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Abstract
Researchers often wish to relate estimated scores on latent variables to exogenous covari-
ates not previously used in analyses. The BCH method corrects for asymptotic bias in
estimates due to these scores’ uncertainty and has been shown to be relatively robust. When
applying the BCH approach however, two problems arise. First, negative cell proportions
can be obtained. Second, the approach cannot deal with situations where marginals need to
be fixed to specific values, such as edit restrictions. The BCH approach can handle these
problems when placed in a framework of quadratic loss functions and linear equality and
inequality constraints. This research note gives the explicit form for equality constraints
and demonstrates how solutions for inequality constraints may be obtained using numerical
methods.

Keywords Classification · Latent class analysis · Three-step procedure · BCH method

1 Introduction

Researchers in many different disciplines apply latent structure models in which observed
variables are treated as indicators of an underlying latent variable that cannot be measured
directly. An often used strategy in this context consists of three steps (Vermunt 2010). First,
the parameters of the measurement model are estimated, describing the relationship between
the latent variable and its indicators. Second, each respondent is assigned a latent score
based on his/her scores on the indicators. Finally, the relationships between the latent scores
and scores on exogenous variables are assessed.

Croon (2002) showed that for general latent structure models, such a strategy leads to
inconsistent estimates of the parameters of the joint distribution of the latent variable and the
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exogenous variables. Bolck et al. (2004) discussed this problem in the context of latent class
analysis where observed variables are categorical. They also derived a correction proce-
dure that produces consistent estimates, known as the BCH correction method. Subsequent
simulation studies by Vermunt (2010), Bakk et al. (2013), Bakk and Vermunt (2016), and
Nylund-Gibson and Masyn (2016) have demonstrated that this procedure produces unbi-
ased parameter estimates and correct inference for a large range of simulation conditions.
When applying the BCH correction method in cases of categorical exogenous variables, two
problems can arise. First, negative cell proportion estimates can be obtained (Asparouhov
and Muthén 2015). Second, the approach cannot deal with situations where marginals need
to be constrained. An example is edit restrictions in official statistics, leading to certain
marginals being fixed to zero (De Waal et al. 2012), which is also used in combination with
latent class modelling (Boeschoten et al. 2017).

In this research, note the BCHmethod is extended to solve these two problems. We allow
for linear equality and inequality constraints by noting the correction method minimizes a
quadratic loss function and give a closed form solution for linear equality restrictions. Next,
we demonstrate how solutions for inequality constraints may be obtained using numerical
methods. We first discuss the three-step approach to the latent class model and the BCH
correction method. We then show how to impose linear restrictions and how to extend this
to including non-negativity constraints. At last, the extended BCH method is applied on
a dataset from the Political Action Survey. In the Appendix, R code is given to apply the
procedure.

2 The Three-Step Approach to the Latent Class Model and the BCH
CorrectionMethod

Let us denote a set of observed exogenous variables Q and an unobserved latent variable
X. All variables involved are assumed to be categorical. Let Q = (Q1,Q2, ...,QJ ) be the
Cartesian product of J different discrete random variables Qj . If the variable Qj is defined
for nj categories, the distribution of Q can be specified as a multinomial distribution with
n = ∏J

j=1 nj categories.
In the basic latent class model considered by Bolck et al. (2004), a single categori-

cal latent variable X with m categories is introduced. The variable X itself is not directly
observed but only indirectly via a set of indicator variables Y = (Y1,Y2, ...,YK). Let the
joint distribution of the categorical variables Q, X, and Y be denoted by

p(Q = q, X = x,Y = y) = p(q, x, y).

Then, a possible factorization is

p(q, x, y) = p(q)p(x|q)p(y|x, q).

Since in the basic latent class model Q is assumed to have no direct effect on Y, the latter
result simplifies to

p(q, x, y) = p(q)p(x|q)p(y|x).

