means supports cluster-dependant
features, all features are treated as if they were a homogeneous feature space, very
much unlike CK-Means (details in Section 4.2).

4.5 Entropy Weighting K-Means

The Entropy Weighting K-Means algorithm (EW-KM) (Jing, Ng,and Huang 2007)
minimises the within cluster dispersion while maximising the negative entropy. The
reasoning behind this is to stimulate more dimensions to contribute to the identifica-
tion of clusters in high-dimensional sparse data, avoidingproblems related to identi-
fying such clusters using only a few dimensions.
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With the above in mind, Jing, Ng, and Huang (2007) devised thefollowing crite-
rion for EW-KM:

W(S,C,w) =
K
∑

k=1

















N
∑

i∈Sk

∑

v∈V

wkv(yiv − ckv)2
+ γ
∑

v∈V

wkvlogwkv

















, (14)

subject to
∑

v∈V wkv = 1, {wkv} ≥ 0, and a crisp clustering. In the criterion above,
one can easily identify that the first term is the weighted sumof the within cluster
dispersion. The second term, in whichγ is a parameter controlling the incentive for
clustering in more dimensions, is the negative weight entropy.

The calculation of weights in EW-KM occurs as an extra step inrelation to K-
Means, but still with a time complexity ofO(rNMK) wherer is the number of itera-
tions the algorithm takes to converge. Given a clusterSk, the weight of each feature
v ∈ V is calculated one at a time with the equation below.

wkv =
exp(−Dkv

γ
)

∑

j∈V exp(−Dk j

γ
)
, (15)

whereDkv represents the dispersion of featurev in the clusterSk, given byDkv =
∑

i∈Sk
(yiv − ckv)2. As one would expect, the minimisation of (14) uses partial optimi-

sation forw, C, andS. First,C andw are fixed and (14) is minimised in respect to
S. Next,S andw are fixed and (14) is minimised in respect toC. In the final step,
S andC are fixed, and (14) is minimised in respect tow. This adds a single step to
K-Means, used to calculate feature weights.

The R packageweightedKmeansfound at CRAN includes an implementation of
this algorithm, which we decided to use in our experiments (details in Sections 5
and 6). Jing, Ng, and Huang (2007) presents extensive experiments, with synthetic
and real-world data. These experiments show EW-KM outperforming various other
clustering algorithms. However, there are a few points we should note. First, it is
somewhat unclear how a user should choose a precise value forγ. Also, most of
the algorithms used in the comparison required a parameter as well. Although we
understand it would be too laborious to analyse a large rangeof parameters for each
of these algorithms, there is no much indication on reasoning behind the choices
made.

4.6 Improved K-Prototypes

Ji et al. (2013) have introduced the Improved K-Prototypes clustering algorithm (IK-
P), which minimises the WK-Means criterion (11), with influences from k-prototype
(Huang 1998). IK-P introduces the concept of distributed centroid to clustering, al-
lowing the handling of categorical features by adjusting the distance calculation to
take into account the frequency of each category.

IK-P treats numerical and categorical features differently, but it is still able to
represent the clusterSk of a data setY containing mixed type, data with a single cen-
troidck = {ck1, ck2, ..., ck|V|}. Given a numerical featurev, ckv =

1
|Sk|

∑

i∈Sk
yiv, the center
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given by the Euclidean distance. A categorical featurev containingL categoriesa ∈ v,
hasckv = {{a1

v, ω
1
kv}, {a

2
v, ω

2
kv}, ..., {a

l
v, ω

l
kv}, ..., {a

L
v , ω

L
kv}}. This representation for a cat-

egoricalv allows each categorya ∈ v to have a weightωl
kv =

∑

i∈Sk
η(yiv), directly

related to its frequency in the data setY.

η(yiv) =















1
∑

i∈Sk
1, if yiv = al

v,

0, if yiv , al
v.

(16)

Such modification also requires a re-visit of the distance function in (11). The dis-
tance is re-defined to the below.

d(yiv, ckv) =















|yiv − ckv|, if v is numerical,

ϕ(yiv − ckv), if v is categorical,
(17)

whereϕ(yiv − ckv) =
∑K

k=1 ϑ(yiv, al
v),

ϑ(yiv, a
k
v) =















0, if yiv = al
v,

ωk
iv, if yiv , al

v,
(18)

IK-P presents some very interesting results (Ji et al. 2013), outperforming other
popular clustering algorithms such as k-prototype, SBAC, and KL-FCM-GM (Chatzis
2011; Ji et al. 2012). However, the algorithm still leaves some open questions.

For instance, Ji et al. (2013) present experiments on six data sets (two of which
being different versions of the same data set) settingβ = 8, but it is not clear whether
the good results provided by this particularβ would generalize to other data sets.
Given a numerical feature, IK-P applies the Manhattan distance (17), however, cen-
troids are calculated using the mean. The center of the Manhattan distance is given by
the median rather than the mean, this is probably the reason why Ji et al. found it nec-
essary to allow the user to set a maximum numbers of iterations to their algorithm.
Now, even if the algorithm converges, most likely it would converge in a smaller
number of iterations if the distance used for the assignments of entities was aligned
to that used for obtaining the centroids. Finally, whiled(yiv, ckv) for a categoricalv
has a range in the interval [0, 1], the same is not true ifv is numerical, however, Ji
et al. (2013) make no mention to data standardization.

