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Abstract

A mixture of multiple scaled generalized hyperbolic distributions (MMSGHDs) is
introduced. Then, a coalesced generalized hyperbolic distribution (CGHD) is developed
by joining a generalized hyperbolic distribution with a multiple scaled generalized hy-
perbolic distribution. After detailing the development of the MMSGHDs, which arises
via implementation of a multi-dimensional weight function, the density of the mixture
of CGHDs is developed. A parameter estimation scheme is developed using the ever-
expanding class of MM algorithms and the Bayesian information criterion is used for
model selection. The issue of cluster convexity is examined and a special case of the
MMSGHDs is developed that is guaranteed to have convex clusters. These approaches
are illustrated and compared using simulated and real data. The identifiability of the
MMSGHDs and the mixture of CGHDs is discussed in an appendix.

Keywords: clustering; coalesced distributions; convexity; finite mixture models; gen-
eralized hyperbolic distribution; mixture of mixtures; MM algorithm; multiple scaled
distributions.

1 Introduction

Finite mixture models have been linked with clustering since the idea of defining a cluster
in terms of a component in finite mixture model was put forth more than 60 years ago (see
McNicholas, 2016a, Section 2.1). Nowadays, mixture model-based clustering is a popular
approach to clustering. A random vector X arises from a finite mixture model if, for all
x ⊂ X, its density can be written

f(x | ϑ) =
G∑
g=1

πgfg(x | θg),
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where πg > 0 such that
∑G

g=1 πg = 1 are the mixing proportions, fg(x | θg) is the gth
component density, and ϑ = (π,θ1, . . . ,θG) denotes the vector of parameters with π =
(π1, . . . , πG). The component densities f1(x | θ1), . . . , fG(x | θG) are typically taken to be
of the same type, most commonly multivariate Gaussian. In fact, until a few years after the
turn of the century, almost all work on clustering and classification using mixture models
had been based on Gaussian mixture models (e.g., Banfield and Raftery, 1993; Celeux and
Govaert, 1995; Ghahramani and Hinton, 1997; Tipping and Bishop, 1999; McLachlan and
Peel, 2000; Fraley and Raftery, 2002).

Early work on non-Gaussian mixtures was on mixtures of multivariate t-distributions
(e.g., Peel and McLachlan, 2000). A little beyond the turn of the century, work on t-mixtures
burgeoned into a substantial subfield of mixture model-based classification (e.g., McLachlan
et al., 2007; Andrews and McNicholas, 2011a,b, 2012; Baek and McLachlan, 2011; Steane
et al., 2012; Lin et al., 2014; Pesevski et al., 2018). Around the same time, work on mixtures of
skewed distributions took off, including work on skew-normal mixtures (e.g., Lin, 2009), skew-
t mixtures (e.g., Lin, 2010; Vrbik and McNicholas, 2012, 2014; Lee and McLachlan, 2013a,b;
Murray et al., 2014), Laplace mixtures (e.g., Franczak et al., 2014), variance-gamma mixtures
(McNicholas et al., 2017), generalized hyperbolic mixtures (Browne and McNicholas, 2015),
and other non-elliptically contoured distributions (e.g., Karlis and Santourian, 2009; Murray
et al., 2017; Tang et al., 2018). A thorough review of work on model-based clustering is
given by McNicholas (2016b).

More recently, mixtures of multiple scaled distributions have been considered (Section 2).
In the present manuscript, a multiple scaled generalized hyperbolic distribution is introduced
(Section 3). Because the (multivariate) generalized hyperbolic distribution is not a special
case of the multiple scaled generalized hyperbolic distribution, a coalesced generalized hy-
perbolic distribution is also developed (Section 4). The issue of cluster convexity, which
has essentially been ignored in work to date on multiple scaled distributions is discussed
and a special case of the multiple scaled generalized hyperbolic distribution is developed to
guarantee that the components, i.e., the clusters, are convex (Section 5).

2 Multiple Scaled Distributions

The distribution of a p-dimensional random variable X is said to be a normal variance-mean
mixture if its density can be written in the form

f(x | µ,Σ,α,θ) =

∫ ∞
0

φp (x | µ+ wα, wΣ)h (w | θ) dw, (1)

where φp (x | µ+ wα, wΣ) is the density of a p-dimensional Gaussian distribution with
mean µ+wα and covariance matrix wΣ, and h (w | θ) is the density of a univariate random
variable W > 0 that has the role of a weight function (see Barndorff-Nielsen et al., 1982;
Gneiting, 1997). This weight function can take on many forms, some of which lead to density
representations for well-known non-Gaussian distributions, e.g., if h (w | θ) is the density of
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an inverse-gamma random variable with parameters (ν/2, ν/2), then (1) is a representation
of the skew-t distribution with ν degrees of freedom (see Demarta and McNeil, 2005; Murray
et al., 2014). Further details on, and examples of, normal variance-mean mixtures are given
by Barndorff-Nielsen (1978), Kotz et al. (2001), and Kotz and Nadarajah (2004), amongst
others.

Now, the density of W > 0 from an inverse-gamma distribution with parameters (α, β)
is given by

h (w | α, β) = w−α−1 βα

Γ (α)
exp

{
−β
w

}
, (2)

where Γ(·) is the Gamma function. Setting α = β = ν/2 in (2) gives

h (w | ν/2, ν/2) = w−ν/2−1 (ν/2)ν/2

Γ (ν/2)
exp

{
− ν

2w

}
, (3)

Setting α = 0 in (1), and using (3) for h (w | θ), it follows that the density of the multivariate
t-distribution with ν degrees of freedom can be written

ft(x | µ,Σ, ν) =

∫ ∞
0

φp (x | µ, wΣ)h (w | ν/2, ν/2) dw

=
Γ ([ν + p]/2) |Σ|−1/2

(πν)p/2Γ (ν/2) [1 + δ(x,µ | Σ)/ν](ν+p)/2
(4)

where δ (x,µ | Σ) is the squared Mahalanobis distance between x and µ. Forbes and Wraith
(2014) show that a multi-dimensional weight variable

∆W = diag
(
w−1

1 , . . . , w−1
p

)
can be incorporated into (1) via an eigen-decomposition of the symmetric positive-definite
matrix Σ. Specifically, they set Σ = ΓΦΓ′, where Γ is a p× p matrix of eigenvectors and Φ
is a p× p diagonal matrix containing the eigenvalues of Σ. It follows that the density of X
becomes

f (x | µ,Γ,Φ,α,θ) =∫ ∞
0

· · ·
∫ ∞

0

φp (x | µ+ ∆Wα,Γ∆WΦΓ′)hW (w1, . . . , wp | θ) dw1 . . . dwp,
(5)

where
hW (w1, . . . , wp | θ) = h (w1 | θ1)× · · · × h (wp | θp)

is a p-dimensional density such that the random variables W1, . . . ,Wp are independent, i.e.,
the weights are independent. The density given in (5) adds flexibility to normal variance-
mean mixtures because the parameters θ1, . . . ,θp are free to vary in each dimension. Us-
ing the density in (5), Forbes and Wraith (2014) derive the density of a multiple scaled
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multivariate-t distribution, Wraith and Forbes (2015) derive a multiple scaled normal-inverse
Gaussian distribution, and Franczak et al. (2015) develop a multiple scaled shifted asym-
metric Laplace distribution.

