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Abstract In a real-world data set there is always the possibilityheahigh in our
opinion, that different features may have different degreferelevance. Most ma-
chine learning algorithms deal with this fact by either stiey or deselecting fea-
tures in the data preprocessing phase. However, we maihiaireven among rele-
vant features there may be different degrees of relevamckthas should be taken
into account during the clustering process.

With over 50 years of history, K-Means is arguably the mogiuar partitional
clustering algorithm there is. The first K-Means based elusgy algorithm to com-
pute feature weights was designed just over 30 years agmugasuch algorithms
have been designed since but there has not been, to our ldg®yla survey inte-
grating empirical evidence of cluster recovery abilitynwoon flaws, and possible
directions for future research. This paper elaborates@odhcept of feature weight-
ing and addresses these issues by critically analysing sétee most popular, or
innovative, feature weighting mechanisms based in K-Means

Keywords Feature weightingK-Means. partitional clustering feature selection.

1 Introduction

Clustering is one of the main data-driven tools for datasisl Given a data séf
composed of entitieg € Y fori = 1,2,..., N, clustering algorithms aim to partition
Y into K clustersS = {S1, Sy, ..., Sk} so that the entitieg; € Sy are homogeneous
and entities between clusters are heterogeneous, acgdaodgome notion of simi-
larity. These algorithms address a non-trivial problem seéhscale sometimes goes
unnoticed. For instance, a data set containing 25 entiieshave approximately
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4.69x10"2 different partitions ifK is set to four (Steinley 2006). Clustering has been
used to solve problems in the most diverse fields such as demyigion, text min-
ing, bioinformatics, and data mining (Vedaldi and Fulker@910; Steinley 2006;
Jain 2010; Sturn, Quackenbush, and Trajanoskil2002; Huiaalg 2008; Gasch and
Eisen 2002; Mirkin_2012).

Clustering algorithms follow either a partitional or hieghical approach to the
assignment of entities to clusters. The latter produces afsgustersS as well as
a tree-like relationship between these clusters, whichbeagasily visualised with a
dendogram. Hierarchical algorithms allow a given engityo be assigned to more
than one cluster i1$, as long as the assignments occur at different levels inréee t
This extra information regarding the relationships betweleisters comes at a con-
siderable cost, leading to a time complexity@fN?), or evenO(N®) depending on
the actual algorithm in use (Murtagh 1984; Murtagh and Gaat; 2011). Partitional
algorithms tend to converge in less time by comparison {deta Section2), but
provide only information about the assignment of entiteesltsters. Partitional al-
gorithms were originally designed to produce a set of digjolusters, in which an
entity y; € Y could be assigned to a single clus&r € S. K-Means (MacQueen
1967; Ball and Hall 1967; Steinhaus 1956) is arguably thetipagular of such algo-
rithms (for more details see Sectidn 2). Among the many eskbeis to K-Means, we
have Fuzzy C-Means (Bezdek 1981) which applies Fuzzy setyh@adeh 1965)
to allow a given entityy; to be assigned to each clusterSmat different degrees of
membership. However, Fuzzy C-Means introduces other sssuelustering, falling
outside the scope of this paper.

The popularity of K-Means is rather evident. A search in $&hgoogle.com
for “K-Means” in May 2014 found just over 32000 results, the same search in
May 2015 found 442000 results. Adding to these impressive numbers, implement
tions of this algorithm can be found in various software @aygs commonly used to
analyse data, including SPSS, MATLAB, R, and Python. HowekeMeans is not
without weaknesses. For instance, K-Means treats evegjesieature in a data set
equally, regardless of its actual degree of relevance.riglefifferent features in the
same data set may have different degrees of relevance, pegtage believe should
be supported by any good clustering algorithm. With thiskmeas in mind research
effort has happened over the last 30 years to develop K-Mazsed approaches sup-
porting feature weighting (more details in Sectidn 4). Seffbrt has lead to various
different approaches, but unfortunately not much guidamcthe choice of which to
employ in practical applications.

In this paper, we provide the reader with a survey of K-Meaaseld weighting
algorithms. We find this survey to be unique because it doesimply explain some
of the major approaches to feature weighting in K-Meansaladat provides empirical
evidence of their cluster recovery ability. We begin by fallyintroducing K-Means
and the concept of feature weighting in Sectighs 2[dnd 3ewtisly. We then criti-
cally analyse some of the major methods for feature weightirkK-Means in Section
[4. We chose to analyse those methods we believe are the nealsbuimnovative, but
since it is impossible to analyse all existing methods wepassibly guilty of omis-
sions. The setting and results of our experiments can bedfouBection§ 5 and] 6.
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The paper ends by presenting our conclusions and discussimgon issues with
these algorithms that could be addressed in future resear8ectiorL V.

2 K-Meansclustering

K-Means is arguably the most popular partitional clusgrtgorithm (Jain_2010;
Steinley 2006; Mirkin 2012). For a given data ¥tK-Means outputs a disjoint set
of clustersS = {S;,S,, ..., Sk}, as well as a centroid, for each clustelSy € S.
The centroidcy is set to have the smallest sum of distances tg;adl S, making

Ck a good general representation3y; often called a prototype. K-Means partitions
a given data seY by iteratively minimising the sum of the within-cluster tiace
between entitiey; € Y and respective centroidg € C. Minimising the equation
below allows K-Means to show the natural structureyof

K
W(S,0) = > 3 > (v - ce)?, (1)

k=1 ieSy veV

whereV represents the set of features used to describe ygaety. The algorithm
used to iteratively minimisé 1) may look rather simple atfiwith a total of three
steps, two of which iterated until the convergence. Howebés minimisation is a
non-trivial problem, being NP-Hard evenKf = 2 (Aloise et all 2009).

1. Selectthe values & entities fromY as initial centroid€,, ;, ..., Ck. SetS « 0.

2. Assign each entity; € Y to the clustelSy represented by its closest centroid. If
there are no changes 8 stop and outpu® andC.

3. Update each centroi € C to the centre of its cluste3. Go to Step 2.

The K-Means criterion we show,](1), applies the squaredifie@h distance as in
its original definition (MacQueen 1967; Ball and Hall 196I/Me use of this particular
distance measure makes the centroid update in Step thrée @fldorithm above
rather straightforward. Given a clust8g with |Sy| entities,cy, = |S_1k\ Yies, Y, for
eachve V.

One can clearly see that K-Means has a strong relation wetExpectation Max-
imisation algorithm (Dempster, Laird, and Ruoin 1977) gStgo of K-Means can be
seen as the expectation by keep@dixed and minimising[{ll) in respect 8, and
Step three can be seen as the maximisation in which oneSigesl minimised(1) in
relation toC. K-Means also has a strong relation with Principal Compoéerly-
sis, the latter can be seen as a relaxation of the former (Zhl22001; Drineas et al.
2004; Ding and He 2004).

K-Means, very much like any other algorithm in machine léagnhas weak-
nesses. These are rather well-known and understood thatttke popularity of this
algorithm and the considerable research effort done byesesarch community. Among
these weaknesses we have: (i) the fact that the number ¢érdi$shas to be known
beforehand; (ii) K-Means will partition a data séinto K partitions even if there is
no clustering structure in the data; (iii) this is a greedyoaithm that may get trapped
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in local minima; (iv) the initial centroids, found at randdmStep one heavily in-
fluence the final outcome; (v) it treats all features equadlgardless of their actual
degree of relevance.

Here we are particularly interested in the last weaknesgaRiess of the prob-
lem at hand and the structure of the data, K-Means treatsfeatirev € V equally.
This means that features that are more relevant to a givenlggnomay have the
same contribution to the clustering as features that aseédsvant. By consequence
K-Means can be greatly affected by the presence of totaeivant features, includ-
ing features that are solely composed of noise. Such featireenot uncommon in
real-world data. This weakness can be addressed by setéigihts to each feature
v € V, representing its degree of relevance. We find this to betacpkarly important
field of research, we elaborate on the concept of featurehtiaiin the next section.

3 Feature Weighting

New technology has made it much easier to acquire vast amofireal-world data,
usually described over many features. Tduese of dimensionalityBellman| 1957)

is a term usually associated with the difficulties in anadgssuch high-dimensional
data. As the number of featurgse V increases, the minimum and maximum dis-
tances become impossible to distinguish as their differeoompared to the mini-
mum distance, converges to zero (Beyer €t al. 1999).

disl‘ma_x— diStmin _0 @
V=0 distmin

Apart from the problem above, there is a considerable cansen the research com-

munity that meaningful clusters, particularly those inthidjmensional data, occur in

subspaces defined by a specific subset of features (Tsai an@@8; Liu and Yu

2005; Chen et al. 2012; De Amorim and Mirkin 2012). In clustealysis, and in fact

any other pattern recognition task, one should not simpdyalieatures available as

clustering results become less accurate if a significanteuof features are not rel-

evant to some clusters (Chan et al. 2Z004). Unfortunatdbgteg the optimal feature

subset is NP-Hard (Blum and Rivest 1992).