4.7 Intelligent Minkowski Weighted K-Means

Previously, we have extended WK-Means (details in Section 4.4) by introducing the
intelligent Minkowski Weighted K-Means (iMWK-Means) (De Amorim and Mirkin
2012). In its design, we aimed to propose a deterministic algorithm supporting non-
elliptical clusters with weights that could be seen as feature weighting factors. To do
so, we combined the Minkowski distance and intelligent K-Means (Mirkin 2012), a
method that identifies anomalous patterns in order find the number of clusters in a
data set, as well as good initial centroids.
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Below, we show the Minkowski distance between the entitiesyi andy j , described
over featuresv ∈ V.

d(yi, y j) = (
∑

v∈V

|yiv − y jv|
p)1/p, (19)

wherep is a user-defined parameter. Ifp equals 1, 2, or∞, Equation (19) is equivalent
to the the Manhattan, Euclidean and Chebyshev distances, respectively. Assuming
a given data set has two dimensions (for easy visualisation), the distance bias of
a clustering algorithm using (19) would be towards clusterswhose shape are any
interpolation between a diamond (p = 1) and a square (p = ∞), clearly going through
a circle (p = 2). This is considerably more flexible than algorithms basedsolely on
the squared Euclidean distance, as these recover clusters biased towards circles only.
One can also see the Minkowski distance as a multiple of the power mean of the
feature-wise differences betweenyi andy j .

The iMWK-Means algorithm calculates distances using (20),a weighted version
of thepth root of (19). The use of a root is analogous to the frequent useof the squared
Euclidean distance in K-Means.

d(yi , y j) =
∑

v∈V

wp
kv|yiv − y jv|

p, (20)

where the user-defined parameterp scales the distance as well as well as the cluster
dependent weightwkv. This way the feature weights can be seen as feature re-scaling
factors, this is not possible for WK-Means whenβ , 2. Re-scaling a data set with
these feature re-scaling factors increases the likelihoodof various cluster validity
indices to lead to the correct number of clusters (De Amorim and Hennig 2015).
With (20) one can reach the iMWK-Means criterion below.

W(S,C,w) =
K
∑

k=1

∑

i∈Sk

∑

v∈V

wp
kv|yiv − ckv|

p. (21)

The update ofwkv, for eachv ∈ V andk = 1, 2, ...,K, follows the equation below.

wkv =
1

∑

u∈V
Dkvp

Dkup

1
p−1

, (22)

where the dispersion of featurev in clusterk is now dependant on the exponentp,
Dkvp =

∑

i∈Sk
|yiv − ckv|

p
+ c, andc is a constant equivalent to the average dispersion.

The update of the centroid of clusterSk on featurev, ckv also depends on the value
of p. At values ofp 1, 2, and∞, the center of (19) is given by the median, mean and
midrange, respectively. Ifp < {1, 2,∞} then the center can be found using a steepest
descend algorithm (De Amorim and Mirkin 2012).

The iMWK-Means algorithm deals with categorical features by transforming
them in numerical, following a method described by Mirkin (2012). In this method,
a given categorical featurev with L categories is replaced byL binary features, each
representing one of the original categories. For a given entity yi , only the binary
feature representingyiv is set to one, all others are set to zero. The concept of dis-
tributed centroid (Ji et al. 2013) can also be applied to our algorithm (De Amorim and
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Makarenkov to appear), however, in order to show a single version of our method we
decided not to follow the latter here.

Clearly, the chosen value ofp has a considerable impact on the final clustering
given by iMWK-Means. De Amorim and Mirkin (2012) introduceda semi-supervised
algorithm to estimate a goodp, requiring labels for 20% of the entities inY. Later,
the authors showed that it is indeed possible to estimate a good value forp using only
5% of labelled data under the same semi-supervised method, and presented a new
unsupervised method to estimatep, requiring no labelled samples (De Amorim and
Mirkin 2014).

The iMWK-Means proved to be superior to various other algorithms, including
WK-Means with cluster dependant weights (De Amorim and Mirkin 2012). How-
ever, iMWK-Means also has room for improvement. Calculating a centroid for a
p < {1, 2,∞} requires the use of a steepest descent method. This can be time consum-
ing, particularly when compared with other algorithms defining ckv =

1
|Sk|

∑

i∈Sk
yiv.

Although iMWK-Means allows for a distance bias towards non-elliptical clusters, by
settingp , 2, it assumes that all clusters should be biased towards the same shape.

4.8 Feature Weight Self-Adjustment K-Means

Tsai and Chiu (2008) integrated a feature weight self-adjustment mechanism (FWSA)
to K-Means. In this mechanism findingwv for v ∈ V is modelled as an optimisation
problem to simultaneously minimise the separations withinclusters and maximise
the separation between clusters. The former is measuredav =

∑K
k=1
∑

i∈Sk
d(yiv, ckv),

whered() is a function returning the distance between the featurev of entity yi and
that of centroidck. The separation between clusters of a given featurev is measured
by bv =

∑K
k=1 Nkd(ckv, cv), whereNk is the number of entities inSk, andcv is the

center of featurev overyi ∈ Y. With av andbv one can evaluate how much the feature
v contributes to the clustering quality, and in a given iteration j calculatew( j+1)

v .

w( j+1)
v =

1
2

(w( j)
v +

b( j)
v /a

( j)
v

∑

v∈V(b( j)
v /a

( j)
v )

), (23)

where the multiplication by 1/2 makes sure thatwv ∈ [0, 1] so it can satisfy the
constrain

∑

v∈V w( j+1)
v = 1. With wv one can then minimise the criterion below.

W(S,C,w) =
K
∑

k=1

∑

i∈Sk

∑

v∈V

wv(yiv − ckv)
2, (24)

subject to
∑

v∈V wv = 1 and{wv}v∈V ≥ 0, and a crisp clustering. Experiments in syn-
thetic and real-world data sets compare FWSA K-Means favourably in relation to
WK-Means. However, it assumes a homogeneous feature space,and like the pre-
vious algorithms it still evaluates a single feature at a time. This means that that a
group of features, each irrelevant on its own, but informative if in a group, would be
discarded.

