
Two-Stage Metropolis-Hastings for Tall Data

Richard D. Payne and
Texas A&M University, USA

Bani K. Mallick
Texas A&M University, USA

Abstract

This paper discusses the challenges presented by tall data problems associated with Bayesian 

classification (specifically binary classification) and the existing methods to handle them. Current 

methods include parallelizing the likelihood, subsampling, and consensus Monte Carlo. A new 

method based on the two-stage Metropolis-Hastings algorithm is also proposed. The purpose of 

this algorithm is to reduce the exact likelihood computational cost in the tall data situation. In the 

first stage, a new proposal is tested by the approximate likelihood based model. The full likelihood 

based posterior computation will be conducted only if the proposal passes the first stage screening. 

Furthermore, this method can be adopted into the consensus Monte Carlo framework. The two-

stage method is applied to logistic regression, hierarchical logistic regression, and Bayesian 

multivariate adaptive regression splines.
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1. Introduction

In the past twenty-five years, Bayesian statistics have become increasingly popular as they 

are capable of analyzing data with complex structures. Consequently, Bayesian methods 

have been proven to be effective in a wide range of applications. The rise in popularity is 

largely attributed to simulation based algorithms which can approximate the complex 

posterior distributions of non-conjugate models, such as Markov Chain Monte Carlo 

(MCMC) methods including the Metropolis-Hastings (MH) algorithm (Robert and Casella, 

2013).

The term “tall data” generally describes data in which n >> p, that is, when the number of 

observations is much larger than the number of predictors. For MCMC methods, as n 
increases, so does the computational demand of the algorithm. Specifically, for MH, the 

increased computational demand is driven by the complete scan of the data through 
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likelihood evaluations on each iteration of the algorithm. If n is large enough, MCMC 

methods (including MH) are computationally infeasible.

There are several general methods to overcome this issue. The simplest method involves 

parallelizing the likelihood to speed up computation. Another method divides the data across 

multiple machines and performs independent parallel MCMC on each machine to sample 

from the posterior distribution (consensus Monte Carlo). The results are then aggregated 

using weighting (Scott et al., 2013). A third approach is to use subsampling methods to 

provide a faster estimation of the likelihood (Quiroz, Villani, and Kohn, 2014; Korattikara, 

Chen, and Welling, 2014; Bardenet, Doucet, and Holmes, 2014). See Bardenet, Doucet, and 

Holmes (2015) for a review of MCMC approaches for tall data.

We propose a method based on a two-stage Metropolis algorithm which uses a cheap 

estimate of the likelihood to determine if a full estimation of the likelihood is necessary. 

Furthermore, we compare the strengths and weaknesses of the general tall data MH methods 

of consensus, subsampling, and two-stage Metropolis, as well as briefly introduce the use of 

a combination of the consensus and two-stage methods. For definiteness, in the following, 

the focus of this paper is on the classification problem. However, the developed 

methodology can be extended to any model which is suitable to analyze tall data. The 

methods are applied to three datasets: marketing data from a Portuguese bank, loan data 

from Freddie Mac, and a simulated dataset. Logistic regression is applied to both the 

Portuguese bank and Freddie Mac datasets and an additional logistic hierarchical model is fit 

to the Freddie Mac dataset. Modifications to the techniques described in the papers above 

have been made to accommodate the features of these datasets and are explained further. 

Lastly, the two-stage method is applied to a simulated binary classification problem using 

Bayesian multivariate adaptive regression splines (BMARS).

In Section 2, we describe the existing methods for handling tall data and present the two-

stage methodology. Section 3 applies the methods to the marketing, Freddie Mac, and 

simulated datasets. Section 4 provides a brief discussion and Section 5 concludes.

2. Methodology

We begin by briefly describing existing techniques to speed up MCMC computation for tall 

data applications.

2.1 Likelihood Parallelization

Perhaps the simplest way to adapt the Metropolis-Hastings algorithm for tall data is to 

compute the likelihood in parallel. In this method, the data are partitioned into p partitions 

and each is assigned to a separate process/core. On each iteration of the MH algorithm, the 

master process draws parameters from the proposal distribution and sends the proposed 

values to the other processes. Each process then computes the likelihood for its partition and 

passes this information (i.e. the sum of the log-likelihood) to the master process which sums 

the log-likelihood contributions from each partition and determines whether or not to accept 

the proposal. As long as there is no significant communication overhead between the 
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processes, the MH algorithm’s speed will be increased while still sampling from the true 

posterior distribution.

2.2 Consensus Monte Carlo

In the consensus Monte Carlo method, the data are randomly partitioned into p partitions. 

Subsequently, allow each partition to run a full MCMC simulation from a posterior 

distribution given its own data. Lastly, combine the posterior simulations from each partition 

to produce a set of global draws to reproduce the unified posterior distribution.

Suppose y = (y1, …, yn) denotes the full data and yj is the data at the jth partition. We then 

represent the posterior distribution of β as

p(β |y) ∝ ∏
j = 1

p
p(y j | β)p(β)1/ p,

where the prior distribution has been expressed as the product of the p components.