Feature weighting can be thought of as a generalizatiorattife selection (Wettschereck,
Aha, and Mohri 1997; Modha and Spangler 2003; Tsai and CHI&RT he latter has
amuch longer history and it is used to either select or deselgiven feature € V, a
process equivalent to assigning a feature werghtf one or zero, respectively. Fea-
ture selection methods effectively assume that each ofaleeted features has the
same degree of relevance. Feature weighting algorithmstmake such assump-
tion as there is no reason to believe that each of the seléet¢dres would have
the same degree of relevance in all cases. Instead, sudtitlage allow for a fea-
ture weight, normally in the interval [@]. This may be a feature weight,, subject
to Yvev Wy = 1, or even a cluster dependant weigh{, subject to}’,y Wk, = 1 for
k=1,2,...,K. The idea of cluster dependant weights is well aligned vhighintuition
that a given feature may have different degrees of relevance at different dlaste
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Feature selection methods for unlabelled data follow e&tféter or wrapper ap-
proach (Dy 2008; Kohavi and John 1997). The former uses plieg®f the data itself
to select a subset of features during the data pre-progeghise. The features are
selected before the clustering algorithm is run, making #gproach usually faster.
However, this speed comes at price. It can be rather diffiouttefine whether a
given feature is relevant without applying clustering te tfata. Methods following a
wrapper approach make use of the information given by aedfingt algorithm when
selecting features. Often, these methods lead to bettéarpeance when compared
to those following a filter approach (Dy 2008). However, thakso tend to be more
computationally intensive as the clustering and the feasalection algorithms are
run. The surveys by Dy (2008), Steinley and Brusco (2008),Gnyon and Elisseeff
(2003) are, in our opinion, a very good starting point forshaeaders in need of
more information.

Feature weighting and feature selection algorithms arecowipeting methods.
The former does not dismiss the advantages given by the. [&gature weighting
algorithms can still deselect a given featwrby setting its weightw, = 0, bring-
ing benefits traditionally related to feature selectiorctSbenefits include those dis-
cussed by Guyon and Elisseeff (2003) and Dy (2008), such assilyie reduction in
the feature space, reduction in measurement and storagjiearegnts, facilitation of
data understanding and visualization, reduction in atboriutilization time, and a
general improvementin cluster recovery thanks to the ptesavoidance of theurse
of dimensionality

Clustering algorithms recognise patterns under an unsigeeflearning frame-
work, it is only fitting that the selection or weighting of te@es should not require
labelled samples. There are a considerable amount of undsge feature selection
methods, some of which can be easily used in the data pregsing stage (Devaney
and Ram 1997; Talavera 1999; Mitra, Murthy, and|Pal 2002jtteeeselect or dese-
lect features fronY. Feature weighting algorithms for K-Means have thirty peair
history, in the next section we discuss some what we bel@be the main methods.

4 Major approachesto featureweighting in K-Means

Work on feature weighting in clustering has over 40 yearsisfohy (Sneath and
Sokal 19783), however, only in 1984 (DeSarbo et al. 1984 featveighting was ap-
plied to K-Means, arguably the most popular partitionaktduing algorithm. Many
feature weighting algorithms based on K-Means have beeglal@®d since, here we
chose nine algorithms for our discussion. These are eitiheng the most popular,
or introduce innovative new concepts.

4.1 SYNCLUS
Synthesized Clustering (SYNCLUS) (DeSarbo et al. 1984pisur knowledge, the

first K-Means extension to allow feature weights. SYNCLUSpéoys two types of
weights by assuming that features, as well as groups ofriesgtmay have different
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degrees of relevance. This algorithm requires the user emimgfully group features
into T partitionsG = {G1, Gy, ..., Gt}. We represent the degree of relevance of the
feature groufs; with w¢, where 1< t < T. The feature weight of any given feature
v e Vis represented byy,.

In its first step, very much like K-Means, SYNCLUS requestsiker to provide
a data seY and the desired number of partitioks Unlike K-Means, the user is also
requested to provide information regarding how the featare grouped, and a vector
w containing the weights of each feature group. This veetts normalised so that
>{ wx = 1. DeSarbo suggests that eag) the weight of a given featunee V, can
be initialised so that it is inversely proportional to theigace ofv over all entities
y; € Y, or are all equal.

The distance between two objegfsandy; is defined, in each feature group, as
their weighted squared distand@y, y;)¥ = Ycq W, (Yiv — Yiv)% Givenw, w, Y, K,
andd(y;, y;)®, fori, j = 1,2,...,N, SYNCLUS optimises the weighted mean-square,
stress-like objective function below.

¢ wt Tiey jev(Gij — d(yi, yi)©)
ZieY ZjeY 6i2j
subject to a disjoint clusteringsothgt NSy = 0 fork,| = 1,2, ..., K andk # |, as

well asYiey X jey 651 # 0,6ij = ea; + p (details regarding andg in DeSarbo et al.
1984) where,

W(S,C,w,w) = , (3)

(4)

. _ B iy € Sk
. 0, otherwise

Although an icon of original research, SYNCLUS does haveesamaknesses. This
computationally expensive algorithm presented mixedltesun empirical data sets
(Green, Kim, and Carmone 1990), and there have been othersctd poor perfor-
mance (Gnanadesikan, Kettenring, and Tsao/1995). SYNCEW8tiappropriate for
clusterwise regression context with both dependent anepiaddent variables (De-
Sarbo and Cron_1938).

Nevertheless, SYNCLUS has been a target to various extendizeSarbo and
Mahajan (1984) extended this method to deal with conssadtifferent types of clus-
tering schemes, as well as a general linear transformatittredeatures. It has also
been extended by Makarenkov and Legendre (2001) by usingdlak-Ribiere op-
timisation procedure (Polek 1971) to minimigé (3). Howevhis latter extension
seemed to be particularly useful only when ‘noisy’ featuit®se without cluster
structure) existed. The authors recommended using equghtsg(ie. the original
K-Means) when data are error-perturbed or contained ositlie

The initial work on SYNCLUS also expanded into a method to fiptimal fea-
ture weights for ultrametric and additive tree fitting (Dee801986; De Soele 1988).
However, this work lies outside the scope of this paper ast#idod was applied in
hierarchical clustering.

SYNCLUS marked the beginning of research on feature weighti K-Means,
and it is possible to see its influences in nearly all otheordtlgms in this particular
field.
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4.2 Convex K-Means

Modha and Spangler (2003) introduced the convex K-MeansM&dns) algorithm.
CK-Means presents an interesting approach to feature teighy integrating mul-
tiple, heterogeneous feature spaces into K-Means. Givetwih entitieqy;, yj} C Y,
each described over the featuves V, the dissimilarity between these two entities is
given by the distortion measure below.

Du(yi, Y1) = D WeDu(Viv, V), (5)

veV

where D, depends on the feature space in use. Modha and Spanglentptese
generic examples.

(Vv = Yiv) (Vv — Yjv), in the Euclidean case

6
2(1-yiyjy), in the Spherical case ©

Du(Yw,Yy) = {

Equation [(b) allows calculating the distortion of a speaifigster }.,,cs, Dw(¥i, Ck),
and the quality of the clusterir§y = {S1, Sy, ..., Sk}, given by YK Zyies. Dw(Yi» C)-
CK-Means determines the optimal set of feature weights slmtiltaneously min-
imises the average within-cluster dispersion and maxisnike average between-
cluster dispersion along all of the feature spaces, by cpresee minimising the

criterion below.
K

W(S.C.w) = > > Dulyi. ). ()
k=1 y;eSk

This method finds the optimal weight, for eachv € V from a pre-defined set of
feature weightst = {w : Y,yW = 1L,w, > 0,v € V}. Each partitionS™ =
(S s, ..., s} generated by minimisin@(7) with a different set of weights 4
is then evaluated with a generalization of Fisher’s disgrant analysis. In this, one
aims to minimise the ratio between the average within-eludistortion and the av-
erage between-cluster distortion.

CK-Means can be thought of as a gradient descent method ¢kiat imcreases
(@), and eventually converges to a local minima solutioris filrethod has introduced
avery interesting way to cluster entities described oviégidint feature spaces, some-
thing we would dare say is a common characteristic of modeahworld data sets.
CK-Means has also shown promising results in experimentsdfi and Spangler
2003), however, the way it finds feature weights has led tonglahat generating
would be difficult in high-dimensional data (Tsai and Chi®gpHuang et al. 2005),
and that there is no guarantee the optimal weights would belifuang et al. 2005).