FWSA has already been compared to WK-Means in three real-world data sets
(Tsai and Chiu 2008). This comparison shows FWSA reaching anadjusted Rand
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index (ARI) 0.77 when applied to the Iris data set, while WK-Means reached only
0.75. The latter ARI was obtained by settingβ = 6, but our experiments (details in
Section 6) show that WK-Means may reach 0.81. The differencemay be related to
how the data was standardised, as well as howβ was set as here we found the best at
each run. Of course, the fact that FWSA does not require a user-defined parameter is
a considerable advantage.

4.9 FG-K-Means

The FG-K-Means (FGK) algorithm (Chen et al. 2012) extends K-Means by applying
weights at two levels, features and clusters of features. This algorithm has been de-
signed to deal with large data sets whose data comes from multiple sources. Each of
theT data sources provides a subset of featuresG = {G1,G2, ...,GT}, whereGt , ∅,
Gt ⊂ V, Gt ∩ Gs = ∅ for t , s and 1≤ t, s ≤ T, and∪Gt = V. Given a clusterSk,
FGK identifies the degree of relevance of a featurev, represented bywkv, as well as
the relevance of a group of featuresGt, represented byωkt. Unlike SYNCLUS (de-
tails in Section 4.1), FGK does not require the weights of thegroups of features to be
entered by the user. FGK updates the K-Means criterion (1) toinclude bothwkv and
ωkt, as we show below.

W(S,C,w, ω) =
K
∑

k=1

















∑

i∈Sk

T
∑

t=1

∑

v∈Gt

ωktwkvd(yiv, ckv) + λ
T
∑

t=1

ωktlog(ωkt) + η
∑

v∈V

wkvlog(wkv)

















,

(25)
whereλ andη are user-defined parameters, adjusting the distributions of the weights
related to the groups of features inG, and each of the featuresv ∈ V, respectively.
The minimisation of (25) is subject to a crisp clustering in which any given entity
yi ∈ Y is assigned to a single clusterSk. The feature group weights are subject to
∑K

k=1ωkt = 1, 0 < ωkt < 1, for 1 ≤ t ≤ T. The feature weights are subject to
∑

v∈Gt
wkv = 1, 0< wkv < 1, for 1≤ k ≤ K and 1≤ t ≤ T.

Given a numericalv, the functiond in (25) returns the squared Euclidean distance
betweenyiv andckv, given by (yiv − ckv)2. A categoricalv leads tod returning one if
yiv = ckv, and zero otherwise, very much like (9). The update of each feature weight
follows the equation below.

wkv =
exp(−Ekv

η
)

∑

h∈Gt
exp(−Ekh

η
)
, (26)

whereEkv =
∑

i∈Sk
ωktd(yiv, ckv), and t is the index of the feature group to which

featurev is assigned to. The update of the feature group weights follows.

ωkt =
exp(−Dkt

λ
)

∑T
s=1 exp(−Dks

λ
)
, (27)

where,Dkt =
∑

i∈Sk

∑

v∈Gt
wkvd(yiv, ckv). Clusterings generated by FGK are heavily

dependant onλ andη. These parameters must set to positive real values. Large val-
ues forλ andη lead to weights to be more evenly distributed, so more subspaces
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contribute to the clustering. Low values lead to weights being more concentrated on
fewer subspaces, each of these having a larger contributionto the clustering.

FGK has a time complexity ofO(rNMK), wherer is the number of iterations this
algorithm takes to complete (Chen et al. 2012). It has outperformed K-Means, WK-
Means (see Section 4.4), LAC (Domeniconi et al. 2007) and EW-KM (see Section
4.5), but it also introduces new open questions. This particular method was designed
aiming to deal with high-dimensional data, however, it is not clear howλ andη should
be estimated. This issue makes it rather hard to use FGK in real-world problems. We
find that it would also be interesting to see a generalizationof this method to use other
distance measures, allowing a different distance bias.

5 Setting of the experiments

In our experiments we have used real-world as well as synthetic data sets. The former
were obtained from the popular UCI machine learning repository (Lichman 2013)
and include data sets with different combinations of numerical and categorical fea-
tures, as we show in Table 1.

Table 1 Real-world data sets used in our comparison experiments.

Entities Clusters Original features
Numerical Categorical Total

Australian credit 690 2 6 8 14
Balance scale 625 2 0 4 4
Breast cancer 699 2 9 0 9
Car evaluation 1728 4 0 6 6
Ecoli 336 8 7 0 7
Glass 214 6 9 0 9
Heart (Statlog) 270 2 6 7 13
Ionosphere 351 2 33 0 33
Iris 150 3 4 0 4
Soybean 47 4 0 35 35
Teaching Assistant 151 3 1 4 5
Tic Tac Toe 958 2 0 9 9
Wine 178 3 13 0 13

The synthetic data sets contain spherical Gaussian clusters so that the covariance
matrices are diagonal with the same diagonal valueσ2 generated at each cluster ran-
domly between 0.5 and 1.5. All centroid components were generated independently
from a Gaussian distribution with zero mean and unity variance. The cardinality of
each cluster was generated following an uniformly random distribution, constrained
to a minimum of 20 entities. We have generated 20 data sets under each of the fol-
lowing configurations: (i) 500x4-2, 500 entities over four features partitioned into
two clusters; (ii) 500x10-3, 500 entities over 10 features partitioned into three clus-
ters; (iii) 500x20-4, 500 entities over 20 features partitioned into four clusters; (iv)
500x50-5, 500 entities over 50 features partitioned into five clusters.
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Unfortunately, we do not know the degree of relevance of eachfeature in all of
our data sets. For this reason we decided that our experiments should also include
data sets to which we have added noise features. Given a data set, for each of its cat-
egorical features we have added a new feature composed entirely of uniform random
integers (each integer simulates a category). For each of its numerical features we
have added a new feature composed entirely of uniform randomvalues. In both cases
the new noise feature has the same domain as the original feature. This approach has
effectively doubled the number of features in each data set,as well as the number of
data sets used in our experiments.