Setting Σ = ΓΦΓ′, it follows from (5) that the density of a multiple scaled analogue
of (4) can be written

ftMS(x | µ,Γ,Φ,ν) =

∫ ∞
0

· · ·
∫ ∞

0

φp (x | µ,ΓΦ∆WΓ′)hW (w1, . . . , wp | ν) dw1 . . . dwp, (6)

where ∆W = diag
(
w−1

1 , . . . , w−1
p

)
and the weight function

hW (w1, . . . , wp | ν) = h (w1 | ν1/2, ν1/2)× · · · × h (wp | νp/2, νp/2)

is a p-dimensional Gamma density, where h (wj | νj/2, νj/2) is given by (3). Note that the
scaled Gaussian density in (6) can be written

φp (x | µ,ΓΦ∆WΓ′) =

p∏
j=1

φ1

(
[Γ′x]j | [Γ′µ]j,Φjw

−1
j

)
=

p∏
j=1

φ1

(
[Γ′(x− µ)]j | 0,Φjw

−1
j

)
,

(7)

where φ1

(
[Γ′(x− µ)]j | 0,Φjw

−1
j

)
is the density of a univariate Gaussian distribution with

mean 0 and variance Φjw
−1
j , [Γ′(x− µ)]j is the jth element of Γ′(x− µ), and Φj is the jth

eigenvalue of Φ, i.e., the jth diagonal element of the matrix Φ. It follows that (6) can be
written

ftMS(x | µ,Γ,Φ,ν) =

p∏
j=1

∫ ∞
0

φ1

(
[Γ′(x− µ)]j | 0,Φjw

−1
j

)
h (wj | νj/2, νj/2) dwj. (8)

Solving the integral in (8) gives the density of a multiple scaled multivariate-t distribution,

ftMS(x | µ,Γ,Φ,ν) =

p∏
j=1

Γ([νj + 1]/2)

Γ(νj/2)(Φjνjπ)1/2

[
1 +

[Γ′(x− µ)]2j
Φjνj

]−(νj+1)/2

, (9)

where Φj is the jth eigenvalue of Φ, Γ is a matrix of eigenvectors, µ is a location parameter,
and [Γ′(x−µ)]2j/Φj can be regarded as the squared Mahalanobis distance between x and µ.

The main difference between the traditional multivariate-t density given in (4) and the
multiple scaled multivariate-t density given in (9) is that the degrees of freedom can now be
parameterized separately in each dimension j. Therefore, unlike the standard multivariate-t
distribution, the multiple scaled density in (9) can account for different tail weight in each
dimension (Forbes and Wraith, 2014).
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3 Mixture of Multiple Scaled Generalized Hyperbolic

Distributions

There are different ways to formulate the density of a generalized hyperbolic distribution
(GHD; see McNeil et al., 2005, for example). Browne and McNicholas (2015) use a mixture
of GHDs (MGHDs) for clustering and they use the following formulation for the density of
a p-dimensional random vector X from a GHD:

fGH(x | θ) =

[
ω + δ (x,µ|Σ)

ω +α′Σ−1α

](λ−p/2)/2 Kλ−p/2

(√[
ω +α′Σ−1α

][
ω + δ (x,µ|Σ)

])
(2π)p/2 |Σ|1/2Kλ (ω) exp

{
− (x− µ)′Σ−1α

} , (10)

where µ ∈ Rp is the location parameter, α ∈ Rp is the skewness parameter, Σ ∈ Rp×p is the
scale matrix, λ ∈ R is the index parameter, ω ∈ R+ is the concentration parameter, and Kλ

is the modified Bessel function of the third kind with index λ. Now, X | w v N(µ+wα, wΣ)
and W | x ∼ GIG(ω + α′Σ−1α, ω + δ (x,µ|Σ) , λ − p/2), where W ∼ GIG(a, b, λ) denotes
that W follows a generalized inverse Gaussian (GIG) distribution with density formulated
as

q(w | a, b, λ) =
(a/b)λ/2wλ−1

2Kλ(
√
ab)

exp

{
−aw + b/w

2

}
, (11)

for w > 0, where a, b ∈ R+, and λ ∈ R. The GIG distribution has some attractive properties
including the tractability of the following expected values:

E [W ] =

√
b

a

Kλ+1

(√
ab
)

Kλ(
√
ab)

, E [1/W ] =

√
a

b

Kλ+1

(√
ab
)

Kλ

(√
ab
) − 2λ

b
, (12)

E[logW ] = log

(√
b

a

)
+

1

Kλ

(√
ab
) ∂
∂λ
Kλ

(√
ab
)
. (13)

Write X ∼ GHD(µ,Σ,α, ω, λ) to denote that the p-dimensional random variable X has the
density in (10).

Now, note that the formulation of the GHD in (10) can be written as a normal variance-
mean mixture where the univariate density is GIG, i.e.,

X = µ+Wα+
√
WV, (14)

where V ∼ N(0,Σ) and W has density

h(w | ω, 1, λ) =
wλ−1

2Kλ(ω)
exp

{
−ω

2

(
w +

1

w

)}
, (15)

for w > 0, where ω and λ are as previously defined. Note that (15) is just an alternative
parameterization of the GIG distribution. From (14) and (15), it follows that the generalized
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hyperbolic density can be written

f(x | µ,Σ,α, ω, λ) =

∫ ∞
0

φp (x | µ+ wα, wΣ)h(w | ω, 1, λ)dw. (16)

We can use (5), (16) and an alternative parameterization to write the density of a multiple
scaled generalized hyperbolic distribution (MSGHD) as

fMSGHD(x | µ,Γ,Φ,α,ω,λ) =∫ ∞
0

· · ·
∫ ∞

0

φp (Γ′x− µ−∆wα | 0,∆wΦ)hw(w1, . . . , wp | ω,1,λ)dw1 . . . dwp,

(17)

where ω = (ω1, . . . , ωp)
′, λ = (λ1, . . . , λp)

′, 1 is a p-vector of 1s, and

hW(w1, . . . , wp | ω,1,λ) = h(w1 | ω1, 1, λ1)× · · · × h(wp | ωp, 1, λp).