4.3 Attribute weighting clustering algorithm
Another extension to K-Means to support feature weights waieduced by Chan

et al. (2004). This algorithm generates a weight for each feature € V at each
clusterinS = {S1, S, ..., Sy, ..., Sk}, within the framework of K-Means. This method



8 Renato Cordeiro de Amorim

supports the intuitive idea that different features mayehaiferent degrees of rel-
evance at different clusters. This Attribute Weightingaaithm (AWK, for short)
attempts to minimise the weighted squared distance betesatitiesy; € Y and their
respective centroids € C, as per the criterion below.

K
W(S,C,w) = Z Z Z W, d(Yivs Ci)s (8)

k=1 i€Sy veV

whereg is a user-defined parameter that is greater thaiyl,, cx) = |Yiv — Ck? for a
numerical, and its the simple matching dissimilarity measure belavafcategorical
V.

01 if Yiv = Cky

9
1, if Yiv # Cv- ®)

d(yiv, Ckv) = {
The criterion[(8) has a computational complexity compleaitO(N MK) (Chan et al.
2004), whereM = |V| and is subject to:

1. Adisjoint clustering, in whictsx NS, = 0 fork,1 = 1,2,..., Kandk # I.
2. A crisp clustering, given bE,*f:l ISkl = N.

3. Yiev Wy = 1 for a given clusteBy.

4. {w} >0fork=1,2,..,Kandve V.

Chan et al. (2004) minimiseE](8) under the above constraintssing partial opti-
misation forS, C andw. The algorithm begins by setting eaeh, = 1/|V|, fixing C
andw in order to find the necessary conditions$minimises[(B). Then one fixes
andw, minimising [8) in respect t€. Next, one fixesS andC and minimises[{8) in
respect tav. This process is repeated until convergence.

The minimisations of the first and second steps are ratha@ghktrforward. The
assignment of entities to the closest cluSguses the weighted distandéy;, ck) =
Svev Wi(Yiv — Cwv)?, and sincel(8) clearly uses the squared Euclidean distagce,
&7 Zies, Yiv- The minimisation of[(B) is respect tw depends or¥ics, (Yiv — Ck)?,
generating the three possibilities below.

%’ if Ziesk(yiv - CkV)2 = 01 andV* = |{VI : ZiESk(yiV’ - Ck\/)z = 0}|9
Wi = 0, if Yics, (Viv — C)? # 0, butTics, (Yiv — Ckv)? = 0, for somev’ €V,
vV — .
. oL if Yies, (Yiv — C)? # 0.
Tiesy Oiv=ck)” [A-1
Tiesy 0ij—%j)? ]

stv[
(10)

The experiments in Chan et al. (2004) deal solely vgitls 1. This is probably to
avoid the issues related to divisions by zero fhat 1 would present in[(10), and
the behaviour of[(8) at other values (for details see Se&idhn It is interesting to
see that DeSarbo et al. (1984) suggested two possible casestial weights in
SYNCLUS (details in Sectidn4.1), either to set all weigltthte same number, or to
be inversely proportional to the variance of the featurelieggion. It seems to us that
Chan’s method have used both suggestion, by initializirah eeeightw, to 1/|V|
and by optimisingvy, so that it is higher when the dispersionvaf y;, € Sy is lower,
as the third case in(10) shows.
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There are some issues to have in mind when using this algaritihe use of
(9 may be problematic in certain cases as the rangégf c.,) will be different de-
pending on whetheris numerical or categorical. Based on the work of Huang (1998
and Ng and Wong (2002), Chan et al. introduces a new paratodb@tance the nu-
merical and categorical parts of a mixed data set, in an attémnavoid favouring
either part. In their paper they test AWK using differentues for this parameter and
the best is determined as that resulting in the highesterlustovery accuracy. This
approach is rather hard to follow in real-life clusteringsarios as no labelled data
would be present. This approach was only discussed in theriexents part of the
paper, not being present in the AWK description so it is igdn our experiments.

Another point to note is that their experiments using réaldata sets, despite all
explanations about feature weights, use two weights foln éaa&ture. One of these
relates to the numerical features while the other relatélsase that are categorical.
This approach was also not explained in the AWK original dpsion and is ignored
in our experiments as well.

A final key issue to this algorithm, and in fact various othéghat there is no
clear method to estimate the param@tdnstead, the authors state that their method
is not sensitive to a range of values@fut unfortunately this is demonstrated with
experiments on synthetic data in solely two real-world dats.

4.4 Weighted K-Means

Huang et al. (2005) introduced the Weighted K-Means (WK-Mgalgorithm. WK-

Means attempts to minimise the object function below, whickimilar to that of

Chan et al. (2004), discussed in Secfiod 4.3. However, arlik latter, WK-Means
originally sets a single weight, for each featurg € V.

K
W(S, C, W) = Z Z Z V\ﬁd(yiv, Ckv), (11)

k=1 i€Sy veV

The Equation above is minimised using an iterative methptinusing (11) forS, C,
andw, one at a time. During this process Huang et al. presentsviv@ossibilities
below for the update of,, with S andC fixed, subject tg8 > 1.

0,ifDy=0
W= 1 __ifp, %0, (12)
I At
where,
K
Dy = > dv: G, (13)
k=1 iESk

andh is the number of features whelg, # 0. If 3 = 1, the minimisation of[(11)
follows thatw,, = 1, andw, = 0, wherev’' # v, andD,, < Dy, for eachv € V (Huang
et al| 2005).
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The weight in (IZ) makes the final clusterirg, and by consequence the cen-
troids inC, dependant of the value gf There are two possible critical values &0
and 1. Ifg = 0, Equation[(Il1) becomes equivalent to that of K-Me&hs (18 A 1,
the weight of a single featuree V is set to one (that with the loweBY,), while all
the others are set to zero. Settjhg 1 is probably not desirable in most problems.

The above critical values generate three intervals of ésteWherg < 0, wy,
increases with an increasely. However, the negative exponent makéssmaller,
so thatv has less of an impact on distance calculations. # B8 < 1, w, increases
with an increase iy, so does\. This goes against the principle that a feature with
a small dispersion should have a higher weight, proposediayn @t al. (2004) (per-
haps inspired by SYNCLUS, see Section4.1), and followed bgrig et al. (2005).
If 8> 1,w, decreases with an increasel¥, and so doewff, very much the desired
effect of decreasing the impact of a featuiie (1) whoseD, is high.

WK-Means was later extended to support fuzzy clusteringafhd Yul[2006),
as well as cluster dependant weights (Huang et al. |2008).latter allows WK-
Means to support weights with different degrees of relegaatcdifferent clusters,
each represented hyy,. This required a change in the criterion to be minimised
to W(S,C,W) = 3K ; Sics, Svev W, d(Yiv, C), and similar changes to other related
equations.

In this new version, the dispersion of a varialle V at a clusteiSy is given by
Dkv = Xies (d(yiv, Ckv) + C), wherec is a user-defined constant. The authors suggest
that in practicec can be chosen as the average dispersion of all featuresdiathset.
More importantly, the adding af addresses a considerable shortcoming. A feature
whose dispersioby, in a particular clusteBy is zero should not be assigned a weight
of zero when in facDy, = 0 indicates that may be an important feature to identify
clusterSx. An obvious exception is iE,‘le Dy = 0 for a givenv, however, such
feature should normally be removed in the data pre-procgssage.

Although there have been improvements, the final clustesistill highly depen-
dant on the exponent exponghit seems to us that the selectiongadepends on the
problem at hand, but unfortunately there is no clear stydfiegits selection. We also
find that the lack of relationship betwegand the distance exponent (two in the case
of the Euclidean squared distance) avoids the possibiliseen the final weights as
feature re-scaling factors. Finally, although WK-Meanpparts cluster-dependant
features, all features are treated as if they were a homogsrfeature space, very
much unlike CK-Means (details in Section}4.2).