Prior to our experiments we have standardised the numericalfeatures of each of
our data sets as per the equation below.

yiv =
yiv − yv

range(yv)
, (28)

whereyv =
1
N

∑N
i=1 yiv, andrange(yv) = max({yiv}

N
i=1) − min({yiv}

N
i=1). Our choice of

using (28) instead of the popularz-score is perhaps easier to explain with an example.
Lets imagine two features, unimodalv1 and multimodalv2. The standard deviation of
v2 would be higher than that ofv1 which means that thez-score ofv2 would be lower.
Thus, the contribution ofv2 to the clustering would be lower than that ofv1 even so it
is v2 that has a cluster structure. Arguably, a disadvantage of using (28) is that it can
be detrimental to algorithms based on other standardisation methods (Steinley and
Brusco 2008b), not included in this paper.

We have standardised the categorical features for all but those experiments with
the Attribute weighting and Improved K-Prototypes algorithms (described in Sec-
tions 4.3 and 4.6, respectively). These two algorithms define distances for categorical
features, so transforming the latter to numerical is not required. Given a categorical
featurev containingq categories we substitutev by q new binary features. In a given
entity yi only a single of these new features is set to one, that representing the cate-
gory originally inyiv. We then numerically standardise each of the new features by
subtracting it by its mean. The mean of a binary feature is in fact its frequency, so a
binary feature representing a category with a high frequency contributes less to the
clustering than one with a low frequency. In terms of data pre-processing, we also
made sure that all features in each data set had a range higherthan zero. Features
with a range of zero are not meaningful so they were removed.

Unfortunately, we found it very difficult to set a fair comparison including all
algorithms we describe in this paper. SYNCLUS and FG-K-Means(described in Sec-
tions 4.1 and 4.9, respectively) go a step further in featureweighting by allowing
weights for feature groups. However, they both require the user to meaningfully group
featuresv ∈ V into T partitionsG = {G1,G2, ...,GT} with SYNCLUS also requesting
the user to set a weight for each of these groups. Even if we hadenough information
to generateG it would be unfair to provide this extra information to some algorithms
and not to others. If we were to group features randomly we would be providing these
two algorithms with misleading information more often thannot, which would surely
have an impact on their cluster recovery ability. If we were to set a single group of
features and give this group a weight of one then we would be removing the main
advantage of using these algorithms, and in fact FG-K-Meanswould be equivalent to
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EW-KM. Convex K-Means (Section 4.2) also goes a step furtherin feature weighting,
it does so by integrates multiple, heterogeneous feature spaces. Modha and Spangler
(2003) demonstrates that with the Euclidean and Spherical cases. However, there is
little information regarding the automatic detection of the appropriate space given a
featurev ∈ V, a very difficult problem indeed. For these reasons we decided not to
include these three algorithms in our experiments.

6 Results and discussion

In our experiments we do have a set of labels for each data set.This allows us to
measure the cluster recovery of each algorithm in terms of the adjusted Rand index
(ARI) (Hubert and Arabie 1985) between the generated clustering and the known
labels.

ARI =
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) , (29)

whereni j = |Si ∩ S j |, ai =
∑K

j=1 |Si ∩ S j | andbi =
∑K

i=1 |Si ∩ S j |.
FWSA is the only algorithm we experiment with that does not require an extra pa-

rameter from the user. This is clearly an important advantage as estimating optimum
parameters is not a trivial problem, and in many cases the authors of the algorithms
do not present a clear estimation method.

The experiments we show here do not deal with parameter estimation. Instead,
we determine the optimum parameter for a given algorithm by experimenting with
values from 1.0 to 5.0 in steps of 0.1. The only exception are the experiments with
EW-KM where we apply values from 0 to 5.0 in steps of 0.1, this is because EW-KM
is the only algorithm in which a parameter between zero and one is also appropriate.
Most of the algorithms we experiment with are non-deterministic (iMWK-Means is
the only exception), so we run each algorithm at each parameter 100 times and select
as the optimum parameter that with the highest average ARI.

Tables 2 and 3 show the results of our experiments on the real-world data sets
without noise features added to them (see Table 1). We show the average (together
with the standard deviation) and maximum ARI for what we found to be the optimum
parameter for each data set we experiment with. There are different comparisons we
can make, particularly when one of the algorithms is deterministic, iMWK-Means. If
we compare the algorithms in terms of their expected ARI, given a good parameter,
then we can see that in 9 data sets iMWK-Means reaches the highest ARI. We run
each non-deterministic algorithm 100 times for each parameter value. If we take into
account solely the highest ARI over these 100 runs then the EW-KM reaches the
highest ARI overall in 9 data sets, while IK-P does so in six. Still looking only at
the highest ARI, the FWSA algorithm (the only algorithm not to require an extra
parameter) reaches the highest ARI in four data sets, the same number as AWK and
WK-Means. Another point of interest is that the best parameter we could find for
iMWK-Means was the same in four data sets.