From (6) and (7), it follows that (17) can be written

fMSGHD (x | µ,Γ,Φ,α,ω,λ) =

p∏
j=1

∫ ∞
0

φ1

(
[Γ′x− µ−∆wα]j | 0,Φjwj

)
hW (wj | ωj, 1, λj) dwj

=

p∏
j=1


[
ωj + Φ−1

j

(
[Γ′x]j − µj

)2

ωj + α2
jΦj

−1

]λj−1/2

2 Kλj−1/2

(√[
ωj + α2

jΦj
−1
] [
ωj + Φ−1

j

(
[Γ′x]j − µj

)2
])

(2π)1/2Φj
1/2Kλj(ωj) exp

{
−
(

[Γ′x]j − µj
)
Φ−1
j αj

}
 ,

where [Γ′x]j is the jth element of the vector Γ′x, µj is the jth element of the location param-
eter µ, αj is the jth element of the skewness parameter α, Γ is a p×p matrix of eigenvectors,
Φj is the jth eigenvalue of the diagonal matrix Φ, ω = (ω1, . . . , ωp)

′ controls the concentra-
tion in each dimension p, and λ = (λ1, . . . , λp)

′ is a p-dimensional index parameter. Write
X v MSGHD(µ,Γ,Φ,α,ω,λ) to indicate that the random vector X follows an MSGHD
with density fMSGHD(x | µ,Γ,Φ,α,ω,λ). Then, a mixture of MSGHDs (MMSGHDs) has
density

f(x | ϑ) =
G∑
g=1

πgfMSGHD

(
x | µg,Γg,Φg,αg,ωg,λg

)
. (18)

The identifiability of the MMSGHD is discussed in Appendix C.

4 Mixture of Coalesced Generalized Hyperbolic Dis-

tributions

Note that the generalized hyperbolic distribution is not a special or limiting case of the
MSGHD under any parameterization with p > 1. Motivated by this, consider a coalesced
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generalized hyperbolic distribution (CGHD) that contains both the generalized hyperbolic
distribution and MSGHD as limiting cases. The CGHD arises through the introduction of
a random vector

R = UX + (1− U)S, (19)

where X = ΓY, Y v GHD (µ,Σ,α, ω0, λ0), Σ = ΓΦΓ′, S v MSGHD (µ,Γ,Φ,α,ω,λ),
and U is an indicator variable such that

U =

{
1 if R follows a generalized hyperbolic distribution, and

0 if R follows a MSGHD.

It follows that X = Γµ+WΓα+
√
WΓV, where ΓV v Np (0,ΓΦΓ′), S = Γµ+Γα∆w+ΓA,

where ΓA v Np (0,Γ∆wΦΓ′), and the density of R can be written

fCGHD(r | µ,Γ,Φ,α,ω,λ, ω0, λ0, $)

= $fGHD (r | µ,ΓΦΓ′,α, ω0, λ0) + (1−$)fMSGHD (r | µ,Γ,Φ,α,ω,λ) ,
(20)

where fGHD(·) is the density of a generalized hyperbolic random variable, fMSGHD(·) is the
density of a MSGHD random variable, and $ ∈ (0, 1) is a mixing proportion. Note that
the random vector R would be distributed generalized hyperbolic if $ = 1 and would be
distributed MSGHD if$ = 0. However, we must restrict$ ∈ (0, 1) for identifiability reasons.
Specifically, if $ = 0 then the value of fCGHD(r | µ,Γ,Φ,α,ω,λ, ω0, λ0, $) will be the same
for any ω0 and λ0 whereas, if $ = 1, then the value of fCGHD(r | µ,Γ,Φ,α,ω,λ, ω0, λ0, $)
will be the same for any ω and λ. The parameters µ, α, Γ, and Φ are the same for
both densities, the parameters ω0 and λ0 are univariate values peculiar to the generalized
hyperbolic distribution, and the p-dimensional parameters ω and λ are peculiar to the
MSGHD. Write R v CGHD(µ,Γ,Φ,α,ω,λ, ω0, λ0, $) to indicate that the random vector
R follows a CGHD with density in (20).

A mixture of CGHDs (MCGHDs) has density

f(x | ϑ) =
G∑
g=1

πgfCGHD

(
x | µg,Γg,Φg,αg,ωg,λg, ω0g, λ0g, $g

)
.

Parameter estimation can be carried out via a generalized expectation-maximization (GEM)
algorithm (Dempster et al., 1977). There are four sources of missing data: the latent w0ig, the
multi-dimensional weights ∆wig = diag(w1ig, . . . , wpig), the component membership labels
zig, and the inner component labels uig, for i = 1, . . . , n and g = 1, . . . , G. As usual,
zig = 1 if observation i belongs to component g and zig = 0 otherwise. Similarly, uig =
1 if observation i, in component g, is distributed generalized hyperbolic and uig = 0 if
observation i, in component g, is distributed MSGHD. It follows that the complete-data
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log-likelihood for the MCGHD is

lc =
n∑
i=1

G∑
g=1

{
zig log πg + ziguig log$g + zig(1− uig) log(1−$g) + ziguig log h (w0ig | ω0g, 1, λ0g)

+ zig(1− uig)
p∑
j=1

log h (wjig | ωjg, 1, λjg) + ziguig log φp
(
Γ′gxi | µg + w0igαg, w0igΦ

)
+ zig(1− uig)

p∑
j=1

log φ1

(
[Γ′gxi]j | µjg + wjigαjg, ωjgφjg

)}
.

Further details on parameter estimation (Appendix A) and the identifiability of the MCGHD
(Appendix C) are discussed in appendices.

5 Cluster Convexity

The definition of clusters has been discussed quite extensively in the literature. Recently,
Hennig (2015) provides a very interesting discussion of some potential characteristics that
clusters may have. Even though they cannot always be observed — and, in some situations,
desired characteristics may even conflict — such characteristics provide important links and
contrasts between different definitions that are used for a cluster. In fact, the idea of desirable
characteristics is not a new one, e.g., Cormack (1971) gives internal cohesion and external
isolation as two “basic ideas” in this direction. In this paper, we follow the definition given
by McNicholas (2016a): “a cluster is a unimodal component within an appropriate finite
mixture model”. The term appropriate means that the model has the flexibility to fit the
data and, in many cases, this also means that each cluster is convex (see McNicholas, 2016a,
Section 9.1). The development of flexible models outlined herein may make it a little easier
to find an “appropriate” component density.

The MSGHD is more flexible than the GHD; however, similar to the multiple scaled
multivariate t-distribution of Forbes and Wraith (2014), the MSGHD can have contours
that are not convex. Accordingly, the MMSGHD can have components that are non-convex,
leading to non-convex clusters. Consider the data in Figure 1. How many clusters are
there? The most plausible answer to this question is two overlapping clusters: one with
positive correlation between the variables and another with negative correlation between the
variables. There may also be an argument for four or five. Note that the data are generated
from a G = 2 component mixture of multivariate t-distributions.