4.5 Entropy Weighting K-Means

The Entropy Weighting K-Means algorithm (EW-KM) (Jing, Nand Huang 2007)

minimises the within cluster dispersion while maximisihg hegative entropy. The
reasoning behind this is to stimulate more dimensions tdritnre to the identifica-

tion of clusters in high-dimensional sparse data, avoigiradplems related to identi-
fying such clusters using only a few dimensions.
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With the above in mind, Jing, Ng, and Huang (2007) devisedahewing crite-
rion for EW-KM:

K N
W(S, C» W) = Z Z Z ka(Yiv - Ckv)2 +Y Z kaloQ\M(V ’ (14)
k=1 lieSk veV veV

subject to) ey Wy = 1, {Wky} > 0, and a crisp clustering. In the criterion above,
one can easily identify that the first term is the weighted sidirthe within cluster
dispersion. The second term, in whighs a parameter controlling the incentive for
clustering in more dimensions, is the negative weight gmtro

The calculation of weights in EW-KM occurs as an extra stepelation to K-
Means, but still with a time complexity @(rN MK) wherer is the number of itera-
tions the algorithm takes to converge. Given a cluSigithe weight of each feature
v € V is calculated one at a time with the equation below.

D

o exd=m)

- —Diiy?
Yjev €XH(—=H)

where Dy, represents the dispersion of featwre the clusterSy, given by Dy, =
Yies (Yiv — Ckv)?. As one would expect, the minimisation &f{14) uses pariiroi-
sation forw, C, andS. First,C andw are fixed and[{1l4) is minimised in respect to
S. Next, S andw are fixed and[{14) is minimised in respectGoln the final step,
S andC are fixed, and(14) is minimised in respectioThis adds a single step to
K-Means, used to calculate feature weights.

The R packagaeightedKkmeanfund at CRAN includes an implementation of
this algorithm, which we decided to use in our experimeng&tdits in Sectiongls
and[®). Jing, Ng, and Huang (2007) presents extensive empets, with synthetic
and real-world data. These experiments show EW-KM outperiftg various other
clustering algorithms. However, there are a few points weukhnote. First, it is
somewhat unclear how a user should choose a precise valye Also, most of
the algorithms used in the comparison required a paramstered. Although we
understand it would be too laborious to analyse a large rahgarameters for each
of these algorithms, there is no much indication on reagpbighind the choices
made.

Wiv (15)

4.6 Improved K-Prototypes

Ji et al. (2013) have introduced the Improved K-Prototypestering algorithm (IK-
P), which minimises the WK-Means criteridn {11), with inflwes from k-prototype
(Huang 1998). IK-P introduces the concept of distributedtiaed to clustering, al-
lowing the handling of categorical features by adjusting diistance calculation to
take into account the frequency of each category.

IK-P treats numerical and categorical features diffeserttiit it is still able to
represent the clust&; of a data seY containing mixed type, data with a single cen-
troid ¢k = {Ck1, Ck2, .., Ckvi}- Given a numerical featuse ¢y = ﬁ Yies, Yiv, the center



12 Renato Cordeiro de Amorim

given by the Euclidean distance. A categorical feawgentainingL categories € v,
hasc_k\, = {{al, wi ) (82, w2 ), . fd, Wl ), o 18, wkv}}_. This representation fpr a cat-
egoricalv allows each categorg € v to have a welghtuLV = Yies, 1(Yw), directly
related to its frequency in the data ¥et

#l if Yiv = a'lw
nyw) = {Z'ssk o (16)
0, if yy # a,.

Such modification also requires a re-visit of the distaneeefion in [11). The dis-
tance is re-defined to the below.

[Yiv — Ckl, if Vis numerical,
d(Yw, Cv) = o ) 17
Ofv. G {t,o(yi\, — Cky), if Vis categorical (47
whereg(Yiy — Ck) = ZkK:1 Y, al,),
01 If yIV = a{/?
Iy, a%) = _ 18
(Yiv- &) {w!‘w ifyy £ al, (18)

IK-P presents some very interesting results (Ji et al. |20d&performing other
popular clustering algorithms such as k-prototype, SBA@,KL-FCM-GM (Chatzis
2011; Ji et al. 2012). However, the algorithm still leavesmise®mpen questions.

For instance, Ji et al. (2013) present experiments on s skt (two of which
being different versions of the same data set) segfing8, but it is not clear whether
the good results provided by this particufamould generalize to other data sets.
Given a numerical feature, IK-P applies the Manhattan disd1T), however, cen-
troids are calculated using the mean. The center of the M&rh@istance is given by
the median rather than the mean, this is probably the reakgdivet al. found it nec-
essary to allow the user to set a maximum numbers of itemtiotheir algorithm.
Now, even if the algorithm converges, most likely it wouldngerge in a smaller
number of iterations if the distance used for the assignsnehéntities was aligned
to that used for obtaining the centroids. Finally, whilg:,, c«,) for a categorical
has a range in the interval,[0], the same is not true if is numerical, however, Ji
et al. (2013) make no mention to data standardization.

4.7 Intelligent Minkowski Weighted K-Means

Previously, we have extended WK-Means (details in Seéfidhldly introducing the
intelligent Minkowski Weighted K-Means (iIMWK-Means) (Demrdorim and Mirkin
2012). In its design, we aimed to propose a deterministiorétgm supporting non-
elliptical clusters with weights that could be seen as feateighting factors. To do
so, we combined the Minkowski distance and intelligent Kaig (Mirkin[2012), a
method that identifies anomalous patterns in order find thelmu of clusters in a
data set, as well as good initial centroids.
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Below, we show the Minkowski distance between the entiti@ndy;, described
over features € V.
Ay, yi) = O Iy = Yl P, (19)
veV
wherepis a user-defined parameterplequals 12, or oo, Equation[(ID) is equivalent
to the the Manhattan, Euclidean and Chebyshev distancgseatvely. Assuming
a given data set has two dimensions (for easy visualisattbr) distance bias of
a clustering algorithm using_(1L9) would be towards cluste®se shape are any
interpolation between a diamonp £ 1) and a squarg)= ), clearly going through
a circle (p = 2). This is considerably more flexible than algorithms basadly on
the squared Euclidean distance, as these recover clusisesitiowards circles only.
One can also see the Minkowski distance as a multiple of theepamnean of the
feature-wise differences betwegrandyj;.
The iIMWK-Means algorithm calculates distances using (2@ygighted version
of thep" root of (19). The use of a root is analogous to the frequentfides squared
Euclidean distance in K-Means.

v, ) = D Whly = ypl®, (20)

veV

where the user-defined paramepescales the distance as well as well as the cluster
dependent weighti,. This way the feature weights can be seen as feature rargcali
factors, this is not possible for WK-Means when¢ 2. Re-scaling a data set with
these feature re-scaling factors increases the likelirmfodhrious cluster validity
indices to lead to the correct number of clusters (De Amonrd Blennig 2015).
With (20) one can reach the iIMWK-Means criterion below.

K
W(S,Cw) = > > > Wl iy - Gl (21)

k=1 i€Sy veV
The update ofw, for eachv e V andk = 1, 2, ..., K, follows the equation below.

1

1
Dyvp p-1
ueV Dkup

Wiy = s (22)

where the dispersion of featurein clusterk is now dependant on the expongmt
Divp = Yies, IYiv — Cl? + €, andc is a constant equivalent to the average dispersion.
The update of the centroid of clust8k on featurev, ¢, also depends on the value
of p. At values ofp 1, 2, andwo, the center ofl(119) is given by the median, mean and
midrange, respectively. Ib ¢ {1, 2, o} then the center can be found using a steepest
descend algorithm (De Amorim and Mirkin 2012).

The iIMWK-Means algorithm deals with categorical featurgsttansforming
them in numerical, following a method described by Mirki®{2). In this method,
a given categorical featukewith L categories is replaced hybinary features, each
representing one of the original categories. For a giveityegt, only the binary
feature representing, is set to one, all others are set to zero. The concept of dis-
tributed centroid (Ji et &l. 201.3) can also be applied to tgorghm (De Amorim and
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Makarenkov to appear), however, in order to show a singlsierof our method we
decided not to follow the latter here.

Clearly, the chosen value @f has a considerable impact on the final clustering
given by iMWK-Means. De Amorim and Mirkin (2012) introducagemi-supervised
algorithm to estimate a googl requiring labels for 20% of the entities ¥ Later,
the authors showed that it is indeed possible to estimated gaue forp using only
5% of labelled data under the same semi-supervised methddpr@sented a new
unsupervised method to estimaterequiring no labelled samples (De Amorim and
Mirkin 2014).

The IMWK-Means proved to be superior to various other abhanis, including
WK-Means with cluster dependant weights (De Amorim and MiiR012). How-
ever, IMWK-Means also has room for improvement. Calcufatincentroid for a
p ¢ {1, 2, oo} requires the use of a steepest descent method. This candedimum-
ing, particularly when compared with other algorithms definc,, = ‘S—lkl Yies, Yiv-
Although iIMWK-Means allows for a distance bias towards radliptical clusters, by
settingp # 2, it assumes that all clusters should be biased towardsithe shape.