Tables 4 and 5 show the results of our experiments on the real-world data sets
with noise features added to them. Given a data setY, for eachv ∈ V we add a new
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Table 2 Experiments with the real-world data sets with no added noise features. The standard deviation
can be found after the backslash under the mean. Par refers tothe parameter value required by the algo-
rithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.15/0.11 0.50 4.9 0.19/0.23 0.50 2.2 0.31/0.190.50 0.90
Balance 0.03/0.03 0.19 3.4 0.04/0.04 0.18 4.7 0.04/0.05 0.23 2.10
Breast c. 0.68/0.20 0.82 4.5 0.83/0.00 0.83 2.6 0.85/0.01 0.87 1.10
Car eva. 0.07/0.05 0.22 2.6 0.04/0.05 0.13 1.2 0.07/0.06 0.22 4.60
Ecoli 0.02/0.02 0.04 2.5 0.42/0.06 0.57 3.5 0.45/0.09 0.72 0.10
Glass 0.15/0.03 0.22 3.7 0.19/0.04 0.28 2.8 0.17/0.03 0.28 0.10
Heart 0.21/0.16 0.45 4.7 0.18/0.07 0.27 1.1 0.33/0.10 0.39 3.10
Ionosphere 0.14/0.08 0.25 1.2 0.18/0.05 0.34 1.2 0.18/0.000.21 0.70
Iris 0.80/0.16 0.89 1.6 0.81/0.11 0.89 3.9 0.71/0.14 0.82 0.30
Soybean 0.57/0.18 1.00 3.5 0.78/0.22 1.00 3.1 0.74/0.20 1.00 0.10
Teaching A. 0.02/0.01 0.05 1.9 0.02/0.01 0.07 4.0 0.03/0.020.10 0.20
Tic Tac Toe 0.02/0.03 0.07 1.4 0.03/0.04 0.15 4.1 0.02/0.03 0.15 1.00
Wine 0.76/0.06 0.82 4.8 0.85/0.02 0.90 4.4 0.82/0.05 0.90 0.30

Table 3 Experiments with the real-world data sets with no added noise features. The standard deviation
can be found after the backslash under the mean. Par refers tothe parameter value required by the al-
gorithm. IMWK-Means is a deterministic algorithm and FWSA does not require a parameter, hence the
dashes.

Improved K-P Intelligent Minkowski WK Feature Weight Self Adj.
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.15/0.08 0.20 4.7 - 0.50 1.1 0.20/0.21 0.50 -
Balance 0.04/0.05 0.23 1.3 - 0.09 3.3 0.03/0.03 0.15 -
Breast c. 0.74/0.00 0.74 4.9 - 0.85 4.6 0.81/0.12 0.83 -
Car eva. 0.03/0.05 0.22 5.0 - 0.13 2.0 0.04/0.06 0.22 -
Ecoli 0.46/0.00 0.46 3.0 - 0.04 2.5 0.37/0.06 0.52 -
Glass 0.21/0.06 0.31 4.4 - 0.28 4.6 0.16/0.04 0.25 -
Heart 0.31/0.08 0.36 4.6 - 0.31 2.9 0.15/0.10 0.31 -
Ionosphere 0.14/0.07 0.43 1.9 - 0.21 1.1 0.17/0.03 0.21 -
Iris 0.78/0.21 0.90 1.2 - 0.90 1.1 0.77/0.19 0.89 -
Soybean 0.87/0.16 0.95 2.4 - 1.00 1.8 0.71/0.23 1.00 -
Teaching A. 0.01/0.01 0.04 4.0 - 0.04 2.2 0.02/0.01 0.05 -
Tic Tac Toe 0.02/0.03 0.15 2.8 - 0.02 1.1 0.02/0.02 0.15 -
Wine 0.86/0.01 0.86 4.3 - 0.82 1.6 0.70/0.13 0.82 -

feature toY composed entirely of uniform random values (integers in thecase of
a categoricalv) with the same domain asv. This effectively doubles the cardinality
of V. In this set of experiments the Improved K-Prototype was unable to find eight
clusters in the Ecoli data set. We believe this issue is related to the data spread. The
third feature of this particular data set has only 10 entities with a value other than
0.48. The fourth feature has a single entity with a value other than 0.5. Clearly on
the top of these two issues we have an extra seven noise features. Surely one could
argue that features three and four could be removed from the data set as they are
unlikely to be informative. However, we decided not to startopening concessions to
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algorithms. Instead we expect the algorithms to find these issues and deal with them.
This turn, when comparing expected ARI values given a good parameter, iMWK-
Means reaches the highest ARI value in 8 data sets. It ceased to reach the highest
ARI in the Australian data set in which it now reaches 0.22 while EW-KM reaches
0.34 (that is 0.3 more than in the experiments with no noise features, but such small
inconsistencies are to be expected in experiments with non-deterministic algorithms).
When comparing the maximum possible for each algorithm the WK-Means algorithm
does reach the highest ARI in six data sets, while EW-KM does so in five.