For each partition, a Metropolis sampler with a chain of length m is computed in parallel 

with the prior weight adjusted to p−1 its original weight. Once posterior samples are 

obtained from each of the partitions, the results are combined using a weighted average. The 

weight, Wi, for the ith partition is equal to the inverse of the posterior covariance matrix 

obtained from the Metropolis sampler. Let βi be the posterior sample matrix from the ith 

partition. Thus, the final posterior sample, β is obtained using the following weighted 

average:

β = ∑
i = 1

p
βiWi ∑

j = 1

p
W j

−1
.

For details see Scott et al. (2013).

2.3 Subsampling Based Methods

In subsampling methods, a small subset of the data is used to estimate the likelihood 

function which is then used to evaluate the acceptance probabilities of the MH algorithm. In 

principle, subsampling reduces the data size and therefore a faster MCMC algorithm can be 

developed. Using an unbiased likelihood estimate in the MCMC chain still provides the 

correct stationary distribution (Andrieu and Roberts, 2009), however the efficiency of the 

MCMC chain depends on the variance of the estimator. Usually complete random sampling 

does not work well in this situation (i.e. the chain gets stuck for many iterations), but some 

general guidelines for estimating the full likelihood from a subsample in a Bayesian setting 

have been developed. Quiroz et al. (2014) suggest using a portion of the data prior to 

MCMC and fitting Gaussian processes or splines to approximate the log-likelihood. On each 

iteration of the MCMC chain, the log-likelihood is estimated for each observation. The data 

are then sampled with probability proportional to its estimated log-likelihood value, which 

reduces the variance of the estimator and improves the efficiency of the chain.
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2.4 Two-Stage MH

Consider the usual Bayesian model setup where the posterior distribution of the parameter β 
given data y is given by

p(β |y) ∝ p(y | β)p(β), (1)

where p(y|β) is the likelihood function and p(β) is the prior distribution for the parameter 

vector β. If a non-conjugate prior is selected, the posterior distribution p(β|y) often cannot be 

expressed in an explicit form and consequently MCMC methods must be used to simulate 

samples from this posterior distribution. More specifically, we use the Metropolis-Hastings 

(MH) algorithm to generate samples of βs from p(β|y). The MH algorithm is described as 

follows.

A.1 MH Algorithm—

1. At the tth iteration generate β from the proposal distribution q(β|βt) where βt is 

the current state.

2. Accept β as a posterior sample with probability

h(βt, β) = min 1,
q(βt | β)p(β |y)
q(β | βt)p(βt |y) . (2)

3. βt+1 = β with probability h(βt, β) and βt+1 = βt with probability 1 − h(βt, β).

At each iteration, the probability of moving from the state βt to next state β is q(β|βt)h(βt, β), 

hence the transition kernel for the Markov Chain βt is

T(βt, β) = q(β | βt)h(βt, β) + 1 − q(β | βt)h(βt, β)dβ I(β = βt),

where I() is the indicator function. Due to the iterative nature of the algorithm, the likelihood 

function p(y|β) needs to be evaluated repeatedly which is expensive when n is large. Hence, 

we need to modify the MH algorithm to adapt it for tall data problems.

In the MH algorithm described in A.1, the evaluation of the likelihood is expensive in the 

tall data situation. Generally the MCMC chain requires thousands of iterations to converge. 

Furthermore, we need to generate a large number of samples to quantify the uncertainty in 

the parameters. We use the two-stage MH algorithm where the proposal distribution q() is 

adapted to the target distribution using an approximate likelihood based model. These 

algorithms have been used previously (Christen and Fox, 2005; Higdon, Lee and Bi, 2002; 

Mondal et al., 2014), usually for solving expensive inverse problems. For our purposes, 

instead of testing each proposal by the exact likelihood based model directly, initially the 

algorithm tests the proposal by the approximate likelihood based model which is much 

cheaper to compute. If the proposal is accepted by the initial test, then an exact likelihood 

based computation will be conducted and the proposal will be further tested as in the MH 
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algorithm method described in A.1. Otherwise, the proposal will be rejected by the 

approximate model and a new proposal will be generated from q(). The approximate 

likelihood based model filters the unacceptable proposals and avoids the expensive full 

likelihood computations.

A.2 Two-Stage MH Algorithm—Let p̂(y|β) be an approximation of the full likelihood, 

and let the approximate posterior distribution be represented as p*(β|y) ∝ p̂(y|β)p(β). Then 

the Two-Stage MH Algorithm proceeds as follows:

1. At the tth iteration generate β′ from the proposal distribution q(β′|βt).

2. Take a real proposal as

β =
β′ with probability δ(βt, β′)

βt with probability 1 − δ(βt, β′),

where

δ(βt, β′) = min  1,
q(βt | β′)p∗(β′ |y)

q(β′ | βt)p∗(βt |y)
.

3. Accept β as a posterior sample with probability

ρ(βt, β) = min  1,
Q(βt | β)p(β |y)
Q(β | βt)p(βt |y) , (3)

where Q(β|βt)= δ(βt, β)q(β|βt)+{1 − ∫ δ(βt, β)q(β|βt)dβ}I(β = βt).