4.8 Feature Weight Self-Adjustment K-Means

Tsai and Chiu (2008) integrated a feature weight self-anjast mechanism (FWSA)
to K-Means. In this mechanism findirg, for v € V is modelled as an optimisation
problem to simultaneously minimise the separations withirsters and maximise
the separation between clusters. The former is measyredy\ ; Yics, d(Viv, C),
whered() is a function returning the distance between the featwentity y; and
that of centroiccy. The separation between clusters of a given featusemeasured
by b, = Zle Nkd(cky, Cv), whereNy is the number of entities iS5y, andc, is the
center of feature overy; € Y. With a, andb, one can evaluate how much the feature
v contributes to the clustering quality, and in a given itieraj caIcuIateN\(,”l).

WD }(Wy)+ bsj)/fi\(/j) _
2 Zvev(b\(/])/a\(/]))

where the multiplication by /2 makes sure thaty, € [0, 1] so it can satisfy the
constrain}.cy vv\(,”l) = 1. With wy, one can then minimise the criterion below.

): (23)

K
W(S,Cw) = > 3" 3 Wolyiv — G, (24)

k=1 i€Sy veV

subject to) .y Wy, = 1 and{w,}yey > 0, and a crisp clustering. Experiments in syn-
thetic and real-world data sets compare FWSA K-Means faldyrin relation to
WK-Means. However, it assumes a homogeneous feature spaddike the pre-
vious algorithms it still evaluates a single feature at aetifhis means that that a
group of features, each irrelevant on its own, but inforueaifi in a group, would be
discarded.

FWSA has already been compared to WK-Means in three redtvdata sets
(Tsai and Chiu_2008). This comparison shows FWSA reachingdjmsted Rand
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index (ARI) 0.77 when applied to the Iris data set, while Wikedms reached only
0.75. The latter ARI was obtained by settiag= 6, but our experiments (details in
Sectior6) show that WK-Means may reach 0.81. The differenag be related to
how the data was standardised, as well as Bovas set as here we found the best at
each run. Of course, the fact that FWSA does not require adefeared parameter is
a considerable advantage.

4.9 FG-K-Means

The FG-K-Means (FGK) algorithm (Chen etlal. 2012) extendd&ans by applying
weights at two levels, features and clusters of featureis dlgorithm has been de-
signed to deal with large data sets whose data comes fronipieudburces. Each of
theT data sources provides a subset of feat@es {G;, G, ..., Gr}, whereG; # 0,
GicV,GiNnGs=0fort # sand 1< t,s < T, anduG; = V. Given a cluste5,
FGK identifies the degree of relevance of a featynepresented bw,, as well as
the relevance of a group of featur@g represented byy:. Unlike SYNCLUS (de-
tails in Sectiof 4]1), FGK does not require the weights ofiteeips of features to be
entered by the user. FGK updates the K-Means critefibn ()dade bothw, and
wkt, @S we show below.

K

T T
W(S,Cw,w) = Z Z Z Z WktWiyd(Yiv, Ciy) + 4 Z wilog(wkt) + 17 Z ka|Og(ka)} ,
=1

k=1 LieSk t=1 veG; veV
(25)

whered andp are user-defined parameters, adjusting the distributibtieeaveights
related to the groups of features@) and each of the featurese V, respectively.
The minimisation of[(25) is subject to a crisp clustering ihigh any given entity
y; € Y is assigned to a single clust8g. The feature group weights are subject to
fozl wk = 1,0< w < 1,forl <t < T. The feature weights are subject to
Svee Wy =1, 0< Wy <1, forl<k<Kand1<t<T.

Given a numerical, the functiond in (28) returns the squared Euclidean distance
betweeny,, andcy,, given by §, — ck,)?. A categorical leads tod returning one if
Viv = Ckv, and zero otherwise, very much liKg (9). The update of eaatufe weight
follows the equation below.

—E
exp(—*)

o E
Yhec, €XH—*)

whereEyy = Yics, wkid(Yiv, Ckv), andt is the index of the feature group to which
featurev is assigned to. The update of the feature group weightsislio

Wiy = (26)

exi(-)
2;1 exq%ks)
where, Dyt = Yies, 2veg, Wkvd(Yiv, Ckv). Clusterings generated by FGK are heavily

dependant ol andrn. These parameters must set to positive real values. Lalge va
ues fora andn lead to weights to be more evenly distributed, so more sudespa

(27)

Wkt =
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contribute to the clustering. Low values lead to weights\genore concentrated on
fewer subspaces, each of these having a larger contrittatitve clustering.

FGK has a time complexity ad(rN MK), wherer is the number of iterations this
algorithm takes to complete (Chen etlal. 2012). It has ofapmied K-Means, WK-
Means (see Sectidn 4.4), LAC (Domeniconi et al. 2007) andW(see Section
[4.3), but it also introduces new open questions. This pdaienethod was designed
aiming to deal with high-dimensional data, however, it isciear howt andr, should
be estimated. This issue makes it rather hard to use FGK lkwedd problems. We
find that it would also be interesting to see a generalizatfdhis method to use other
distance measures, allowing a different distance bias.

5 Setting of the experiments

In our experiments we have used real-world as well as syinttiata sets. The former
were obtained from the popular UCI machine learning repogi(Lichman 2013)
and include data sets with different combinations of nuoa@nd categorical fea-
tures, as we show in Tadlg 1.

Table1 Real-world data sets used in our comparison experiments.

Entities Clusters Original features

Numerical Categorical Total
Australian credit 690 2 6 8 14
Balance scale 625 2 0 4 4
Breast cancer 699 2 9 0 9
Car evaluation 1728 4 0 6 6
Ecoli 336 8 7 0 7
Glass 214 6 9 0 9
Heart (Statlog) 270 2 6 7 13
lonosphere 351 2 33 0 33
Iris 150 3 4 0 4
Soybean 47 4 0 5 35
Teaching Assistant 151 3 1 4 5
Tic Tac Toe 958 2 0 9 9
Wine 178 3 13 0 13

The synthetic data sets contain spherical Gaussian ciustethat the covariance
matrices are diagonal with the same diagonal vaitigenerated at each cluster ran-
domly between B and 15. All centroid components were generated independently
from a Gaussian distribution with zero mean and unity vaarhe cardinality of
each cluster was generated following an uniformly randostrithution, constrained
to a minimum of 20 entities. We have generated 20 data se®sr@wath of the fol-
lowing configurations: (i) 500x4-2, 500 entities over foeafures partitioned into
two clusters; (ii) 500x10-3, 500 entities over 10 featuragifioned into three clus-
ters; (iii) 500x20-4, 500 entities over 20 features panti#d into four clusters; (iv)
500x50-5, 500 entities over 50 features partitioned inte €iusters.
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Unfortunately, we do not know the degree of relevance of deature in all of
our data sets. For this reason we decided that our expesnséould also include
data sets to which we have added noise features. Given aedatareach of its cat-
egorical features we have added a new feature composedlgofiuniform random
integers (each integer simulates a category). For eacls oifuitnerical features we
have added a new feature composed entirely of uniform randdues. In both cases
the new noise feature has the same domain as the originatéeahis approach has
effectively doubled the number of features in each dataasetell as the number of
data sets used in our experiments.

Prior to our experiments we have standardised the numédeaalres of each of
our data sets as per the equation below.

Yiv = W

M= Tangey) )
where¥; = £ YN, vy, andranggyy) = maxfyw},) — minfyw}N,). Our choice of
using [28) instead of the populascore is perhaps easier to explain with an example.
Lets imagine two features, unimodaland multimodaVl,. The standard deviation of
v, would be higher than that ef which means that thescore ofv, would be lower.
Thus, the contribution of, to the clustering would be lower than thatvgfeven so it
is v, that has a cluster structure. Arguably, a disadvantageinf((&8) is that it can
be detrimental to algorithms based on other standardisatiethods (Steinley and
Brusca 2008b), not included in this paper.

We have standardised the categorical features for all lnsetlexperiments with
the Attribute weighting and Improved K-Prototypes aldumits (described in Sec-
tiong4.3 anf[ 416, respectively). These two algorithms defigtances for categorical
features, so transforming the latter to numerical is notiiregl. Given a categorical
featurev containingg categories we substituteby g new binary features. In a given
entity y; only a single of these new features is set to one, that reptiagehe cate-
gory originally iny,,. We then numerically standardise each of the new features by
subtracting it by its mean. The mean of a binary feature iaat its frequency, so a
binary feature representing a category with a high frequeoatributes less to the
clustering than one with a low frequency. In terms of datagmecessing, we also
made sure that all features in each data set had a range Higimerero. Features
with a range of zero are not meaningful so they were removed.