Table 4 Experiments with the real-world data sets with added noise features. The standard deviation can
be found after the backslash under the mean. Par refers to theparameter value required by the algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.16/0.07 0.22 4.8 0.21/0.23 0.50 1.3 0.34/0.170.50 5.00
Balance 0.01/0.02 0.11 2.4 0.02/0.03 0.18 3.2 0.02/0.03 0.13 0.30
Breast c. 0.32/0.00 0.32 1.8 0.84/0.00 0.84 4.9 0.86/0.00 0.87 1.70
Car eva. 0.05/0.05 0.14 2.6 0.03/0.04 0.14 3.0 0.04/0.05 0.15 2.80
Ecoli 0.01/0.01 0.04 3.8 0.38/0.08 0.50 1.2 0.34/0.05 0.42 0.20
Glass 0.16/0.03 0.24 5.0 0.20/0.04 0.27 1.1 0.14/0.04 0.22 0.30
Heart 0.20/0.14 0.41 4.8 0.22/0.12 0.33 1.2 0.36/0.09 0.45 0.20
Ionosphere 0.19/0.07 0.27 1.2 0.18/0.03 0.21 1.2 0.17/0.020.18 0.20
Iris 0.77/0.17 0.89 4.4 0.79/0.12 0.87 1.5 0.64/0.08 0.73 0.20
Soya 0.46/0.16 0.94 4.0 0.76/0.21 1.00 1.5 0.61/0.21 1.00 0.30
Teaching A. 0.02/0.01 0.07 4.8 0.01/0.01 0.08 2.0 0.02/0.010.05 0.30
Tic Tac Toe 0.03/0.03 0.07 1.6 0.02/0.03 0.15 2.3 0.02/0.02 0.10 0.80
Wine 0.76/0.07 0.88 3.8 0.84/0.02 0.87 1.5 0.77/0.03 0.82 0.10

Table 5 Experiments with the real-world data sets with added noise features. The standard deviation can
be found after the backslash under the mean. Par refers to theparameter value required by the algorithm.
IMWK-Means is a deterministic algorithm and FWSA does not require a parameter, hence the dashes.

Improved K-P Intelligent Minkowski WK Feature Weight Self Adj.
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.15/0.09 0.20 4.9 - 0.22 1.7 0.18/0.22 0.50 -
Balance 0.02/0.04 0.13 1.4 - 0.08 2.8 0.01/0.02 0.09 -
Breast c. 0.73/0.00 0.73 4.5 - 0.87 1.4 0.65/0.34 0.83 -
Car eva. 0.02/0.03 0.12 1.1 - 0.04 2.5 0.03/0.05 0.14 -
Ecoli - - - - 0.04 2.5 0.09/0.09 0.29 -
Glass 0.23/0.05 0.30 3.4 - 0.23 2.5 0.10/0.06 0.21 -
Heart 0.32/0.06 0.36 4.0 - 0.30 3.9 0.10/0.10 0.35 -
Ionosphere 0.12/0.04 0.38 2.1 - 0.29 1.5 0.16/0.05 0.21 -
Iris 0.82/0.12 0.85 3.2 - 0.90 1.1 0.75/0.28 0.89 -
Soya 0.90/0.11 0.95 2.1 - 1.00 1.4 0.67/0.19 1.00 -
Teaching A. 0.00/0.01 0.02 4.7 - 0.05 2.9 0.01/0.01 0.05 -
Tic Tac Toe 0.02/0.04 0.15 1.1 - 0.07 1.1 0.02/0.03 0.15 -
Wine 0.83/0.03 0.90 4.4 - 0.83 1.2 0.55/0.25 0.81 -
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Tables 6 and 7 show the results of our experiments on the synthetic data sets
with and without noise features. Given a data setY, for eachv ∈ V we have added
a new feature toY containing uniformly random noise in the same domain as thatof
v, very much like what we did in the real-world data sets. The only difference is that
in the synthetic data sets we do not have categorical features and we know that they
contain Gaussian clusters (see Section 5). We have 20 data sets for each of the data set
configurations, hence, the values under max represent the average of the maximum
ARI obtained in each of the 20 data sets, as well as the standard deviation of these
values.

In this set of experiments iMWK-Means reached the highest expected ARI in all
data sets, with and without noise features. If we compare solely the maximum possi-
ble ARI per algorithm WK-Means reaches the highest ARI in three data set config-
urations with no noise features added to them, and in two of the data sets with noise
features. AWK also reaches the highest ARI in two of the configurations Clearly,

Table 6 Experiments with the synthetic data sets, with and without noise features. The standard devia-
tion can be found after the backslash under the mean. Par refers to the parameter value required by the
algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
No noise
500x4-2 0.50/0.36 0.61/0.31 4.11/1.21 0.61/0.32 0.62/0.31 3.28/1.26 0.62/0.30 0.66/0.26 2.35/1.15
500x10-3 0.62/0.20 0.83/0.11 4.55/0.53 0.68/0.20 0.85/0.10 3.10/1.05 0.67/0.20 0.84/0.10 0.83/0.39
500x20-4 0.74/0.22 0.98/0.02 4.09/0.66 0.75/0.25 0.99/0.02 3.11/1.02 0.75/0.24 0.98/0.03 0.35/0.22
500x50-5 0.83/0.18 1.00/0.01 3.48/1.03 0.82/0.19 1.00/0.00 3.62/0.99 0.80/0.19 1.00/0.00 0.24/0.12
With noise
500x4-2 0.29/0.38 0.60/0.32 2.93/1.11 0.27/0.37 0.61/0.32 1.46/0.80 0.34/0.33 0.56/0.29 0.29/0.16
500x10-3 0.59/0.20 0.80/0.13 4.19/0.78 0.61/0.23 0.85/0.10 1.29/0.15 0.54/0.25 0.78/0.14 0.32/0.26
500x20-4 0.73/0.22 0.98/0.03 3.78/0.90 0.71/0.25 0.93/0.19 1.37/0.26 0.81/0.14 0.95/0.06 0.34/0.10
500x50-5 0.83/0.18 1.00/0.01 3.14/0.81 0.82/0.20 0.98/0.10 2.01/1.22 0.84/0.15 1.00/0.01 0.52/0.41

there are other comparisons we can make using all algorithmsdescribed in Section
4. Based on the information we present in Section 4 about eachalgorithm, as well
as the cluster recovery results we present in this section, we have defined eight char-
acteristics we believe are desirable for any K-Means based clustering algorithm that
implements feature weighting. Table 8 shows our comparison, which we now de-
scribe one characteristic at a time.