4. Hence take βt+1 = β with probability ρ(βt, β) and βt+1 = βt with probability 1 − 

ρ(βt, β).

At each iteration, the probability of moving from the state βt to next state β is q(β|βt)ρ(βt, 
β), hence the transition kernel for the Markov Chain βt is

T(βt, β) = q(β | βt)ρ(βt, β) + 1 − q(β | βt)ρ(βt, β)dβ I(β = βt) .

In the above algorithm, if the trial proposal β′ is rejected by the approximate posterior then 

no further computation is needed. Thus, the expensive exact posterior computation can be 

avoided for those proposals which are unlikely to be accepted. This is just an adaption of the 

proposal using the approximate posterior where the transition kernel can be written as K(βt, 
β) = ρ(βt, β)Q(β|βt) for β ≠ βt and K(βt, {βt}) = 1 − ∫β≠βt ρ(βt, β)Q(βt|β)dβ for β = βt. It is 

simple to show that the detailed balance condition p(βt|y)K(βt, β) = p(β|y)K(β, βt) is always 

satisfied under some minor regularity conditions like the regular MH algorithm.
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Result 1: The detailed balance condition is satisfied under the regularity conditions of the 

MH algorithm. That is, p(βt|y)K(βt, β) = p(β|y)K(β, βt).

Proof: When β = βt, the result is trivial. When β ≠ βt we have

p(βt |y)K(βt, β) = p(βt |y)ρ(βt, β)Q(β | βt) = p(βt |y) min  1,
Q(βt | β)p(β |y)
Q(β | βt)p(βt |y) Q(β | βt)

= min {p(βt |y)Q(β | βt), Q(βt | β)p(β |y)} = min 
p(βt |y)Q(β | βt)
p(β |y)Q(βt | β) , 1 p(β |y)Q(βt | β) = ρ(β, βt)p(β |y)Q(βt | β)

= p(β |y)K(β, βt) .

Result 2: The acceptance probability can be expressed as

ρ(βt, β) = min  1,
p∗(βt |y)p(β |y)

p∗(β |y)p(βt |y)
.

Proof: If β = βt then the result is trivial since ρ(βt, β) = 1. For β ≠ βt

Q(βt | β) = δ(β, βt)q(βt | β) = 1
p∗(β |y)

min{q(βt | β)p∗(β |y), q(β | βt)p∗(βt |y)} =
q(β | βt)p∗(βt |y)

p∗(β |y)
δ(βt, β)

=
p∗(βt |y)

p∗(β |y)
Q(β | βt) .

Substituting this in the expression of ρ(βt, β) we obtain the required expression.

It is important to note that the methodology above is general enough to be applied to any 

computationally expensive MH sampler. However, for definiteness in following, the method 

is applied to a few specific classification models. The success of the two-stage method in 

any given model depends on the construction of a computationally cheap and accurate 

estimate of the likelihood. The accuracy and speed of the likelihood estimator governs the 

efficiency of the MCMC chain. For instance, if the likelihood estimator p̂(y|β′) severely 

underestimates p(y|β′), then δ(βt, β′) will be small and the proposal will be rejected (even if 

it might be a reasonable candidate). On the other hand, if p̂(y|β′) severely overestimates p(y|

β′), then it will likely pass the first stage and get rejected in the second stage since ρ(βt, β) 

decreases as a function of p*(β|y) = p̂(y|β)p(β); thus the algorithm will compute the full 

likelihood for an unfavorable candidate. Consequently, it is important to select an accurate 

approximation to the likelihood. Specific likelihood approximations will be discussed for the 

examples in Section 3.

2.5 Combining Consensus with Two-Stage MH

For larger data sets which may not fit in RAM, we propose a combination of the consensus 

and the two-stage Metropolis methods. This is identical to the consensus method with the 

exception that each partition uses the two-stage Metropolis sampler rather than the usual 
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Metropolis sampler. Since two-stage MH will draw from the same distribution as MH on 

each partition, the results of the consensus method will remain the same.

3. Applications

The methods introduced above were implemented on three datasets. For initial testing, the 

methods were implemented on a relatively small dataset with just over 40,000 observations 

from a phone marketing campaign conducted by a Portuguese bank. A larger dataset of 

approximately 2.3 million observations consisting of individual household loan data from 

Freddie Mac was used to test how the methods scale. In both, logistic regression was used to 

classify observations, the latter also employs a hierarchical model. Lastly, the two-stage 

method was implemented on a BMARS model with a large (106 observations) simulated 

dataset.

3.1 Logistic Regression Model

We are considering a binary classification problem where the response y takes the value 0 or 

1 where y = (y1, …, yn) and we have a vector of covariates x. We use a logit link function to 

link the ith response with the covariates as

yi | β, xi Bernoulli{π(xi)}

π(xi) = {1 + exp( − xiβ)}−1

β Multivariate − Normal(0, ∑0),

where β is the l dimensional vector of classification parameters, xi is the ith row of the 

design matrix (i = 1, …, n), and a Gaussian prior is placed on β. The model’s posterior 

distribution can be expressed as p(β|y, x) ∝ p(y|x, β)p(β).