Unfortunately, we found it very difficult to set a fair compam including all
algorithms we describe in this paper. SYNCLUS and FG-K-Mgdescribed in Sec-
tions[4.1 and4]9, respectively) go a step further in featueghting by allowing
weights for feature groups. However, they both require & to meaningfully group
featuress € Vinto T partitionsG = {G1, G, ..., Gt} with SYNCLUS also requesting
the user to set a weight for each of these groups. Even if wehadgh information
to generat& it would be unfair to provide this extra information to sonlgaithms
and not to others. If we were to group features randomly wdavoe providing these
two algorithms with misleading information more often thraot, which would surely
have an impact on their cluster recovery ability. If we wearesét a single group of
features and give this group a weight of one then we would b®véeng the main
advantage of using these algorithms, and in fact FG-K-Meandd be equivalent to
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EW-KM. Convex K-Means (Sectidn 4.2) also goes a step fuithferature weighting,

it does so by integrates multiple, heterogeneous feataeesp Modha and Spangler
(2003) demonstrates that with the Euclidean and Spherasas However, there is
little information regarding the automatic detection of éppropriate space given a
featurev € V, a very difficult problem indeed. For these reasons we ddan to
include these three algorithms in our experiments.

6 Results and discussion

In our experiments we do have a set of labels for each data kit.allows us to
measure the cluster recovery of each algorithm in termseoittjusted Rand index
(ARI) (Hubert and Arabie 1985) between the generated dlingteand the known

labels.
| i (3) - 12 (3) =i 6)
32 (3) + 2 G0 - 2 (3) 5 G E)
Wherenij =1|Sin Sj|, g = le(21|si N Sj| andb; = ZiK:1|Si N Sj|.

FWSA is the only algorithm we experiment with that does nquiiee an extra pa-
rameter from the user. This is clearly an important advangsgestimating optimum
parameters is not a trivial problem, and in many cases tHeeaibf the algorithms
do not present a clear estimation method.

The experiments we show here do not deal with parameter a&tstim Instead,
we determine the optimum parameter for a given algorithmxipegmenting with
values from 10 to 50 in steps of QL. The only exception are the experiments with
EW-KM where we apply values from 0 to®in steps of AL, this is because EW-KM
is the only algorithm in which a parameter between zero amd®also appropriate.
Most of the algorithms we experiment with are non-deterstioi(iMWK-Means is
the only exception), so we run each algorithm at each paexri0 times and select
as the optimum parameter that with the highest average ARI.

Tabled®? and13 show the results of our experiments on thenedd data sets
without noise features added to them (see Thble 1). We sheavbrage (together
with the standard deviation) and maximum ARI for what we fotmbe the optimum
parameter for each data set we experiment with. There dexatit comparisons we
can make, particularly when one of the algorithms is deteistic, IMWK-Means. If
we compare the algorithms in terms of their expected ARleigia good parameter,
then we can see that in 9 data sets IMWK-Means reaches thedtigiRl. We run
each non-deterministic algorithm 100 times for each patanvalue. If we take into
account solely the highest ARI over these 100 runs then thekKBWfeaches the
highest ARI overall in 9 data sets, while IK-P does so in sitdl ®oking only at
the highest ARI, the FWSA algorithm (the only algorithm notrequire an extra
parameter) reaches the highest ARI in four data sets, the samber as AWK and
WK-Means. Another point of interest is that the best paramete could find for
iIMWK-Means was the same in four data sets.

Tabled 4 and15 show the results of our experiments on thewewdd data sets
with noise features added to them. Given a data¥sébr eachv € V we add a new

(29)
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Table 2 Experiments with the real-world data sets with no addedenfeatures. The standard deviation
can be found after the backslash under the mean. Par reftére tmrameter value required by the algo-

rithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian  0.15/0.11 0.50 4.9 0.19/0.23 0.50 2.2 0.31/0a80 0.90
Balance 0.03/0.03 0.19 3.4 0.04/0.04 0.18 4.7 0.04/0.053 2210
Breast c. 0.68/0.20 0.82 4.5 0.83/0.00 0.83 2.6 0.85/0.087 01.10
Car eva. 0.07/0.05 0.22 2.6 0.04/0.05 0.13 1.2 0.07/0.0&2 160
Ecoli 0.02/0.02 0.04 2.5 0.42/0.06 0.57 3.5 0.45/0.09 0.7200
Glass 0.15/0.03 0.22 3.7 0.19/0.04 0.28 2.8 0.17/0.03 0.2B0 O
Heart 0.21/0.16 0.45 4.7 0.18/0.07 0.27 1.1 0.33/0.10 0.3%0 3
lonosphere 0.14/0.08 0.25 1.2 0.18/0.05 0.34 1.2 0.18/a@L 0.70
Iris 0.80/0.16 0.89 1.6 0.81/0.11 0.89 3.9 0.71/0.14 0.8200.
Soybean 0.57/0.18 1.00 3.5 0.78/0.22 1.00 3.1 0.74/0.2® 10AO

Teaching A. 0.02/0.01 0.05 1.9
Tic Tac Toe 0.02/0.03 0.07 1.4
Wine 0.76/0.06 0.82 4.8

0.02/0.01 0.07 4.0
0.03/0.04 0.15 4.1
0.85/0.02 0.90 4.4

0.03/0M20 0.20
0.02/0.035 01.00
0.82/0.05 0.980 0.

Table 3 Experiments with the real-world data sets with no addedenfaatures. The standard deviation
can be found after the backslash under the mean. Par reféne fparameter value required by the al-

gorithm. IMWK-Means is a deterministic algorithm and FWS@ed not require a parameter, hence the
dashes.

Improved K-P Intelligent Minkowski WK Feature Weight SeltIA
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max  Par
Australian  0.15/0.08 0.20 4.7 - 0.50 1.1 0.20/0.21 0.50 -
Balance 0.04/0.05 0.23 1.3 - 0.09 3.3 0.03/0.03 0.15 -
Breast c. 0.74/0.00 0.74 4.9 - 0.85 4.6 0.81/0.12 0.83 -
Car eva. 0.03/0.05 0.22 5.0 - 0.13 2.0 0.04/0.06 0.22 -
Ecoli 0.46/0.00 0.46 3.0 - 0.04 2.5 0.37/0.06 0.52 -
Glass 0.21/0.06 0.31 4.4 - 0.28 4.6 0.16/0.04 0.25 -
Heart 0.31/0.08 0.36 4.6 - 0.31 2.9 0.15/0.10 0.31 -
lonosphere 0.14/0.07 0.43 1.9 - 0.21 1.1 0.17/0.03 0.21 -
Iris 0.78/0.21 0.90 1.2 - 0.90 1.1 0.77/0.19 0.89 -
Soybean 0.87/0.16 0.95 2.4 - 1.00 1.8 0.71/0.23 1.00 -
Teaching A. 0.01/0.01 0.04 4.0 - 0.04 2.2 0.02/0.01 0.05 -
Tic Tac Toe 0.02/0.03 0.15 2.8 - 0.02 1.1 0.02/0.02 0.15 -
Wine 0.86/0.01 0.86 4.3 - 0.82 1.6 0.70/0.13 0.82 -

feature toY composed entirely of uniform random values (integers indhge of
a categorical)) with the same domain as This effectively doubles the cardinality
of V. In this set of experiments the Improved K-Prototype washiso find eight
clusters in the Ecoli data set. We believe this issue isedltd the data spread. The
third feature of this particular data set has only 10 erstitiégth a value other than
0.48. The fourth feature has a single entity with a value othan 0.5. Clearly on
the top of these two issues we have an extra seven noisedsagurely one could
argue that features three and four could be removed from dkee skt as they are
unlikely to be informative. However, we decided not to stgréning concessions to
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algorithms. Instead we expect the algorithms to find theseeis and deal with them.
This turn, when comparing expected ARI values given a goagdmater, IMWK-
Means reaches the highest ARI value in 8 data sets. It ceasex¢h the highest
ARI in the Australian data set in which it now reaches 0.22levBEW-KM reaches
0.34 (that is 0.3 more than in the experiments with no noiatufes, but such small
inconsistencies are to be expected in experiments withded@rministic algorithms).
When comparing the maximum possible for each algorithm tkeMéans algorithm
does reach the highest ARI in six data sets, while EW-KM doés §ive.