No extra user-defined parameter. Quite a few of the algorithms we describe in
Section 4 require an extra parameter to be defined by the user.By tuning this pa-
rameter (or these parameters, in the case of FGK) each of these algorithms is able to
achieve high accuracy in terms of cluster recovery. However, it seems to us that this
parameter estimation is a non-trivial task, particularly because the optimum value is
problem dependant. This makes it very difficult to suggest a generally good parame-
ter value (of course this may not be the case if one knows how the data is distributed).
Since different values for a parameter tend to result in different clusterings, one could
attempt to estimate the best clustering by applying a clustering validation index (Ar-
belaitz et al. 2013; De Amorim and Mirkin 2014), consensus clustering (Goder and
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Table 7 Experiments with the synthetic data sets, with and without noise features. The standard devia-
tion can be found after the backslash under the mean. Par refers to the parameter value required by the
algorithm. IMWK-Means is a deterministic algorithm and FWSA does not require a parameter, hence the
dashes.

Improved K-P Intelligent Minkowski WK Feature Weight Self Adj.
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
No noise
500x4-2 0.45/0.37 0.59/0.32 3.69/1.18 - 0.63/0.30 3.18/1.31 0.38/0.36 0.57/0.33 -
500x10-3 0.60/0.21 0.81/0.12 3.85/0.85 - 0.71/0.18 2.51/0.83 0.42/0.23 0.67/0.24 -
500x20-4 0.74/0.25 0.98/0.04 3.74/1.03 - 0.90/0.17 2.58/1.05 0.64/0.24 0.94/0.15 -
500x50-5 0.82/0.19 1.00/0.00 3.50/1.14 - 1.00/0.01 1.73/0.94 0.77/0.20 0.97/0.11 -
With noise
500x4-2 0.27/0.36 0.58/0.33 2.47/1.05 - 0.48/0.40 1.79/1.25 0.02/0.13 0.47/0.37 -
500x10-3 0.55/0.22 0.79/0.13 2.84/1.01 - 0.85/0.09 1.58/0.26 0.07/0.19 0.39/0.35 -
500x20-4 0.71/0.25 0.93/0.15 2.58/0.92 - 0.95/0.06 1.80/0.69 0.26/0.30 0.88/0.22 -
500x50-5 0.82/0.20 1.00/0.01 2.65/0.96 - 0.94/0.08 2.24/0.88 0.72/0.26 0.97/0.12 -

Filkov 2008), or even a semi-supervised learning approach (De Amorim and Mirkin
2012). Regarding the latter, we have previously demonstrated that with as low as 5%
of the data being labelled it is still possible to estimate a good parameter for iMWK-
Means (De Amorim and Mirkin 2014).

It is deterministic. A K-Means generated clustering heavily depends on the ini-
tial centroids this algorithm uses. These initial centroids are often found at random,
meaning that if K-Means is run twice, it may generate very different clusterings. It is
often necessary to run this algorithm a number of times and then somehow identify
which clustering is the best (again, perhaps using a clustering validation index, a con-
sensus approach, or in the case of this particular algorithmthe output of its criterion).
If a K-Means based feature weighting algorithm is also non-deterministic, chances
are one will have to determine the best parameter and then thebest run when apply-
ing that parameter. One could also run the algorithm many times per parameter and
apply a clustering validation index to each of the generatedclusterings. In any case,
this can be a very computationally intensive task. We find it that the best approach
would be to have a feature weighting algorithm that is deterministic, requiring the
algorithm to be run a single time. The iMWK-Means algorithm applies a weighted
Minkowski metric based version of the intelligent K-Means (Mirkin 2012). The lat-
ter algorithm finds anomalous clusters in a given data set anduses this information to
generate initial centroids, making iMWK-Means a deterministic algorithm.

Accepts different distance bias. Any distance in use will lead to a bias in the clus-
tering. For instance, the Euclidean distance is biased towards spherical shapes while
the Manhattan distance is biased towards diamond shapes. A good clustering algo-
rithm should allow for the alignment of its distance bias to the data at hand. Two of
the algorithms we analyse address this issue, but in very different ways. CK-Means is
able to integrate multiple, heterogeneous feature spaces into K-Means, this means that
each feature may use a different distance measure, and by consequence have a differ-
ent bias. This is indeed a very interesting, and intuitive approach, as features measure
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different things so they may be in different spaces. The iMWK-Means also allows for
different distance bias, it does so by using theLp metric, leaving the exponentp as a
user-defined parameter (see Equation 20). Different valuesfor the exponentp lead to
different distance biases. However, this algorithm still assumes that all clusters in the
data set have the same bias.

Supports at least two weights per feature. In order to model the degree of rele-
vance of a particular feature one may need more than a single weight. There are two
very different cases that one should take into consideration: (i) a given featurev ∈ V
may be considerably informative when attempting to discriminate a clusterSk, but
not so for other clusters. This leads to the intuitive idea that v should in fact haveK
weights. This approach is followed by AWK, WK-Means (in its updated version, see
Huang et al. 2008), EWK-Means, iMWK-Means and FGK; (ii) a given featurev ∈ V
may be not be, on its own, informative to any clusterSk ∈ S. However, the same
feature may be informative when grouped with other features. Generally speaking,
two (or more) features that are useless by themselves may be useful together (Guyon
and Elisseeff 2003). FGK is the only algorithm we analyse that calculates weights for
groups of features.

Features grouped automatically. If a feature weighting algorithm should take into
consideration the weights of groups of features, it should also be able to group fea-
tures on its own. This is probably the most controversial of the characteristics we
analyse because none of the algorithms we deal with here is able to do so. We present
this characteristic in Table 8 to emphasise its importance.Both algorithms that deal
with weights for groups of features, SYNCLUS and FGK, require the users to group
the features themselves. We believe that perhaps an approach based on bi-clustering
(Mirkin 1998) could address this issue.