The three-step approach to the estimation of the parameters of the latent class model
starts with the estimation of the parameters of the measurement model represented by the
conditional probability distribution p(y|x). Once this estimation procedure is completed,
individual research units may be assigned to one of the latent classes solely on the basis
of their observed scores on Y. This defines the second step of the estimation procedure
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and results in an assignment of each individual to a latent class. If the random variable W

represents the latent classes individuals are assigned to, and assignment is done using a
modal rule where each individual is assigned to the class for which its posterior membership
probability is the largest, this can be expressed as

p(w|y) =
{
1 if p(x1|y) > p(x2|y) ∀ x1 �= x2,

0 otherwise.
(1)

Different assignment rules than the modal rule will yield a different form for Eq. 2. All
subsequent results also apply to other assignment rules, such as proportional or random
assignment (Bakk 2015).

Since Y and Q are conditionally independent given X, so are W and Q and the
conditional distributions are related by

p(w|q) =
X∑

x=1

p(w|x)p(x|q).

In terms of the joint distribution, this becomes

p(q, w) =
X∑

x=1

p(q, x)p(w|x).

The latter result can be recast as a matrix equation

E = AD,

with the elements of the three matrices defined as eqw = p(q, w), aqx = p(q, x), and
dxw = p(w|x). After completing the first and the second estimation steps, the elements of
the matrices E and D are known. The joint distribution ofQ and the latent variable X is then
given by

A = ED−1.

Here, it is assumed that matrix D is not singular so that its inverse exists (see Bolck et al.
(2004, pp. 13–14) for a discussion on when this assumption may be violated). A consistent

estimate of A is ÊD̂
−1

.
The previously obtained algebraic solution for matrix A can also be derived via a rather

trivial minimization of a least squares function. Let E and D be matrices with known ele-
ments. Matrix E is of order n × m and D is an invertible matrix of order m × m. Let A be
an n × m matrix of unknown elements and consider the following least squares function:

ϕ = 1

2
tr(AD − E)′(AD − E).

Minimizing ϕ with respect to the unknown matrix A yields A = ED−1, for which ϕ attains
the truly minimal value of zero. Note that the factor 1/2 is introduced to obtain simpler
expressions for the first derivatives. Its introduction does not change the solution of the
minimization problem.

3 The Correction Procedure Under Linear Equality Constraints

In some applications, simple linear restrictions may be imposed on the elements of matrix
A. For instance, some of the probabilities in the joint distribution of Q and X may be set
equal to zero, for example for combinations of Q and X that cannot occur in practice. After
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imposing such zero constraints, all the non-zero cell probabilities should still add to one.
The quadratic loss function ϕ can be minimized under equality constraints on the unknown
elements of matrix A by applying the method of Lagrangian multipliers.

We first rewrite the quadratic loss function ϕ in the following way using vectorization
operations on matrices (see Schott 1997, pp. 261–266). For the vector of residuals r, we
obtain

r = vec(AD − E)

= vec(In×nAD) − vec(E),

where In×n is an n × n identity matrix. Applying Theorem 7.15 from Schott (1997, p. 263)
yields

r = (D′ ⊗ In×n) · vec(A) − vec(E),

in which ⊗ is the Kronecker product of two matrices (Graham 1982). Defining P = D′ ⊗
In×n, a = vec(A) and e = vec(E), we are able to write

r = Pa − e,

so that the least squares function becomes

ϕ = 1

2
r′r

= 1

2
(a′P′Pa − 2e′Pa + e′e).

The completely unconstrained solution to the minimization problem is given by

a0 = (P′P)−1 · P′e.
Now suppose that the S linear equality constraints can be represented by a matrix equation

Ha = c.