In the logistic regression models for both the Portuguese bank and Freddie Mac datasets, we 

estimate the log-likelihood using a variant of the case-control approximate likelihood 

(Raftery et al., 2012). To understand the approximation, it is important to realize the log-

likelihood for a logistic regression model can be written as two sums:

log{p(y | β, x)} = ∑
i: yi = 1

(θi − log(1 + e
θi)} + ∑

i: yi = 0
− log(1 + e

θi), (4)

where θi = log{π(xi)/[1 − π(xi)]} = xiβ.

If the data are sparse, then the computation of the first sum will be relatively cheap, and only 

the second summation needs to be estimated. We use a subsampling method where a random 

sample of a observations is taken from the failed outcomes (i.e. yi = 0). The second sum in 

(4) is estimated by multiplying the average log-likelihood of the a sampled observations by 

n0 = ∑i = 1
n I(yi = 0), the number of failures in the dataset. Let A be the index values of the 

subsample of size a. Thus, the original log-likelihood is estimated as
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yi | β, xi Bernoulli{π(xi)}

π(xi) = {1 + exp( − xiβ)}−1

β Multivariate − Normal(0, ∑0 = I ∗ 102),

We note log{p(y | β, x)} is an unbiased estimate of the log-likelihood as 

E[log{p(y | β, X)}] = log{p(y | β, x)}. We could obtain an unbiased estimate of the likelihood by 

making a bias correction (Quiroz et al., 2014) but that is not necessary for our method as we 

are doing further filtering of the proposal using the exact likelihood method.

The above approximation to the likelihood yields the following result:

Result 3—When the proposal β is promoted from the first stage, then for large a it can be 

shown that ρ(·, ·) goes towards 1. Thus, the two-stage MH algorithm only calculates the 

original full data likelihood when there is a high probability of acceptance of the proposal.

3.1.1 Portuguese Bank Data—The Portuguese bank dataset was obtained from the 

University of California Irvine Machine Learning Archive and were analyzed in a recent 

paper by Moro, Cortez, and Rita (2014). The binary dependent variable of interest was 

whether or not a client subscribed to a term deposit after contact through a telephone 

marketing campaign. The predictor variables of interest were the client’s previous promotion 

outcome (non-existent, failure, success), age (years), and type of contact (telephone, 

cellular), education level (8 categories), and marital status (married, divorced, single, 

unknown). The categorical variables were treated as nominal values and the continuous 

variable age was logged and centered. A vague prior was placed on β resulting in the 

following model:

yi | β, xi Bernoulli{π(xi)}

π(xi) = {1 + exp( − xiβ)}−1

β Multivariate − Normal(0, ∑0 = I ∗ 102),

where β is the vector of coefficients, Σ0 is the prior covariance matrix for β, I is the identity 

matrix and xi is the ith row of the design matrix, i = 1, …, n.

The two-stage, consensus, and standard MH algorithms were coded in Fortran and run for 

100,000 iterations with a burn in of 5,000 values. The subsampling method was considerably 

slower and was consequently run for only 10,000 iterations with the same burn in of 5,000. 

In the consensus method, the data were randomly split into 14 partitions. In the two-stage 

method, a single random subsample of 1,400 observations was taken prior to MCMC. This 

subsample was used to approximate the log-likelihood during the first stage on each iteration 

of the two-stage MH algorithm.

In the subsampling method, a thin-plate spline surface was fit to a subsample of the data 

(1,000 observations) prior to MCMC. For simplicity, in this smaller dataset, the thin-plate 
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spline surface treated the categorical predictors as continuous. Although this resulted in a 

somewhat crude approximation to the log-likelihood surface, using a subsample of around 

7,000 observations on each iteration allowed the MCMC chain to mix satisfactorily. To get a 

better idea of the speed of the subsampling method if a better spline surface was fit, it was 

also run subsampling 100 observations rather than 7,000. The number of likelihood 

evaluations per second for the MH and subsampling method (100 and 7,000 observations) 

were 355, 23.9, and 1.8 respectively.

Figures 1–3 compare the posterior densities of the two-stage, subsampling and consensus 

methods to the standard Metropolis sampler results. Figure 1 shows that the two-stage 

method matches the results obtained by the unmodified MH algorithm which is expected 

based on the theoretical results above. Figure 2 indicates that the subsampling method was 

effective in capturing the true posterior distribution since the subsampling method can be 

arbitrarily close to the true posterior based on the subsample size (Quiroz et al., 2014). 

Figure 3 shows that the consensus method matches the true posterior very well, with the 

exception of β10 and β15 which have a larger spreads and are slightly biased. Interestingly, 

β10 and β15 are the coefficients for education (‘illiterate’), and marital status (‘unknown’) 

which have only 18 and 80 cases in the dataset respectively. Paradoxically, as Scott et al. 