The MMSGHD is fitted to these data for G = 1, . . . , 5 and, as is common in model-based
clustering applications, the Bayesian information criterion (BIC; Schwarz, 1978) is used to
select G. Note that the BIC is given by

BIC = 2l(ϑ̂)− ρ log n,
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Figure 1: Scatter plot of data generated from a two-component t-mixture (top-left) along
with contours from fitted G = 1 component MMSGHD (top-right), G = 2 component
MMSGHD (bottom-left), and G = 2 component McMSGHD (bottom-right) models, where
plotting symbol and colour represent predicted classifications.

where l(ϑ̂) is the maximized log-likelihood, ρ is the number of free parameters, and n is
the number of observations. For the MMSGHD, the BIC selects a G = 1 component model
(Figure 1). Furthermore, looking at the G = 2 component MSGHD solution (Figure 1)
confirms that the problem is not just one of model selection; the G = 2 component MSGHD
solution selects one component that is roughy elliptical and another that is not convex. On
the other hand, forcing the MSGHD to be convex — which can be done by imposing the
constraint λj > 1, for j = 1, . . . , p — leads to what we call the convex MSGHD (cMSGHD).
Fitting the corresponding mixture of cMSGHDs (McMSGHDs) ensures that, if each compo-
nent is associated with a cluster, then convex clusters are guaranteed. Results in a G = 2
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Figure 2: Scatter plots for model-based clustering results on data simulated from a three-
component t-mixture (top-left), with contours from the selected MMSGHD (top-right) and
McMSGHD (bottom) models, respectively, where plotting symbol and colour represent pre-
dicted classifications.

component model being selected (Figure 1). Formally, this amounts to insuring that the
MSGHD is quasi-convex; see Appendix B. The general point here is that if convexity is not
enforced, then the MSGHD can give components that contain multiple clusters. While it is
easy to spot this in two dimensions, e.g., Figure 1, this phenomenon may go unrecognized
in higher dimensions, possibly resulting in greatly misleading results. Of course, the issue
of non-convex clusters does not arise with most model-based approaches; however, when
multiple scaled mixtures are considered, the issue can crop up. Another example in a similar
vein is given in Figure 2, where data are generated from a G = 3 component mixture of
multivariate t-distributions. The selected MMSGHD has G = 2 components, including one
clearly non-convex cluster, while the McMSGHD gives sensible clustering results.

The intention behind the introduction of the McMSGHD is not that it should supplant the
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MMSGHD, but rather that it provides a convenient check on the number of components. In a
higher dimensional application, where visualization is difficult or impossible, situations where
the selected MMSGHD has fewer components than the selected McMSGHD will deserve
special attention. Of course, this is not to say that the selected McMSGHD will always
have more components in situations where the MSGHD has too few, but rather that it
will help to avoid the sort of situations depicted in Figures 1 and 2. Note that parameter
estimation for the McMSGHD is analogous to the algorithm for the MMSGHD algorithm
but λkj (k = 0, 1, . . . , G, j = 1, . . . , p) is updated only if the value of its update exceeds 1.

6 Illustrations

6.1 Implementation and Evaluation

In the following illustrations, we fit the MGHDs, the MMSGHDs, the McMSGHDs, and the
MCGHDs using the corresponding functions available in the MixGHD package (Tortora et al.,
2017) for R (R Core Team, 2017). We use k-means and k-medoids clustering to initialize the
ẑig. The adjusted Rand index (ARI; Hubert and Arabie, 1985) is used to compare predicted
classifications with true classes. The ARI corrects the Rand index (Rand, 1971) for chance,
its expected value under random classification is 0, and it takes a value of 1 when there is
perfect class agreement. Steinley (2004) gives guidelines for interpreting ARI values.

Several mixtures of skewed distributions have been proposed for model-based clustering
and classification. Among them, three different formulations of the multivariate skew-t
distribution have been used for clustering in the mixture setting. The formulation used by
Murray et al. (2014) is a special case of the generalized hyperbolic distributions. Azzalini
et al. (2016) refers to the other two formulations as the classical and SDB formulations (for
the initials of the authors’ names), respectively. Lee and McLachlan (2013b, 2014) compare
the mixture of classical skew-t distributions to the mixture of SDB skew-t distributions
(MSDBST) and to skew-normal analogues of both formulations; their results lead one to
believe that the MSDBST is generally preferable (see Azzalini et al., 2016, for an alternative
viewpoint). The MSDBST approach is implemented using the EMMIXuskew package (Lee
and McLachlan, 2013a) for R and it is used for comparison herein.

6.2 Simulation Study

We use a simulation study to measure the performance of the proposed methods. The
interest is to observe the ARI under different circumstances, the data are generated us-
ing two-component mixtures of Gaussian (Scenario 1), generalized hyperbolic (Scenario 2),
and multiple scaled generalized hyperbolic distributions (Scenario 3), using the R function
mvrnorm and the stochastic relationships given in (14) and Section 4. For each scenario
a three factors full factorial design was used, where the factors are: medium (M) or high
(H) correlation, 25% or 50% overlapping, and same (S), n1 = n2 = 100, or different (D),
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n1 = 150 and n2 = 50, number of elements per component. In all the scenarios µ1 = 1.
Table 1 shows the average ARI, with standard deviation, obtained on 10 data sets generated
from a Gaussian distribution with p = 10, G = 2, correlation equal to 0.33 for M and 0.66
for H, µ2 = 2 for 25% overlapping and µ2 = 3 for 50% overlapping. Table 2 shows the
average ARI, with standard deviation, obtained on 10 data sets generated from a MGHD
distribution with p = 10, G = 2, α = 1, λ = 0.5, ω = 1 and correlation equal to 0.25 for
M and 0.5 for H, µ2 = 10 for 25% overlapping and µ2 = 15 for 50% overlapping. Table 3
shows the average ARI, with 1 standard deviation, obtained on 10 data sets generated from
a MMSGHD distribution with p = 10, G = 2, α1 = 1, α2 = −1, λ = 0.5, ω = 1 and
correlation equal to 0.25 for M and 0.35 for H, µ2 = 19 for 25% overlapping and µ2 = 23
for 50% overlapping. For the data sets generated using the MGHD and the MMSGHD
the values of the correlation had to be reduced in order to maintain 25% and 50% overlap,
higher correlation lead to higher overlap. Figure 3 shows the scatterplots of the data simu-
lated using the two-component MGDs, MGHDs, and MMSGHDs with high correlation, 50%
overlapping and cluster of different size, where plotting symbol and colour represent the true
classifications.

Table 1: Average ARI values, with standard deviations, for each data set generated from
MGDs, with different starting parameters.
Correlation Overlapping ng MCGHD MGHD MMSGHD McMSGHD
M 25% S 0.964 (0.020) 0.932 (0.056) 0.943 (0.025) 0.941 (0.026)
H 25% S 0.850 (0.044) 0.730 (0.132) 0.848 (0.050) 0.817 (0.062)
M 50% S 0.734 (0.064) 0.642 (0.085) 0.736 (0.062) 0.721 (0.084)
H 50% S 0.565 (0.116) 0.408 (0.179) 0.595 (0.059) 0.553 (0.090)
M 25% D 0.981 (0.016) 0.979 (0.017) 0.981 (0.021) 0.975 (0.022)
H 25% D 0.831 (0.047) 0.771 (0.047) 0.780 (0.082) 0.787 (0.059)
M 50% D 0.715 (0.053) 0.663 (0.064) 0.705 (0.069) 0.696 (0.073)
H 50% D 0.494 (0.133) 0.354 (0.151) 0.446 (0.122) 0.447 (0.130)