The matrix H is of order S × N , N being the number of cells in matrices A and E. We may
assume that H is of rank S; otherwise, the linear equality constraints would not be linearly
independent. To minimize the least square function ϕ under a set of S linear constraints on
the elements of A, the Lagrangian is defined as

L = ϕ − λ′(Ha − c). (2)

Setting the first derivatives of L with respect to a equal to the zero vector, and solving for a
yields:

a = (P′P)−1(P′e + H′λ),

which can be rewritten as:
a = a0 + (P′P)−1H′λ.

Solving for the unknown Lagrangian multipliers by taking the derivative of the Lagrangian
(Eq. 2), and setting it to zero, or equivalently by imposing linear constraints Ha − c = 0
yields:

λ = [H(P′P)−1H′]−1(c − Ha0).

So that the final solution for a is:

a = a0 + (P′P)−1H′[H(P′P)−1H′]−1(c − Ha0).

Note that the vector c − Ha0 represents the deviations of the unconstrained solution from
the linear equality constraints. Again a consistent estimate of a can be obtained by replacing
P and a0 with their sample estimates.
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4 The Correction Procedure Under Linear Equality and Inequality
Constraints

A second issue with the BCH procedure is that in finite samples the consistent estimate Â
hat may contain negative values. This issue is similar to the occurrence of Heywood cases
in factor analysis (Heywood 1931). Such negative values in the probability table estimate
Â may prevent subsequent analyses. We suggest preventing such inadmissible solutions by
imposing inequality constraints. The resulting minimization problem is a quadratic program
that can be solved by an iterative method.

Such a numerical iterative method for an equality and inequality constrained minimiza-
tion of a quadratic function has been described by Goldfarb and Idnani (1983). Their
numerical algorithm solves the quadratic programming problem of the form

min

(
1

2
b′Dmatb − d′

vecb
)

,

subject to the constraints

H′b ≥ b0,

with respect to the n unknown parameters in vector b. The matrix Dmat is a given n × n

symmetric positive definite matrix whereas dvec is a given n × 1 vector.
To apply the Goldfarb-Idnani optimization procedure in the present context, the follow-

ing definitions have to be implemented. First, to include non-negativity constraints, we make
use of Theorem 7.6 from Schott (1997, p. 254) to obtain

Dmat = P′P
= (DD′) ⊗ In×n.

and

dvec = P′e

Since it is assumed that matrix D is of full rank, the matrix P′P is positive-definite. This
ensures that the quadratic loss function ϕ is strictly convex. Moreover, the type of equality
and inequality constraints considered here (the sum of the elements in matrix A is equal to
1, where all elements ≥ 0 and some are fixed to 0), define a convex region in the parameter
space.

To represent the constraints on the cell probabilities we now define matrix H in such a
way that the first row of H has all its elements equal to 1. This row represents a constraint
on the sum of all cell probabilities. We represent this row vector as matrix H0. Let J =
{1, 2, 3, ..., N} be an index set corresponding to the column numbers of matrix H. This
index set can be partitioned in two non-overlapping subsets J1 and J2:

• Subset J1 contains the indices of the elements of vector a which are set exactly equal
to zero: for those indices j we require aj = 0;

• Subset J2 contains the indices of the elements of vector a which are required to be
non-negative: for those indices j we require aj ≥ 0.

Now let In be an N × N identity matrix and permute the rows of this matrix so that the
upper part contains the rows corresponding with the index numbers in J1, and the lower part
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of the permuted identity matrix contains the rows corresponding with the index numbers in
J2. Referring to the two parts of the permuted identity matrix as H1 and H2, respectively,
the matrix H is obtained by

H =
⎛

⎝
H0
H1
H2

⎞

⎠ ,

where H is used to obtain the final solution for a. Note that in cases where we are not
interested in applying equality constraints, but we are interested in applying the inequality
constraints we simply omit H1. Vector b0 is of length N + 1, with its first element equal to
1 and all the remaining elements equal to 0.