(2013) points out, we are suffering from a case of small sample bias in a large dataset, which 

is a potential issue in consensus Monte Carlo applications.

Since the Portuguese bank dataset is relatively small (approximately 40,000 observations), 

we refer the reader to the next section to better understand how these methods might scale to 

larger datasets, as well as a more detailed comparison of the speed and efficiency of the 

methods.

3.1.2 Freddie Mac Data, Logistic Regression—The loan data from Freddie Mac was 

obtained in September 2015 from Freddie Mac’s website. The data consists of 

approximately 2.3 million loans which Freddie Mac acquired during 2009–2010 and 

contains monthly performance data on each loan. The binary dependent variable of interest 

is whether or not a loan was foreclosed by the end of September 2014.

To understand and quantify the effects of various covariates on foreclosure, a logistic model 

was used. Covariates of interest include the date of the first mortgage payment, FICO score, 

debt to income ratio, original principal balance of the loan, and first-time home-buyer status 

(yes, no, unknown). Each variable was transformed, centered, and scaled as appropriate. A 

vague prior was placed on β yielding the following logistic model:

yi | β, xi Bernoulli{π(xi)}

π(xi) = {1 + exp( − xiβ)}−1

β Multivariate − Normal(0, ∑0 = I ∗ 102),
(6)

where β is the vector of coefficients, Σ0 is the covariance matrix for β, I is the identity 

matrix of appropriate dimension and xi is the ith row of the design matrix, i = 1, …, n.
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The coefficients of the model were estimated using the usual MH, consensus MH, and two-

stage MH algorithm, all of which were coded in Fortran. To provide a fair comparison with 

the consensus Monte Carlo algorithm, both the MH and two-stage MH algorithm were 

parallelized with p = 14 partitions as described in Section 2.1 using Open MPI for Fortran. 

In the two-stage MH algorithm, the s observations used to approximate the log-likelihood in 

the first stage were selected by randomly selecting s/p observations from each partition prior 

to the start of the MH algorithm.

The subsampling MH method was not employed on the Freddie Mac dataset since it was not 

likely to computationally competitive in this setting. Since the data are extremely sparse, the 

likelihood can be easily calculated for the cases when yi = 1, so subsampling would only 

need to be employed when yi = 0. For full implementation, three separate spline surfaces 

would be required to be fit for each category of first-time home-buyer status (no, yes, 

unknown). Even if a relatively small sample was used for each spline surface approximation 

(e.g. several thousand observations), the corresponding matrices to calculate the spline fits 

would be in total far larger than the design matrix itself, and that computation is only the 

first step. Furthermore, the subsampling method is not likely to see the gains of 

parallelization that the MH and two-stage MH algorithms receive since more data will need 

to pass between processes and/or each process will have to calculate the same information in 

parallel (which defeats the purpose of parallelization).

The usual MH, consensus, and two-stage MH algorithms were run for 100,000 iterations 

with a burn-in period of 5,000. Parameters were updated sequentially and proposal variances 

were chosen such that the acceptance rate for each parameter was near 50%. Figure 4 plots 

the densities of the posterior distribution of β1, …, β7. The densities are essentially 

indistinguishable between the MH, two-stage, and consensus methods. The execution times 

were 118, 115, and 81 minutes for the parallelized MH, consensus, and two-stage methods, 

respectively. In this particular application, the autocorrelation in the two-stage method was 

slightly more persistent than the regular MH algorithm. Consequently, it is of interest to 

evaluate the efficiency of the three MCMC chains, accounting for autocorrelation. This can 

be done by measuring the effective draws per minute (EDPM), which is a measure of the 

equivalent number of independent posterior draws per minute the MCMC chain represents. 

The EDPM diagnostic incorporates both the execution time and autocorrelation of the chain 

to measure its efficiency:

EDPM = t−1 n

1 + 2∑k = 1
∞ ρk

,

where n is the number of MCMC iterations, t = execution time of the MCMC chain in 

minutes, and ρk is the autocorrelation at the kth lag of the chain. EDPM can be calculated by 

estimating ρk with ρ̂k, the sample autocorrelation of the MCMC chain. To compare the 

efficiency of two MCMC chains, we can compute the relative effective draws per minute 

(REDPM) as
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REDPM =
EDPMAlgorithm 1
EDPMAlgorithm 2

.

Figure 5 plots the REDPM of the two-stage and consensus methods relative to the MH 

method for each coefficient, β1, …, β7. Also plotted are the REDPM values for the MCMC 

chain thinned by keeping every 10th and 20th values of the chain. We note that the two-stage 

method had REDPM values which were always above 1, and with the exception of one 

parameter, was always above the REDPM values of the consensus method. The median 

REDPMs for the two-stage method were 1.27, 1.44, and 1.47 as contrasted with 1.03, 1.07, 

and 1.02 for the consensus method (no thinning, keeping every 10th and 20th observations 

respectively). Thus in this application, the two-stage method appears to perform best in 

terms of speed, efficiency, and accuracy.