The MCGHDs perform at least comparably to the best of the MMSGHDs and MGHDs.
As expected, the MGHDs over performs the MMSGHDs when the data are generated using
a MGHDs model and vice versa when the data are generated from a MMSGHDs. The
two methods perform similarly on normally distributed clusters. The generated clusters are
all convex and that explains the similarity of the results obtained using MMSGHDs and
McMSGHDs. The level of overlapping has a notable impact on the ARI, as expected. The
performance of all the methods are slightly better when the clusters are of the same size and
when there is a lower correlation.
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Table 2: Average ARI values, with standard deviations, for each data set generated from
MGHDs, with different starting parameters and α = 1.
Correlation Overlapping ng MCGHD MGHD MMSGHD McMSGHD
M 25% S 0.933 (0.045) 0.922 (0.041) 0.765 (0.228) 0.773 (0.211)
H 25% S 0.842 (0.040) 0.770 (0.119) 0.463 (0.348) 0.399 (0.371)
M 50% S 0.712 (0.093) 0.680 (0.107) 0.510 (0.229) 0.477 (0.221)
H 50% S 0.475 (0.176) 0.416 (0.104) 0.188 (0.180) 0.159 (0.113)
M 25% D 0.836 (0.058) 0.858 (0.058) 0.579 (0.233) 0.557 (0.233)
H 25% D 0.754 (0.106) 0.713 (0.124) 0.257 (0.250) 0.318 (0.283)
M 50% D 0.630 (0.092) 0.622 (0.098) 0.144 (0.134) 0.194 (0.198)
H 50% D 0.427 (0.090) 0.360 (0.086) 0.121 (0.109) 0.127 (0.093)

Table 3: Average ARI, with standard deviations, for each data set generated from MMS-
GHDs, with different starting parameters and α = 1.
Correlation Overlapping ng MCGHD MGHD MMSGHD McMSGHD
M 25% S 0.903 (0.047) 0.801 (0.077) 0.912 (0.043) 0.922 (0.045)
H 25% S 0.806 (0.085) 0.697 (0.069) 0.793 (0.073) 0.810 (0.060)
M 50% S 0.751 (0.080) 0.614 (0.081) 0.811 (0.053) 0.822 (0.044)
H 50% S 0.592 (0.062) 0.475 (0.121) 0.603 (0.090) 0.634 (0.078)
M 25% D 0.925 (0.042) 0.838 (0.108) 0.950 (0.042) 0.950 (0.037)
H 25% D 0.813 (0.049) 0.740 (0.088) 0.824 (0.066) 0.815 (0.070)
M 50% D 0.786 (0.090) 0.616 (0.104) 0.742 (0.126) 0.746 (0.120)
H 50% D 0.605 (0.111) 0.511 (0.118) 0.391 (0.231) 0.402 (0.224)

6.3 Real Data Analysis

To assess the classification performance of the MGHDs, the MMSGHDs, the McMSGHDs,
the MCGHDs, and the MSDBST, we consider four real data sets that are commonly used
within the model-based clustering literature (Table 4).

Table 4: Summary details for four real data sets commonly used within the model-based
clustering literature.

Classes n p Source Original source

Bankruptcy 2 66 2 R package MixGHD Altman (1968)
Banknote 2 200 7 R package MixGHD Flury and Riedwyl (1988)
Seeds 3 210 7 UCI machine learning repository∗ Charytanowicz et al. (2010)
AIS 2 202 11 R package EMMIXuskew Cook and Weisberg (1994)
∗
http://archive.ics.uci.edu/ml/

To compare the performance of the methods we set the number of components, G, equal
to the true number of classes. In general, the BIC is used to select the best starting criterion

13

http://archive.ics.uci.edu/ml/


Figure 3: Scatter plots for data simulated from a two-component MGDs (top-left), MGHDs
(top-right) and MMSGHDs (bottom) models, respectively, with high correlation, 50% over-
lapping and clusters of different size, where plotting symbol and colour represent the true
classifications.

between k-means and k-medoids; however, because of the presence of outliers, only k-medoids
starts are used for the bankruptcy data set. Table 5 displays the classification performance.
Note that MSDBST is not used on the AIS data set because of the prohibitively high
dimensionality (p = 11). The MCGHD generally performs comparably to the best of the
other four approaches. Specifically, the MCGHD gives the best classification performance
— either outright or jointly — for the four data sets. Interestingly, the MGHD gives very
good classification performance on three of the four data sets; however, this must be taken in
context with its very poor classification performance on the bankruptcy data set (ARI ≈ 0).
It is also interesting to compare the classification performance of the McMSGHD to the
MMSGHD as well as that of the MGHD to the MMSGHD. The McMSGHD and the MGHD
approaches both outperform MMSGHD for one data set, and give a similar performance on
two of the other three data sets. This highlights the fact that a mixture of multiple scaled
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distributions may well not outperform its single scaled analogue, and underlines the need
for an approach with both the MSGHD and MGHD models as special cases. The results for
the bankruptcy data illustrate that the MCGHD approach can give very good classification
performance in situations where neither the MGHD nor the MMSGHD perform well. Finally,
the MCGHD outperforms the MSDBST on two data sets and gives the same result on the
third (recall that the MSDBST could not be fitted to the AIS data).

Table 5: ARI values for the MCGHD, MGHD, MMSGHD, McMSGHD, and MSDBST
approaches on four real data sets.
Data G MCGHD MGHD MMSGHD McMSGHD MSDBST
Bankruptcy 2 0.824 0.019 0.255 0.170 0.085
Bank note 2 0.980 0.980 0.980 0.980 0.980
Seeds 3 0.775 0.617 0.519 0.533 0.723
AIS 2 0.903 0.884 0.884 0.865 NA

In this analysis, we took the number of components to be known. However, in a true
clustering scenario, we would not have a priori information about the number of groups.
Therefore, the analysis was repeated without this assumption and, for all but the bankruptcy
data set, all approaches were run for G = 1, . . . , 5 components. Because of the small number
of observations, the bankruptcy data were run for G = 1, 2, 3. Table 6 gives the number of
components selected by the BIC.

Table 6: Selected number of components using the BIC for each real data set and corre-
sponding ARI in brackets, where the correct number of components is highlighted in bold
face font.
Data Classes MCGHD MGHD MMSGHD McMSGHD MSDBST
Bankruptcy 2 1(0.000) 1(0.000) 1(0.000) 2(0.170) 1(0.000)
Bank note 2 2(0.980) 2(0.980) 2(0.980) 2(0.980) 2(0.980)
Seeds 3 2(0.502) 4(0.484) 2(0.530) 2(0.530) 1(0.000)
AIS 2 4(0.435) 3(0.615) 1(0.000) 1(0.000) NA

For the bank note data, the BIC selects the correct number of components for every
method; however, for the bankruptcy data, it picks the right number of components only for
McMSGHDs. For the seed and AIS data sets, the BIC does not select the correct number
of components for any approach. Recall that the MSDBST could not be fitted to the AIS
data; also, it could not be fitted to the seed data for G = 4. These results illustrate that the
BIC is not necessarily reliable for selecting the number of components in real data examples
for any of the five approaches.