With this procedure, we are able to find a solution for A (the joint distribution of latent
variable X and exogenous covariates Q) where the sum of the elements is equal to 1, where
no negative elements are created, and where impossible combinations of scores can be set to
have a probability of zero. Having defined b,Dmat andH, the solution can be obtained using
standard software for quadratic programming, such as the R package quadprog (Turlach
and Weingessel 2013).

5 Application

As an illustration, the extended BCH method is applied on a dataset from the Political
Action Survey (Barnes et al. 1979; Jennings and Van Deth 1990). The dataset consists of five
dichotomous indicators on political involvement and tolerance (“System Responsiveness”;
“Ideological Level”; “Repression Potential”; “Protest Approval”; “Conventional Participa-
tion”) and three nominal covariates (“Sex”; “Level Of Education”; “Age”). This dataset
has previously been used in Hagenaars (1993) and Vermunt and Magidson (2000) and in
the Latent GOLD user’s manual (Vermunt and Magidson 2005). The dataset as well as the
syntax used in this illustration can be found in Latent GOLD version 5.1 under “syntax
examples” → LCA → restrictions → equalities → Model C.

In the first step, a four class restricted model is applied to distinguish between four latent
classes on involvement and tolerance. In this model, response probabilities are restricted to
be equal for the items “System Responsiveness” and “Conventional Participation,” and the
response probability for the variable “Ideological Level” is fixed to 0 by specifying a logit
of 100.

In the second step, cases are assigned to a latent class by using modal assignment, result-
ing in the imputed latent variable W . In the third step, the relationship between the imputed
latent variable “Involvement And Tolerance” (W ) and exogenous covariate “Age” (Q) is
investigated. The E-matrix containing the joint probabilities of these variables is:

W1 W2 W3 W4

Q16-34
E = Q35-57

Q58-91

⎛

⎝
0.05795848 0.15743945 0.01643599 0.09256055
0.08477509 0.17560554 0.05276817 0.03979239
0.12802768 0.10034602 0.06920415 0.02508651

⎞

⎠ .
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The D-matrix describing the relationship between the imputed latent variable “involvement
and tolerance” (W ) and the latent variable “involvement and tolerance” (X) is also obtained:

W1 W2 W3 W4

D =
X1
X2
X3
X4

⎛

⎜
⎜
⎝

0.67389148 0.1570985 0.02678610 0.1422239
0.01898361 0.7891416 0.05879905 0.1330757
0.17186997 0.2725275 0.54176422 0.0138383
0.12184782 0.3220914 0.01975761 0.5363031

⎞

⎟
⎟
⎠ .

The BCH method can now be applied by estimating ED−1, resulting in the A matrix:

X1 X2 X3 X4

Aunconstraint =
Q16-34
Q35-57
Q58-91

⎛

⎝
0.0577223 0.13465976 0.008359502 0.123652898
0.1018944 0.17635045 0.073167182 0.001529175
0.1618782 0.06157076 0.113576159 −0.014360760

⎞

⎠ .

As can be seen, this result is inadmissable since the cell Q58-91 × X4 contains a negative
value. Therefore, it will not be possible to estimate posterior membership probabilities and
to do subsequent analyses here.

When the extended BCH method is applied, the following constrained A matrix is
obtained:

X1 X2 X3 X4

Aconstraint =
Q16-34
Q35-57
Q58-91

⎛

⎝
0.05741718 0.13472999 0.007627791 0.1229631559
0.10158926 0.17642067 0.072435471 0.0008394325
0.15689781 0.05436459 0.114714655 0.0000000000

⎞

⎠ .

The cell Q58-91 × X4 does not contain a negative value anymore, so this matrix can now be
used to estimate posterior membership probabilities and to do subsequent analyses.

Since there are no combinations of scores between “Involvement And Tolerance” and
“Age” that are not possible in practice, it is not needed to fix any marginals to zero.