Calculates all used feature weights. This is a basic requirement of any feature
weighting algorithm. It should be able to calculate all feature weights it needs. Of
course a given algorithm may support initial weights being provided by the user,
but it should also be able to optimise these if needed. SYNCLUS requires the user
to input the weights for groups of features and does not optimise these. CK-Means
requires all possible weights to be put in a set∆ = {w :

∑

v∈V wv = 1,wv ≥ 0, v ∈ V}
and then tests each possible subset of∆, the weights are not calculated. This approach
can be very time consuming, particularly in high-dimensional data.

Supports categorical features. Data sets often contain categorical features. These
features may be transformed to numerical values, however, such transformation may
lead to loss of information and considerable increase in dimensionality. Most of the
analysed algorithms that support categorical features do so by setting a simple match-
ing dissimilarity measure (eg. AWK, WK-Means and FGK). Thisbinary dissimilarity
is zero iff both features have exactly the same category (seefor instance Equation 9),
and one otherwise. IK-P presents a different and interesting approach taking into ac-
count the frequency of each category at a categoricalv. This allows for a continuous
dissimilarity measure in the interval [0,1].

Analyses groups of features. Since two features that are useless by themselves
may be useful together (Guyon and Elisseeff 2003), a featureweighting algorithm
should be able to calculate weights for groups of features. Only a single algorithm
we have analysed is able to do so, FGK. SYNCLUS also uses weights for groups of
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features, however, these are input by the user rather than calculated by the algorithm.

Table 8 A comparison of the discussed feature weighting algorithmsover eight key characteristics.
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SYNCLUS ! !

CK-Means ! !

AWK ! ! !

WK-Means ! ! !

EWK-Means ! !

IK-P ! !

iMWK-Means ! ! ! !

FWSA ! !

FGK ! ! ! !

7 Conclusion and future directions

Recent technology has made it incredibly easy to acquire vast amounts of real-world
data. Such data tend to be described in high-dimensional spaces, forcing data scien-
tists to address difficult issues related to thecurse of dimensionality. Dimensionality
reduction in machine learning is commonly done using feature selection algorithms,
in most cases during the data pre-processing stage. This type of algorithm can be very
useful to select relevant features in a data set, however, they assume that all relevant
features have the same degree of relevance, which is often not the case.

Feature weighting is a generalisation of feature selection. The former models
the degree of relevance of a given feature by giving it a weight, normally in the
interval [0, 1]. Feature weighting algorithms can also deselect a feature, very much
like feature selection algorithms, by simply setting its weight to zero. K-Means is
arguably the most popular partitional clustering algorithm. Efforts to integrate feature
weighting in K-Means have been done for the last 30 years (fordetails, see Section
4).

In this paper we have provided the reader with a discussion onnine of the most
popular or innovative feature weighting mechanisms for K-Means. Our survey also
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presents an empirical comparison including experiments inreal-world and synthetic
data sets, both with and without noise features. Because of the difficulties of present-
ing a fair empirical comparison (see Section 5) we experimented with six of the nine
algorithms discussed. Our survey shows some issues that aresomewhat common in
these algorithms and could be addressed in future research.For instance, each of the
algorithms we discuss presents at least one of the followingissues:

(i) the criterion to be minimised includes a new parameter (or more), but unfortu-
nately there is no clear strategy for the selection of a precise value for this parameter.
This issue applies to most algorithms we discussed. Future research could address
this issue in different ways. For instance, a method could use one or more clustering
validation indices (for a recent comparison of these, see Arbelaitz et al. 2013) to mea-
sure the quality of clusterings obtained applying different parameter values. It could
also apply a consensus clustering based approach (Goder andFilkov 2008), assuming
that two entities that should belong to the same cluster are indeed clustered together
by a given algorithm more often than not, over different parameter values. methods
developed in future research could also apply a semi-supervised approach, this could
require as low as 5% of the data being labelled in order to estimate a good parameter
(De Amorim and Mirkin 2014).

(ii) the method treats all features as if they were in the samefeature space, often
not the case in real-world data. CK-Means is an exception to this rule, it integrates
multiple, heterogeneous feature spaces. It would be interesting to see this idea ex-
panded in future research to other feature weighting algorithms. Another possible
approach to this issue would be to measure dissimilarities using different distance
measures but compare them using a comparable scale, for instance the distance scaled
by the sum of the data scatter. Of course this could lead to newproblems, such as for
instance defining what distance measure should be used at each feature.

(iii) the method assumes that all clusters in a given data setshould have the same
distance bias. It is intuitive that different clusters in a given data set may have dif-
ferent shapes. However, in the algorithms we discuss when a dissimilarity measure is
chosen it introduces a shape bias that is the same for all clusters in the data set. Future
research could address this issue by allowing different distance measures at different
clusters, leading to different shape biases. However, thiscould be difficult to achieve
given what we argue in (ii) and that one would need to align each cluster to the bias
of a distance measure.

(iv) features are evaluated one at a time, presenting difficulties for cases when
the discriminatory information is present in a group of features, but not in any single
feature of this group. In order to deal with this issue a clustering method should be
able to group such features and calculate a weight for the group. Perhaps the concept
of bi-clustering (Mirkin 1998) could be extended in future research by clustering
features and entities, but also weighting features and groups of features.

The above ideas for future research address indeed some of the major problems
we have today in K-Means based feature weighting algorithms. Of course this does
not mean they are easy to implement, in fact we acknowledge quite the opposite.
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