6.4 Computation time

For the data sets listed in Table 4, we measured the elapsed user times, in seconds, to
perform 100 (G)EM iterations. Note that all code was run in R version 3.0.2 on a 32-core
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Intel Xeon E5 server with 256GB RAM running 64-bit CentOS. Figure 4 displays the average
elapsed time for two replications of each algorithm using a k-means and a k-medoids starting
partition for G = 1, . . . , 5 components. The EM algorithm for the MSDBST is significantly
slower than that of the hyperbolic-based approaches (Figure 4). In fact, on the banknote
data set, it takes the MSDBST more than 11 hours to perform the required number of EM
iterations when G = 2 and about 63 hours when G = 5. For the seeds data set, it takes the
MSDBST more than 5 hours when G = 2 and more than 10 hours when G = 5, whereas
the G = 5 component MMSGHD, McMSGHD, and MCGHD approaches need less than 25
seconds. For the bankruptcy data set, the MSDBST requires approximately 80 seconds when
G = 3, whereas the hyperbolic distributions need less than 20 seconds each.

Figure 4: The average elapsed time to perform 100 iterations of the (G)EM algorithm
when varying the number of components for MCGHD, MGHD, MMSGHD, McMSGHD,
and MSDBST models on the bankruptcy, banknote, seeds, and AIS data sets, respectively.
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7 Discussion

Novel MCGHDs, MMSGHDs, and McMSGHDs models have been introduced and applied for
model-based clustering. The GHD is a flexible distribution, capable of handling skewness and
heavy tails, and has many well known distributions as special or limiting cases. Furthermore,
it is a normal variance-mean mixture, arising via a relationship between a multivariate
Gaussian and an univariate GIG distribution. The MSGHD extends the GHD to include a
multivariate GIG distribution, increasing the flexibility of the model. However, the GHD is
not a special case of the MSGHD; hence, we created MCGHDs, which has both the GHD
and MSGHD as special cases. The McMSGHD approach was introduced as a convex version
of the MMSGHD, and this point deserves some further discussion. The extension of the
multivariate-t distribution to multiple scale was carried out by Forbes and Wraith (2014);
as discussed in the Appendix B, the multiple scaled multivariate t-distribution cannot be
quasi-concave, i.e., the clusters associated with a mixture of multiple scaled multivariate
t-distributions cannot be convex. We have seen examples where the MMSGHD can put
multiple clusters into one component, and the McMSGHD has an important role in helping
to prevent this; if both approaches are fitted and lead to different numbers of components,
then further attention is warranted.

Comparing the MGHD, MMSGHD, McMSGHD, and MCGHD approaches yielded some
interesting results. Amongst them, we see that the MMSGHD does not necessarily out-
perform the MGHD; far from it, in fact, only the MGHD approach gave better clustering
performance than the MMSGHD approach on one of the four real data sets we considered,
as well as identical performance on a other two. This underlines the fact that a mixture of
multiple scaled distributions may well not outperform its single scaled analogue, and high-
lights the benefit of approaches with both a multiple scaled distribution and its single scaled
analogue as special cases. The MCGHDs represent one such approach, with the MSGHD and
MGHD models as special cases. The approaches introduced herein, as well as the MGHDs,
have been made freely available via the MixGHD package for R.

Future work will focus in several directions. For one, it will be interesting to study the
performance of the approaches introduced herein within the fractionally-supervised classifi-
cation framework (Vrbik and McNicholas, 2015; Gallaugher and McNicholas, 2019a). The
extension of these approaches to the matrix-variate paradigm is also of interest and may
proceed in an analogous fashion to the work of Gallaugher and McNicholas (2018, 2019b).
Finally, the models introduced herein can be extended to account for missing data (see Wei
et al., 2019).
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and J. Kawa (Eds.), Information Technologies in Biomedicine: Volume 2, pp. 15–24. Berlin,
Heidelberg: Springer.

Cook, R. D. and S. Weisberg (1994). An Introduction to Regression Graphics. John Wiley & Sons,
New York.

Cormack, R. M. (1971). A review of classification (with discussion). Journal of the Royal Statistical
Society: Series A 34, 321–367.

Debreu, G. and T. C. Koopmans (1982). Additively decomposed quasiconvex functions. Mathe-
matical Programming 24 (1), 1–38.

Demarta, S. and A. J. McNeil (2005). The t copula and related copulas. International Statistical
Review 73 (1), 111–129.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B 39 (1), 1–38.

Flury, B. and H. Riedwyl (1988). Multivariate Statistics: A Practical Approach. London: Chapman
& Hall.

Forbes, F. and D. Wraith (2014). A new family of multivariate heavy-tailed distributions with
variable marginal amounts of tailweights: Application to robust clustering. Statistics and Com-
puting 24 (6), 971–984.

Fraley, C. and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association 97 (458), 611–631.

Franczak, B. C., R. P. Browne, and P. D. McNicholas (2014). Mixtures of shifted asymmetric
Laplace distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (6),
1149–1157.

Franczak, B. C., C. Tortora, R. P. Browne, and P. D. McNicholas (2015). Unsupervised learning via
mixtures of skewed distributions with hypercube contours. Pattern Recognition Letters 58 (1),
69–76.

Gallaugher, M. P. B. and P. D. McNicholas (2018). Finite mixtures of skewed matrix variate
distributions. Pattern Recognition 80, 83–93.

Gallaugher, M. P. B. and P. D. McNicholas (2019a). On fractionally-supervised classification:
Weight selection and extension to the multivariate t-distribution. Journal of Classification 36.
In press.

Gallaugher, M. P. B. and P. D. McNicholas (2019b). Three skewed matrix variate distributions.
Statistics and Probability Letters 145, 103–109.

19



Ghahramani, Z. and G. E. Hinton (1997). The EM algorithm for factor analyzers. Technical Report
CRG-TR-96-1, University Of Toronto, Toronto.

Gneiting, T. (1997). Normal scale mixtures and dual probability densities. Journal of Statistical
Computation and Simulation 59 (4), 375–384.

Hennig, C. (2015). What are the true clusters? Pattern Recognition Letters 63, 53–62.

Holzmann, H., A. Munk, and T. Gneiting (2006). Identifiability of finite mixtures of elliptical
distributions. Scandinavian Journal of Statistics 33, 753–763.

Hubert, L. and P. Arabie (1985). Comparing partitions. Journal of Classification 2 (1), 193–218.

Hunter, D. R. and K. Lange (2000). Quantile regression via an MM algorithm. Journal of Com-
putational and Graphical Statistics 9 (1), 60–77.

Karlis, D. and A. Santourian (2009). Model-based clustering with non-elliptically contoured distri-
butions. Statistics and Computing 19 (1), 73–83.

Kent, J. T. (1983). Identifiability of finite mixtures for directional data. The Annals of Statistics 11,
984–988.

Kiers, H. A. (2002). Setting up alternating least squares and iterative majorization algorithms for
solving various matrix optimization problems. Computational Statistics and Data Analysis 41 (1),
157–170.

Kotz, S., T. J. Kozubowski, and K. Podgorski (2001). The Laplace Distribution and Generalizations:
A Revisit with Applications to Communications, Economics, Engineering, and Finance (1st ed.).
Burkhauser Boston.

Kotz, S. and S. Nadarajah (2004). Multivariate t-distributions and their applications. Cambridge
University Press.

Lee, S. X. and G. J. McLachlan (2013a). EMMIXuskew: Fitting Unrestricted Multivariate Skew t
Mixture Models. R package version 0.11-5.