3.1.3 Freddie Mac, Hierarchical Logistic Regression—Bayesian statistics provide a 

simple way to fit hierarchical models, and with the help of MCMC, estimation of the 

parameters is generally straightforward. In addition to the covariates in the previous logistic 

regression model, the Freddie Mac dataset specifies which bank originally serviced the loan. 

It is of particular interest to understand how delinquency rates vary between banks during 

this time period. To accomplish this, we specify the following hierarchical model:

yij |θ j, β, x Bernoulli{π(xij)}

π(xij) = [1 + exp{ − (θ j + xijβ)}]−1

β Multivariate − Normal(0, ∑0 = I ∗ 102)

θ j
iidNormal(0, τ2)

p(τ) ∝ τ−2,

where β is the vector of coefficients (the same covariates as in (6) with an intercept), Σ0 is 

the covariance matrix for the vague prior on β, I is the identity matrix of appropriate 

dimension, xij is the row of the design matrix corresponding to observation yij and θj 

represents a random intercept term for the jth bank who serviced the loan, j = 1, …, k = 16, i 
= 1, …, nj. Lastly, Jeffrey’s prior was placed on τ.

In this model, interest lies primarily in the posterior distribution of τ, which provides us with 

an understanding of the variability of loan foreclosure rates between banks after controlling 

for the other covariates. For datasets which have relatively small n, the MH algorithm is 

straightforward to implement on this simple hierarchical model. The two-stage method is 

also easily extended to this hierarchical model, however, the consensus and the subsampling 

methods are not as easily implemented.

The two-stage and the usual MH algorithms were successfully implemented. As before, the 

data was partitioned into 14 partitions and the likelihoods were computed in parallel on each 

iteration. Both chains were run for 100,000 iterations with a burn-in period of 5,000. 

Parameters were updated sequentially and proposal distributions were chosen such that the 
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acceptance rates for each parameter was near 50%. The two-stage method was implemented 

twice with sample sizes of 224,000 and 22,400 observations which were sampled prior to 

running the algorithm (1000 and 100 data values from each bank on each partition, roughly 

10% and 5% of data). The total run times for the parallelized MH and the two-stage MH 

(10% and 5% subsample) were 1106, 849, and 639 minutes, respectively. We note that the 

variance of the proposal distribution for the two-stage MH with 5% subsampling was 

reduced (compared to the MH and two-stage MH with a 10% sample) in order to obtain the 

desired acceptance rate of the MCMC chain.

As in the other two applications, the posterior densities for the MH and two-stage MH for 

the 24 parameters were within Monte Carlo error (since both the MH and two-stage MH 

algorithm attain the correct stationary distribution). For brevity, we plot only the posterior 

distribution of τ since it is the primary parameter of interest (Figure 6).

Figure 7 plots the REDPM values of the 24 parameters for the hierarchical model. We note 

that the two-stage algorithm using 10% of the data consistently had REDPM values greater 

than 1, whereas using 5% of the data yielded more variability in the REDPM values, 

including 4 values lower than 1 on the un-thinned MCMC chain. In the 5% sampling case, 

all the values of REDPM < 1 were elements of β, not θ. This may be an artifact of the 

sampling design since sampling was stratified by bank, and therefore some of the covariates 

may not have had adequate coverage in the smaller sample size. Thinning improves REDPM 

most dramatically for low REDPM values in the 5% sample, but otherwise doesn’t seem to 

cause any major shifts in REDPM. Overall, the two-stage method showed increases in 

efficiency for the majority of the parameters.

The consensus method can be applied to this model as long as all the loans originating from 

a particular bank are in the same partition. The method proposed by Scott et al. (2013) 

requires running independent MCMC chains in parallel and then combining the draws of τ 
in the usual manner, and then discarding the values of θ and β. Once the draws of τ are 

combined, these values are sent to each partition which independently draw new values of β 
and θ from p(β|τ, X) and p(θ|τ, X). In our case, however, these distributions are not in 

standard form and are not easily sampled from. In implementation, the first consensus 

MCMC chain to obtain draws of τ was faster than the traditional MH algorithm with a 

parallelized likelihood but performed more slowly than the two-stage method (1106, 910, 

849, 639 minutes for MH, consensus, and two-stage MH (10% and 5% subsampling) 

respectively). Since the speed of the first run of the consensus method was slower than the 

two-stage method and the two-stage MH was more efficient than the consensus method in 

the previous model, drawing values from p(β|τ, X) and p(θ|τ, X) was not implemented.

The subsampling method can also in theory be applied to this model. However, this requires 

fitting 48 spline surfaces prior to running the MCMC (16 banks, 3 levels of first-time home-

buyer status). These spline surfaces were fit using the methodology provided by Ma, Racine, 

and Yang (2015) using a subsample of s = 16, 000 observations (1,000 observations per 

group). However, on each iteration, approximating the log-likelihood surface for the entire 

dataset requires 48 matrix multiplications of dimension zi × s, 

∑i = 1
48 zi = n − s − n1 = 2, 297, 813 − 3, 711 − 16, 000 = 2, 278, 102 where n1 = Σ I(yi = 1). These 
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matrices were too large to fit into RAM, thus we were unable to implement the subsampling 

MH. Even if the data did fit into RAM, the computational cost of estimating the likelihood 

contribution with splines would likely be greater than evaluating the likelihood directly. 