Table 4 Experiments with the real-world data sets with added n@séufes. The standard deviation can
be found after the backslash under the mean. Par refers pathmeter value required by the algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian  0.16/0.07 0.22 4.8 0.21/0.23 0.50 1.3 0.34/0A%0 5.00
Balance 0.01/0.02 0.11 2.4 0.02/0.03 0.18 3.2 0.02/0.033 0130
Breast c. 0.32/0.00 0.32 1.8 0.84/0.00 0.84 4.9 0.86/0.087 01.70
Car eva. 0.05/0.05 0.14 2.6 0.03/0.04 0.14 3.0 0.04/0.0% @180
Ecoli 0.01/0.01 0.04 3.8 0.38/0.08 0.50 1.2 0.34/0.05 0.4200
Glass 0.16/0.03 0.24 5.0 0.20/0.04 0.27 1.1 0.14/0.04 0.20 0
Heart 0.20/0.14 0.41 4.8 0.22/0.12 0.33 1.2 0.36/0.09 0.4%0 O
lonosphere 0.19/0.07 0.27 1.2 0.18/0.03 0.21 1.2 0.17/08 0.20
Iris 0.77/0.17 0.89 4.4 0.79/0.12 0.87 1.5 0.64/0.08 0.7200.
Soya 0.46/0.16 0.94 4.0 0.76/0.21 1.00 1.5 0.61/0.21 1.CRO O.
Teaching A. 0.02/0.01 0.07 4.8 0.01/0.01 0.08 2.0 0.02/0MQ5 0.30
Tic Tac Toe 0.03/0.03 0.07 1.6 0.02/0.03 0.15 2.3 0.02/0.020 00.80
Wine 0.76/0.07 0.88 3.8 0.84/0.02 0.87 1.5 0.77/0.03 0.820 0.

Table 5 Experiments with the real-world data sets with added naséufes. The standard deviation can
be found after the backslash under the mean. Par refers fratheneter value required by the algorithm.
IMWK-Means is a deterministic algorithm and FWSA does nguiiee a parameter, hence the dashes.

Improved K-P Intelligent Minkowski WK Feature Weight SelfiA
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian  0.15/0.09 0.20 4.9 - 022 1.7 0.18/0.22 0.50 -
Balance 0.02/0.04 0.13 1.4 - 0.08 2.8 0.01/0.02 0.09 -
Breast c. 0.73/0.00 0.73 45 - 087 14 0.65/0.34 0.83 -
Car eva. 0.02/0.03 0.12 1.1 - 0.04 25 0.03/0.05 0.14 -
Ecoli - - - - 0.04 25 0.09/0.09 0.29 -
Glass 0.23/0.05 0.30 34 - 023 25 0.10/0.06 0.21 -
Heart 0.32/0.06 0.36 4.0 - 030 3.9 0.10/0.10 0.35 -
lonosphere 0.12/0.04 0.38 2.1 - 0.29 15 0.16/0.05 0.21 -
Iris 0.82/0.12 0.85 3.2 - 0.9 11 0.75/0.28 0.89 -
Soya 0.90/0.11 0.95 2.1 - 1.00 14 0.67/0.19 1.00 -
Teaching A. 0.00/0.01 0.02 4.7 - 0.05 2.9 0.01/0.01 0.05 -
Tic Tac Toe 0.02/0.04 0.15 1.1 - 0.07 11 0.02/0.03 0.15 -
Wine 0.83/0.03 0.90 4.4 - 083 1.2 0.55/0.25 0.81 -



A survey on feature weighting based K-Means algorithms 21

Tables 6 and]7 show the results of our experiments on the eynttlata sets
with and without noise features. Given a data$efor eachv € V we have added
a new feature t& containing uniformly random noise in the same domain asdhat
v, very much like what we did in the real-world data sets. Thiy difference is that
in the synthetic data sets we do not have categorical featuré we know that they
contain Gaussian clusters (see Sedtion 5). We have 20 dafaseach of the data set
configurations, hence, the values under max represent #rage of the maximum
ARI obtained in each of the 20 data sets, as well as the stdrsiation of these
values.

In this set of experiments IMWK-Means reached the highegeeted ARI in all
data sets, with and without noise features. If we compaedystiie maximum possi-
ble ARI per algorithm WK-Means reaches the highest ARI ireéhdata set config-
urations with no noise features added to them, and in twoefitita sets with noise
features. AWK also reaches the highest ARI in two of the caméijons Clearly,

Table 6 Experiments with the synthetic data sets, with and withmisen features. The standard devia-
tion can be found after the backslash under the mean. Pas tef¢he parameter value required by the
algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI
Mean Max Par Mean Max Par Mean Max Par

No noise

500x4-2  0.50/0.36 0.61/0.31 4.11/1.21 0.61/0.32 0.62/0328/1.26 0.62/0.30 0.66/0.26 2.35/1.15
500x10-3 0.62/0.20 0.83/0.11 4.55/0.53 0.68/0.20 0.86/03.10/1.05 0.67/0.20 0.84/0.10 0.83/0.39
500x20-4 0.74/0.22 0.98/0.02 4.09/0.66 0.75/0.25 0.92/03.11/1.02 0.75/0.24 0.98/0.03 0.35/0.22
500x50-5 0.83/0.18 1.00/0.01 3.48/1.03 0.82/0.19 1.00/03.62/0.99 0.80/0.19 1.00/0.00 0.24/0.12
With noise

500x4-2  0.29/0.38 0.60/0.32 2.93/1.11 0.27/0.37 0.62/01346/0.80 0.34/0.33 0.56/0.29 0.29/0.16
500x10-3 0.59/0.20 0.80/0.13 4.19/0.78 0.61/0.23 0.86/01.29/0.15 0.54/0.25 0.78/0.14 0.32/0.26
500x20-4 0.73/0.22 0.98/0.03 3.78/0.90 0.71/0.25 0.99/01.37/0.26  0.81/0.14 0.95/0.06 0.34/0.10
500x50-5 0.83/0.18 1.00/0.01 3.14/0.81 0.82/0.20 0.98/02.01/1.22  0.84/0.15 1.00/0.01 0.52/0.41

there are other comparisons we can make using all algoritt@sesribed in Section
[4. Based on the information we present in Secfiibn 4 about alggctithm, as well
as the cluster recovery results we present in this sectierhave defined eight char-
acteristics we believe are desirable for any K-Means bakestering algorithm that
implements feature weighting. Talillé 8 shows our compariadrich we now de-
scribe one characteristic at a time.

No extra user-defined paramet&uite a few of the algorithms we describe in
Section[# require an extra parameter to be defined by the Bgeuning this pa-
rameter (or these parameters, in the case of FGK) each & #hgarithms is able to
achieve high accuracy in terms of cluster recovery. Howet/eeems to us that this
parameter estimation is a non-trivial task, particuladgduse the optimum value is
problem dependant. This makes it very difficult to suggesrzegally good parame-
ter value (of course this may not be the case if one knows hewldlte is distributed).
Since different values for a parameter tend to result iredfit clusterings, one could
attempt to estimate the best clustering by applying a dlingteralidation index (Ar-
belaitz et all 2013; De Amorim and Mirkin 2014), consensusstdring (Goder and



22 Renato Cordeiro de Amorim

Table 7 Experiments with the synthetic data sets, with and withmisen features. The standard devia-
tion can be found after the backslash under the mean. Pas tef¢he parameter value required by the
algorithm. IMWK-Means is a deterministic algorithm and F&/8oes not require a parameter, hence the
dashes.

Improved K-P Intelligent Minkowski WK Feature Weight SelfiA
ARI ARI ARI
Mean Max Par Mean Max Par Mean Max Par

No noise
500x4-2  0.45/0.37 0.59/0.32 3.69/1.18 - 0.63/0.30 3.B8/1. 0.38/0.36 0.57/0.33 -
500x10-3 0.60/0.21 0.81/0.12 3.85/0.85 - 0.71/0.18 2.BB/0 0.42/0.23 0.67/0.24 -
500x20-4 0.74/0.25 0.98/0.04 3.74/1.03 - 0.90/0.17 2.88/1 0.64/0.24 0.94/0.15 -
500x50-5 0.82/0.19 1.00/0.00 3.50/1.14 - 1.00/0.01 1.83/0 0.77/0.20 0.97/0.11 -
With noise
500x4-2  0.27/0.36 0.58/0.33 2.47/1.05 - 0.48/0.40 1.79/1. 0.02/0.13 0.47/0.37 -
500x10-3 0.55/0.22 0.79/0.13 2.84/1.01 - 0.85/0.09 1.28/0 0.07/0.19 0.39/0.35 -
500x20-4 0.71/0.25 0.93/0.15 2.58/0.92 - 0.95/0.06 1.80/0 0.26/0.30 0.88/0.22 -
500x50-5 0.82/0.20 1.00/0.01 2.65/0.96 - 0.94/0.08 2.28/0 0.72/0.26 0.97/0.12 -

Filkov2008), or even a semi-supervised learning approBehAmorim and Mirkin
2012). Regarding the latter, we have previously demorestridiat with as low as 5%
of the data being labelled it is still possible to estimat@adyparameter for IMWK-
Means (De Amorim and Mirkin 2014).