Lee, S. X. and G. J. McLachlan (2013b). On mixtures of skew normal and skew t-distributions.
Advances in Data Analysis and Classification 7 (3), 241–266.

Lee, S. X. and G. J. McLachlan (2014). Finite mixtures of multivariate skew t-distributions: some
recent and new results. Statistics and Computing 24 (2), 181–202.

Lin, T. I. (2009). Maximum likelihood estimation for multivariate skew normal mixture models.
Journal of Multivariate Analysis 100 (2), 257–265.

Lin, T. I. (2010). Robust mixture modeling using multivariate skew t distributions. Statistics and
Computing 20 (3), 343–356.

20



Lin, T.-I., P. D. McNicholas, and J. H. Hsiu (2014). Capturing patterns via parsimonious t mixture
models. Statistics and Probability Letters 88, 80–87.

Lindsay, B. (1995). Mixture models: Theory, geometry and applications. In NSF-CBMS Regional
Conference Series in Probability and Statistics, Volume 5, California: Institute of Mathematical
Statistics: Hayward.

McLachlan, G. J., R. W. Bean, and L. B.-T. Jones (2007). Extension of the mixture of factor
analyzers model to incorporate the multivariate t-distribution. Computational Statistics and
Data Analysis 51 (11), 5327–5338.

McLachlan, G. J. and T. Krishnan (2008). The EM Algorithm and Extensions. New York: Wiley.

McLachlan, G. J. and D. Peel (2000). Mixtures of factor analyzers. In Proceedings of the Seventh
International Conference on Machine Learning, San Francisco, pp. 599–606. Morgan Kaufmann.

McNeil, A. J., R. Frey, and P. Embrechts (2005). Quantitative risk management: concepts, tech-
niques and tools. Princeton university press.

McNicholas, P. D. (2016a). Mixture Model-Based Classification. Boca-Raton: Chapman &
Hall/CRC press.

McNicholas, P. D. (2016b). Model-based clustering. Journal of Classification 33 (3), 331–373.

McNicholas, P. D., T. B. Murphy, A. F. McDaid, and D. Frost (2010). Serial and parallel imple-
mentations of model-based clustering via parsimonious Gaussian mixture models. Computational
Statistics and Data Analysis 54 (3), 711–723.

McNicholas, S. M., P. D. McNicholas, and R. P. Browne (2017). A mixture of variance-gamma
factor analyzers. In S. E. Ahmed (Ed.), Big and Complex Data Analysis: Methodologies and
Applications, pp. 369–385. Cham: Springer International Publishing.

Murray, P. M., R. B. Browne, and P. D. McNicholas (2014). Mixtures of skew-t factor analyzers.
Computational Statistics and Data Analysis 77, 326–335.

Murray, P. M., R. B. Browne, and P. D. McNicholas (2017). Hidden truncation hyperbolic dis-
tributions, finite mixtures thereof, and their application for clustering. Journal of Multivariate
Analysis 161, 141–156.

Niculescu, C. and L. Persson (2006). Convex Functions and Their Applications. New York:
Springer.

Ortega, J. M. and W. C. Rheinboldt (1970). Iterative Solutions of Nonlinear Equations in Several
Variables. New York: Academic Press.

Peel, D. and G. J. McLachlan (2000). Robust mixture modelling using the t distribution. Statistics
and Computing 10 (4), 339–348.

21



Pesevski, A., B. C. Franczak, and P. D. McNicholas (2018). Subspace clustering with the
multivariate-t distribution. Pattern Recognition Letters 112 (1), 297–302.

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association 66 (336), 846–850.

Rockafellar, R. T. and R. J. B. Wets (2009). Variational Analysis. New York: Springer-Verlag.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461–464.

Steane, M. A., P. D. McNicholas, and R. Yada (2012). Model-based classification via mixtures
of multivariate t-factor analyzers. Communications in Statistics – Simulation and Computa-
tion 41 (4), 510–523.

Steinley, D. (2004). Properties of the Hubert-Arable adjusted Rand index. Psychological meth-
ods 9 (3), 386.

Tang, Y., R. P. Browne, and P. D. McNicholas (2018). Flexible clustering of high-dimensional data
via mixtures of joint generalized hyperbolic distributions. Stat 7 (1), e177.

Tipping, M. E. and C. M. Bishop (1999). Mixtures of probabilistic principal component analysers.
Neural Computation 11 (2), 443–482.

Tortora, C., R. P. Browne, B. C. Franczak, and P. D. McNicholas (2017). MixGHD: Model based
clustering, classification and discriminant analysis using the mixture of generalized hyperbolic
distributions. R package version 2.1.

Vrbik, I. and P. D. McNicholas (2012). Analytic calculations for the EM algorithm for multivariate
skew-mixture models. Statistics and Probability Letters 82 (6), 1169–1174.

Vrbik, I. and P. D. McNicholas (2014). Parsimonious skew mixture models for model-based clus-
tering and classification. Computational Statistics and Data Analysis 71, 196–210.

Vrbik, I. and P. D. McNicholas (2015). Fractionally-supervised classification. Journal of Classifi-
cation 32 (3), 359–381.

Wei, Y., Y. Tang, and P. D. McNicholas (2019). Mixtures of generalized hyperbolic distributions and
mixtures of skew-t distributions for model-based clustering with incomplete data. Computational
Statistics and Data Analysis 130, 18–41.

Wraith, D. and F. Forbes (2015). Clustering using skewed multivariate heavy tailed distributions
with flexible tail behaviour. arXiv preprint arXiv:1408.0711.

Yakowitz, S. J. and J. Spragins (1968). On the identifiability of finite mixtures. Ann. Math.
Statist. 39, 209–214.

22



A Parameter estimation

We use the EM algorithm to estimate the parameters of the MCGHDs. The EM algorithm belongs
to a larger class of algorithms known as MM algorithms (Ortega and Rheinboldt, 1970; Hunter and
Lange, 2000) and is well-suited for problems involving missing data. ‘MM’ stands for ‘minorize-
maximize’ or ‘majorize-minimize,’ depending on the purpose of the algorithm; in the EM context,
the minorizing function is the expected value of the complete-data log-likelihood. The EM al-
gorithm iterates between two steps, an E-step and a M-step, and has been used to estimate the
parameters of mixture models in many experiments (McLachlan and Krishnan, 2008). On each
E-step, the expected value of the complete-data log-likelihood, Q, is calculated and on each M-
step is maximized with respect to πg,µg,Φg,αg,ωg,λg, ω0g, λ0g, $g. However, in each M-step Q
increases with respect to Γg rather than maximize; accordingly, the algorithm is formally a gener-
alized EM (GEM) algorithm. For our MCGHDs, there are four sources of missing data: the latent
variable W0ig, the multi-dimensional weight variable ∆wig, the group component indicator labels
zig, and inner component labels uig, for i = 1, . . . , n and g = 1, . . . , G. For each observation i,
zig = 1 if observation i is in component g and zig = 0 otherwise. Similarly, for each observation
i, uig = 1 if observation i, in component g, is distributed generalized hyperbolic and uig = 0 if
observation i, in component g, is distributed multiple scaled generalized hyperbolic. It follows that
the complete-data log-likelihood for the MCGHDs is given by

lc =

n∑
i=1

G∑
g=1

{
zig log πg + ziguig log$g + zig(1− uig) log(1−$g) + ziguig log h (w0ig | ω0g, 1, λ0g)

+ zig(1− uig)
p∑
j=1

log h (wjig | ωjg, 1, λjg) + ziguig log φp
(
Γ′gxi | µg + w0igαg, w0igΦ

)
+ zig(1− uig)

p∑
j=1

log φ1

(
[Γ′gxi]j | µjg + wjigαjg, ωjgφjg

)}
,

where φp(·) represents a p-dimensional Gaussian density function, φ1(·) is a unidimensional Gaus-
sian density function, and h(·) is the density of a GIG distribution given in (15).