Furthermore, implementing the subsampling method in parallel is not likely to produce 

significant gains in computation time since it will require either calculating the same 

quantities on each process (which defeats the purpose parallelizing) or passing vectors of 

information (rather than scalars) between processes.

3.2 Bayesian MARS

The two-stage method also has applications in more complicated classification settings, 

including Bayesian multivariate adaptive regression splines (BMARS) (Friedman, 1991; 

Holmes and Denison, 2003). BMARS is a non-linear classification method which is 

extremely flexible for classification problems where the relationship between the response 

and covariates is complex, unknown, or otherwise difficult for the analyst to specify. It uses 

the data to adaptively choose splines and knots to flexibly model classification problems. 

Since the splines and knot locations are not known a priori, BMARS requires the use of 

reversible jump MCMC (Green, 1995) to explore a parameter space with varying dimension.

Even in this more complicated setting, implementing the two-stage MH requires only a few 

extra lines of code, but can still produce a faster MCMC chain. To quantify the effectiveness 

of the two-stage method using BMARS, one million observations were simulated from the 

following model:

y Bernoulli{[1 + exp( − π(μ))]−1}

μ = x1 + x2 − x3 − x4 + x1x2 − .5x1x3 − x2x3 + .2x1x2x3;

x1 U(0, 1), x2 N(0, 1), x3 U(0, 2), x4 N(0, 22),

where U (a, b) denotes a uniform distribution on the interval (a, b). The BMARS method 

was implemented using the prior distributions outlined by Holmes and Denison (2003), to 

which we refer the reader to their paper for details. The two-stage method was implemented 

by choosing a random subsample prior to MCMC which was used in each iteration to 

approximate the likelihood. The log-likelihood approximation in the first stage was 

calculated as l̂ = (n/a)lsub where n and a are the number of observations in the whole dataset 

and subsample, respectively, and lsub is the log-likelihood contribution of the subsample.

The BMARS algorithm was run a total of 10 times on this simulated dataset. The usual 

BMARS algorithm was run 5 times and the average is summarized in the first row of Table 

1. The two-stage method was implemented on the remaining five runs with various 

subsampling percentages. Once the priors are in place, there are only two parameters which 

need to be specified in the BMARS method: the maximum number of interactions allowed 
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for the basis functions (which was chosen to be 3), and a tuning parameter (the proposal 

standard deviation of the spline coefficients).

From Table 1, it is clear that the two-stage method is faster than the usual BMARS MCMC, 

with all two-stage runs producing a 30%–40% reduction in time. As with the previous 

examples, as the subsampling percentage decreased, the acceptance rate of the two-stage 

MCMC chain decreased and the speed increased. When sampling only one percent of the 

data, the acceptance rate was very low, so it was re-run with a smaller proposal standard 

deviation. This led to an increase in the acceptance rate with a slight reduction in speed.

Due to the varying dimension of the parameter space during MCMC, comparing efficiency 

of the MCMC chain is not straightforward. Consequently, to determine the effectiveness of 

the two-stage method, one thousand observations were used as a test set, and the predictions 

based on both MCMC chains were compared and are shown in Figure 8. The top-left panel 

of Figure 8 compares the predicted probabilities of two BMARS runs (neither implementing 

the two-stage method) to provide a visual of Monte Carlo error. The two-stage method with 

15%, 10%, and 5% subsampling produced predictions which appear to be within Monte 

Carlo error of the usual BMARS algorithm. The two-stage 1% subsampling (sd = .0005) 

showed slightly more variability and 1% subsampling (sd = .0001) shows a fair amount of 

variability in the predictions. Interestingly, although the predictions between the BMARS 

and two-stage methods become more variable as the subsampling percentage decreased, the 

root-mean-square error (RMSE) of the predictions were essentially the same (RMSE for the 

5 BMARS runs: .0806, .0805, .0806, .0806, .0807; RMSE for the 5 two-stage runs: .0807, .

0806, .0808, .0804, .0806 for 15%, 10%, 5%, 1% (sd = .0005), 1% (sd = .0001), 

respectively). This gives further evidence that the two-stage method can still be highly 

effective even when using a very small percentage of the data as a subsample.