It is deterministic A K-Means generated clustering heavily depends on the ini-
tial centroids this algorithm uses. These initial centscade often found at random,
meaning that if K-Means is run twice, it may generate verfedént clusterings. Itis
often necessary to run this algorithm a number of times aed stomehow identify
which clustering is the best (again, perhaps using a ciagtgalidation index, a con-
sensus approach, or in the case of this particular algotiieroutput of its criterion).
If a K-Means based feature weighting algorithm is also netedninistic, chances
are one will have to determine the best parameter and thdvesteun when apply-
ing that parameter. One could also run the algorithm mangdiper parameter and
apply a clustering validation index to each of the generatasterings. In any case,
this can be a very computationally intensive task. We fintiat the best approach
would be to have a feature weighting algorithm that is deieistic, requiring the
algorithm to be run a single time. The IMWK-Means algorithppbes a weighted
Minkowski metric based version of the intelligent K-MeaMirkin 2012). The lat-
ter algorithm finds anomalous clusters in a given data setiaesl this information to
generate initial centroids, making iMWK-Means a deterstigialgorithm.

Accepts different distance biasny distance in use will lead to a bias in the clus-
tering. For instance, the Euclidean distance is biasedrtsspherical shapes while
the Manhattan distance is biased towards diamond shapesod gustering algo-
rithm should allow for the alignment of its distance biashe tlata at hand. Two of
the algorithms we analyse address this issue, but in veigrdift ways. CK-Means is
able to integrate multiple, heterogeneous feature spatekiMeans, this means that
each feature may use a different distance measure, and bg@aance have a differ-
ent bias. This is indeed a very interesting, and intuitiverapch, as features measure
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different things so they may be in different spaces. The iMWKans also allows for
different distance bias, it does so by using themetric, leaving the exponeptas a
user-defined parameter (see Equdiidn 20). Different vdihr¢be exponenp lead to
different distance biases. However, this algorithm ssfiianes that all clusters in the
data set have the same bias.

Supports at least two weights per featuie order to model the degree of rele-
vance of a particular feature one may need more than a sirgjightv There are two
very different cases that one should take into consideratipa given feature € V
may be considerably informative when attempting to distcrate a clustefSy, but
not so for other clusters. This leads to the intuitive idest hshould in fact hav&
weights. This approach is followed by AWK, WK-Means (in ijgdated version, see
Huang et al. 2008), EWK-Means, IMWK-Means and FGK; (ii) aagifeatures € V
may be not be, on its own, informative to any clusgre S. However, the same
feature may be informative when grouped with other featuBenerally speaking,
two (or more) features that are useless by themselves magelbel together (Guyon
and Elisseelf 2003). FGK is the only algorithm we analysé ¢hiculates weights for
groups of features.

Features grouped automaticalllf a feature weighting algorithm should take into
consideration the weights of groups of features, it sholdd be able to group fea-
tures on its own. This is probably the most controversialhef tharacteristics we
analyse because none of the algorithms we deal with heré¢eisatio so. We present
this characteristic in Tab[g 8 to emphasise its importaBogh algorithms that deal
with weights for groups of features, SYNCLUS and FGK, regqtiive users to group
the features themselves. We believe that perhaps an apvaaed on bi-clustering
(Mirkin 1998) could address this issue.

Calculates all used feature weightBhis is a basic requirement of any feature
weighting algorithm. It should be able to calculate all teatweights it needs. Of
course a given algorithm may support initial weights beimgvided by the user,
but it should also be able to optimise these if needed. SYNEkéhuires the user
to input the weights for groups of features and does not apdirthese. CK-Means
requires all possible weights to be putin aget {(w: Y,y W = 1L, w, > 0,v e V}
and then tests each possible subset, tfie weights are not calculated. This approach
can be very time consuming, particularly in high-dimensiatata.

Supports categorical featureBata sets often contain categorical features. These
features may be transformed to numerical values, howavel, tsansformation may
lead to loss of information and considerable increase iredsionality. Most of the
analysed algorithms that support categorical features ty setting a simple match-
ing dissimilarity measure (eg. AWK, WK-Means and FGK). Thisary dissimilarity
is zero iff both features have exactly the same categoryfsémstance Equationl 9),
and one otherwise. IK-P presents a different and intergsiiproach taking into ac-
count the frequency of each category at a categovicbhis allows for a continuous
dissimilarity measure in the interval [0,1].

Analyses groups of featureSince two features that are useless by themselves
may be useful together (Guyon and Elisseeff 2003), a feateighting algorithm
should be able to calculate weights for groups of featuredy @ single algorithm
we have analysed is able to do so, FGK. SYNCLUS also uses teeigihgroups of
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features, however, these are input by the user rather themaizd by the algorithm.

It

Table 8 A comparison of the discussed feature weighging algoritbres eight key characteristics.
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7 Conclusion and futuredirections

Recent technology has made it incredibly easy to acquireavasunts of real-world
data. Such data tend to be described in high-dimensioneéspé#orcing data scien-
tists to address difficult issues related to these of dimensionalityDimensionality
reduction in machine learning is commonly done using feasetection algorithms,
in most cases during the data pre-processing stage. Tli®fgigorithm can be very
useful to select relevant features in a data set, howewayr,absume that all relevant
features have the same degree of relevance, which is oftehaoase.

Feature weighting is a generalisation of feature selecfidve former models
the degree of relevance of a given feature by giving it a wigigbrmally in the
interval [Q 1]. Feature weighting algorithms can also deselect a featary much
like feature selection algorithms, by simply setting itsigiw to zero. K-Means is
arguably the most popular partitional clustering algonttfforts to integrate feature
weighting in K-Means have been done for the last 30 yearsdétails, see Section

[4).
In this paper we have provided the reader with a discussiomoaof the most
popular or innovative feature weighting mechanisms for Kavis. Our survey also
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presents an empirical comparison including experimentsahworld and synthetic
data sets, both with and without noise features. Becausedfifficulties of present-

ing a fair empirical comparison (see Secfidn 5) we experteewith six of the nine

algorithms discussed. Our survey shows some issues thabarewhat common in
these algorithms and could be addressed in future resdacinstance, each of the
algorithms we discuss presents at least one of the follogsues:

(i) the criterion to be minimised includes a new parametemnfore), but unfortu-
nately there is no clear strategy for the selection of a pee¢alue for this parameter.
This issue applies to most algorithms we discussed. Fuasearch could address
this issue in different ways. For instance, a method coudame or more clustering
validation indices (for a recent comparison of these, séelaitz et al. 2013) to mea-
sure the quality of clusterings obtained applying difféngarameter values. It could
also apply a consensus clustering based approach (GodEilkmd2008), assuming
that two entities that should belong to the same clustematedd clustered together
by a given algorithm more often than not, over different paeter values. methods
developed in future research could also apply a semi-sigaghapproach, this could
require as low as 5% of the data being labelled in order tonegé a good parameter
(De Amorim and Mirkin 2014).

(i) the method treats all features as if they were in the steaire space, often
not the case in real-world data. CK-Means is an exceptiohitortile, it integrates
multiple, heterogeneous feature spaces. It would be stiareto see this idea ex-
panded in future research to other feature weighting algos. Another possible
approach to this issue would be to measure dissimilaritssgudifferent distance
measures but compare them using a comparable scale, fmdeshe distance scaled
by the sum of the data scatter. Of course this could lead topnellems, such as for
instance defining what distance measure should be usedrefezdure.

(iif) the method assumes that all clusters in a given datalssild have the same
distance bias. It is intuitive that different clusters inigegy data set may have dif-
ferent shapes. However, in the algorithms we discuss whéssardlarity measure is
chosen it introduces a shape bias that is the same for alechia the data set. Future
research could address this issue by allowing differemadie measures at different
clusters, leading to different shape biases. Howeverctiigd be difficult to achieve
given what we argue in (ii) and that one would need to aligrhedgster to the bias
of a distance measure.

(iv) features are evaluated one at a time, presenting diffésufor cases when
the discriminatory information is present in a group of éeas, but not in any single
feature of this group. In order to deal with this issue a @tisg method should be
able to group such features and calculate a weight for thepgi®erhaps the concept
of bi-clustering (Mirkin[1998) could be extended in futusearch by clustering
features and entities, but also weighting features andpgrofifeatures.

The above ideas for future research address indeed some ofdjor problems
we have today in K-Means based feature weighting algoritt®fig€ourse this does
not mean they are easy to implement, in fact we acknowledie tiie opposite.
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