6 Conclusion

We have modified the BCH method to include linear equality and inequality constraints
solving the problem of negative solutions and allowing for restrictions on arbitrary cell
margins. With these adjustments, analysts interested in relating covariates to assignments
on latent class variables will now be able to, for example, impose edit restrictions, further
analyse solutions that were previously inadmissible, and analyse datasets involving more
complex marginal restrictions. The application demonstrates that when a negative value is
obtained using the regular BCH method, this can be solved by using the extended BCH
method. In the Appendix, R code is given to apply the extended BCH method, and an
addition to the example is given that demonstates how margins can be fixed to zero using
the extended BCH method.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix

This Appendix consists of two sections. In Appendix 1, R code is given to apply the
extended BCH method as described in the research note. In Appendix 2, it is illustrated how
the code can be used and how margins can be fixed to zero.

Appendix 1

The iterative method for an equality and inequality constrained minimization of a quadratic
function described by Goldfarb and Idnani (1983) has been implemented in the R package
quadprog available in the repository CRAN (Turlach and Weingessel 2013).

The minimization procedure is implemented in the function solve.QP which is called
as
solve.QP(Dmat,dvec,Amat,bvec,meq).
Its arguments are:

• Dmat: the matrix D appearing in the quadratic function: (DD′) ⊗ In×n;
• dvec: the vector d appearing in the quadratic function: e′P;
• Amat: The transpose of H (H′) defining the linear constraints on the parameters b;
• bvec: A vector of length N + 1, with its first elements equal to 1 and the remaining N

elements all equal to 0, these are the constants b0 in the constraints.
• meq: 1+ the number of elements in J1

The minimization procedure can be applied using the following function:
qpsolve <- function(e,d,iequal){

nr <- nrow(e)

nc <- ncol(e)

ncel <- nr*nc

evec <- as.vector(e)

id <- diag(nr)

p <- kronecker(t(d),id)

dmat <- kronecker(d %*% t(d),id)

dvec <- as.vector(evec %*% p)

im <- diag(ncel)

i1 <- iequal

i2 <- setdiff(1:ncel,i1)

index <- c(i1,i2)

im2 <- im[index,]

at <- rbind(rep(1,ncel),im2)

amat <- t(at)

bvec <- c(1,rep(0,ncel))

meq <- 1 + length(iequal)

res <- solve.QP(dmat,dvec,amat,bvec,meq)

return(res)

}
The function is used by defining the E-matrix, the D-matrix and the inequality constraints:
res <- qpsolve(E,D,iequal).
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Appendix 2

In Section 5, the extended BCH method is applied on a dataset from the Political Action
Survey. There are no combinations of scores between the latent variable and the exogenous
covariate that are not possible in practice, so therefore it is not needed to fix any marginals to
zero. However, in this appendix, a margin of the A-matrix is fixed for illustrative purposes.

As can be seen in Appendix 1, the qsolve() function can be used by defining the E-
matrix, the D-matrix and the inequality constraints. In the application section, the E-matrix,
the D-matrix are defined, and since there are no inequality constraints, these are omitted for
the function by specifying
iequal <- c()

By using the function qpsolve(E,D,iequal), both the unconstrained and the con-
strained solutions for the A-matrix are given. The output is saved under the name res:
res <- qpsolve(E,D,iequal). The unconstrained solution can be requested by:

res$unconstrained.solution

and the constrained solution can be requested by:

res$solution

For illustration purposes, the cell Q16-34 × X3 of the A-matrix is fixed to zero. When
vectorizing the A-matrix, this cell is the seventh element, so this needs to be specified:

iequal <- c(7)

It can now be seen that the constrained solution is not only without negative values, also the
cell Q16-34 × X3 is fixed to zero:

X1 X2 X3 X4

Aconstraint =
Q16-34
Q35-57
Q58-91

⎛

⎝
0.06007299 0.13800030 0.0000000 0.12215613
0.10183738 0.17636356 0.0730305 0.00140033
0.15732017 0.05457865 0.1152400 0.00000000

⎞

⎠ .
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