4. Discussion

Perhaps the most pressing question regarding two-stage MH is how to select the subsample 

size. From experience the authors note that for a fixed proposal distribution variance, 

decreasing the subsampling percentage will at some point decrease acceptance rates of the 

MCMC chain. This is due to the fact that the estimate of the likelihood is either 

overestimating or underestimating the likelihood ratio which causes proposed parameter 

values to be discarded by either the first stage (if the estimate of the likelihood ratio is too 

small) or the second stage (if the estimate of the likelihood ratio is too large). If too small of 

a subsample is used, the variance of the proposal distribution will need to be reduced to 

obtain the desired acceptance rate of the MCMC chain. A smaller subsample will increase 

the speed of the chain, but will likely increase the autocorrelation of the chain since the 

variance of the proposal distribution will need to be reduced. Even so, the hierarchical model 

for the Freddie Mac data still performed well with sampling only 5%–10% of the data, and 

the BMARS application performed well even with 1%–15% subsampling. This indicates 

that the speed and efficiency of the two-stage method may be somewhat robust to the 

subsample size used to approximate the log-likelihood.
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One of the main advantages of the two-stage method is its simplicity and ease of 

implementation. It requires taking only one subsample prior to the MCMC algorithm and 

then adding a few lines of code to implement the first screening stage. Furthermore, it can be 

applied to any model in which a computationally cheap estimate of the likelihood can be 

obtained. Even using naive likelihood approximations, the two-stage method has performed 

well. If more precise likelihood estimates can be acquired for a particular model, the two-

stage method may be even more effective at screening out bad proposals (although the speed 

will still depend on a computationally cheap likelihood estimate).

The consensus method is also generally straightforward in simple models, but even in 

hierarchical models it places restrictions on how the data can be partitioned and may require 

sampling from distributions which cannot be sampled from directly (which adds another 

potentially computationally demanding layer). The subsampling method requires the most 

effort to implement since it requires fitting spline surfaces to the data. Furthermore, these 

spline surfaces may require very large matrix multiplications to provide the approximation 

to the likelihood surface on each iteration of the MCMC.

The success of the two-stage method on the complex BMARS method indicates that it has 

potential in many other applications. Other potential non-linear classification methods 

include relevance vector machine (Tipping, 2001) and support vector machine models 

(Mallick, Ghosh, and Ghosh, 2005). This can also be extended in a multivariate responses 

framework (Holmes and Mallick, 2003). Perhaps most importantly, the two-stage method is 

not limited to classification problems. It can be applied to any model where a 

computationally cheap and accurate approximation of the likelihood can be constructed.

5. Conclusion

The results from this paper indicate there are a number of tall data Bayesian methods which 

are effective in obtaining/approximating the posterior distribution more quickly than 

traditional methods. Two-stage MH is simple to implement, fast, and overall more efficient 

than consensus, subsampling, or unmodified MH algorithms in our applications. Combining 

two-stage MH with the consensus method shows promise for even larger datasets in which 

the data cannot fit in RAM. Future extensions to this work include applying the method to 

handle more complicated likelihoods, and finding better likelihood approximations which 

are still computationally cheap to evaluate.
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Figure 1. 
Posterior densities from the Portuguese bank data, two-stage Metropolis vs. Metropolis-

Hastings. The MH and two-stage MH methods are represented by the solid and dashed lines, 

respectively. (See online version for color.) The posterior densities are nearly 

indistinguishable between the methods.
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Figure 2. 
Posterior densities from the Portuguese bank data, subsampling vs. MH. The MH and 

subsampling methods are represented by the solid and dashed lines, respectively. (See online 

version for color.) The posterior densities are nearly indistinguishable between the methods.
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Figure 3. 
Posterior densities from the Portuguese bank data, consensus Monte Carlo vs. MH. The MH 

and consensus Monte Carlo methods are represented by the solid and dashed lines, 

respectively. (See online version for color.) The posterior densities are nearly 

indistinguishable between the methods.
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Figure 4. 
Posterior densities from Freddie Mac data. MH, two-stage MH, and consensus MH. (See 

online version for color.) The posterior densities are nearly indistinguishable between the 

methods.
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Figure 5. 
REDPM with respect to the MH algorithm for two-stage and consensus MH. REDPM is 

plotted for the original MCMC chain and the chain thinned every 10 and 20 values. (See 

online version for color.)
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Figure 6. 
Posterior Distribution of τ for the MH and two-stage method subsampling 5% and 10% of 

the data. (See online version for color.) The posterior densities are nearly indistinguishable 

between the methods.
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Figure 7. 
REDPM for the two-stage method with respect to the MH algorithm for subsample sizes of 

5% and 10%. (See online version for color.)
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Figure 8. 
Comparison of the test-set predictions between the BMARS MCMC and the two-stage 

BMARS MCMC for various subsampling percentages. The top-left panel compares the 

predicted probabilities between two BMARS runs for a visual of Monte Carlo error.
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Table 1

The results of the BMARS MCMC with the two-stage BMARS MCMC. The first row corresponds to the 

average of 5 runs of the usual BMARS algorithm to which the two-stage runs are compared. The last column 

is the ratio of the two-stage time to the regular MCMC time in the first row. Note that as the subsampling 

percentage decreased, the speed of the two-stage algorithm increased while the acceptance rate decreased for a 

fixed proposal standard deviation (SD).

Subsample Percentage SD Acceptance Rate Time (sec) Time Ratio

- .0005 .31 41,594 -

15 .0005 .18 28,134 .68

10 .0005 .15 27,422 .66

5 .0005 .12 25,384 .61

1 .0005 .06 25,144 .60

1 .0001 .21 28,261 .68
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