We are now prepared to outline the calculations for our GEM algorithm for the MCGHDs. On
the E-step, the expected value of the complete-data log-likelihood, Q, is computed by replacing the
sufficient statistics of the missing data by their expected values. For each component indicator label
zig and inner component label uig, for i = 1, . . . , n and g = 1, . . . , G, we require the expectations

E [Zig | xi] =
πgfCGHD

(
x | µg,Γg,Φg,αg,ωg,λg, ω0g, λ0g, $g

)∑G
h=1 πhfCGHD (x | µh,Γh,Φh,αh,ωh,λh, ω0h, λ0h, $h)

=: ẑig (21)

and

E [Uig | xi, zig = 1] =

$gfGHD(x | µg,ΓgΦgΓ
′
g,αg, ω0g, λ0g)

$gfGHD(x | µg,ΓgΦgΓ′g,αg, ω0g, λ0g) + (1−$g)fMSGHD

(
x | µg,Γg,Φg,αg,ωg,λg

) =: ûig,

(22)
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where fCGHD is given in (20), fGHD is given in (10) and fMSGHD is given in (17). For the latent
variable W0ig, we use the expected value given in Browne and McNicholas (2015). The authors
show that, given the density in (15), the following is true

W0ig | xi, zig = 1, uig = 1 v GIG
(
ω0g +α′g(ΓgΦgΓ

′
g)
−1αg, ω0g + δ(xi,µg | ΓgΦgΓ

′
g), λ0g − p/2

)
.

For the MCGHDs, the maximization of Q requires the expected values of W0ig, W
−1
0ig and logW0ig,

i.e.,

E[W0ig | xi, zig = 1, uig = 1] =

√
eig
dg

Kλ0g−p/2+1

(√
dgeig

)
Kλ0g−p/2

(√
dgeig

) =: aig,

E[W−1
0ig | xi, zig = 1, uig = 1] =

√
dg
eig

Kλ0g−p/2+1

(√
dgeig

)
Kλ0g−p/2

(√
dgeig

) − 2λ0g − p
eig

=: big,

E[logW0ig | xi, zig = 1, uig = 1] = log

√
eig
dg

+
∂

∂v
log
{
Kv

(√
dgeig

)}∣∣∣∣
v=λ0g−p/2

=: cig,

where dg = ω0g +α′g(ΓgΦgΓ
′
g)
−1αg and eig = ω0g + δ(xi,µg | ΓgΦgΓ

′
g).

The maximization of Q also requires the expected values of the multidimensional weight vari-
ables ∆wig, ∆−1

wig, and log ∆wig. Given the density in (17), it follows that

Wijg | xi, zig = 1, uig = 0 v GIG
(
ωjg + α2

jgΦ
−1
jg , ωjg + (

[
Γ′x
]
j
− µgj)2/φjg, λjg − 1/2

)
.

Each multidimensional weight variable is replaced by its expected value and so we need to compute
E1ig = diag{E1i1g, . . . , E1ipg}, E2ig = diag{E2i1g, . . . , E2ipg}, and E3ig = diag{E3i1g, . . . , E3ipg},
where

E[Wijg | xi, zig = 1, uig = 0] =

√
ēijg

d̄jg

Kλjg+1/2

(√
d̄jg ēijg

)
Kλjg−1/2

(√
d̄jg ēijg

) =: E1ijg,

E[W−1
ijg | xi, zig = 1, uig = 0] =

√
d̄jg
ēijg

Kλjg+1/2

(√
d̄jg ēijg

)
Kλjg−1/2

(√
d̄jg ēijg

) − 2λjg − 1

ēijg
=: E2ijg,

E[logWijg | xi, zig = 1, uig = 0] = log

√
ēijg

d̄jg
+

∂

∂v
log

{
Kv

(√
d̄jg ēijg

)}∣∣∣∣
v=λjg−1/2

=: E3ijg,

(23)

d̄jg = ωjg +α2
jgΦ
−1
jg and ēijg = ωjg + ([xi−µg]j)2/φjg. Let ng =

∑n
i=1 ẑig, Ag = (1/ng)

∑n
i=1 ẑigaig,

Bg = (1/ng)
∑n

i=1 ẑigbig, Cg = (1/ng)
∑n

i=1 ẑigcig, Ē1jg = (1/ng)
∑n

i=1 ẑigE1ijg, Ē2jg = (1/ng)
∑n

i=1 ẑigE2ijg,
and Ē3jg = (1/ng)

∑n
i=1 ẑigE3ijg.

In the M-step, we maximize the expected value of the complete-data log-likelihood with respect
to the model parameters. The mixing proportions and inner mixing proportions are updated via
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π̂g = ng/n and $̂g =
∑n

i=1 ûig ẑig/ng, respectively. The elements of the location parameter µg and
skewness parameter αg are replaced with

µ̂jg =

∑n
i=1 ẑig[Γ

′
gxi]j(s̄1jgs2ijg − 1)∑n

i=1 ẑig(s̄1jgs2ijg − 1)
and α̂jg =

∑n
i=1 ẑig[Γ

′
gxi]j(s̄2jg − s2ijg)∑n

i=1 ẑig(s̄1jgs2ijg − 1)
,

respectively, where [Γ′gxi]j is the jth element of the matrix Γ′gxi, s1ijg = ûigaig + (1− ûig)E1ijg,
s2ijg = ûigbig + (1− ûig)E2ijg, s̄1jg = 1/ng

∑n
i=1 ẑigs1ijg,s̄2jg = 1/ng

∑n
i=1 ẑigs2ijg. The diagonal

elements of the matrix Φg are updated using

φ̂jg =
1

ng

n∑
i=1

{
ẑigûig

[
big
(
[Γ′gxi]j − µ̂jg

)2 − 2
(
[Γ′gxi]j − µ̂jg

)
α̂jg + aigα̂

2
jg

]
+ẑig(1− ûig)

[
E2ijg

(
[Γ′gxi]j − µ̂jg

)2 − 2
(
[Γ′gxi]j − µ̂jg

)
α̂jg + E1ijgα̂

2
jg

]}
.

To update the component eigenvector matrices Γg, we wish to minimize the objective function

f(Γg) = −1

2
tr
{
ẑigΦ̂

−1
g VigΓgxixiΓ

′
g

}
+ tr

{
ẑigxi

(
Vigµ̂g + α̂g

)′
Φ̂−1
g Γg

}
+ C (24)

with respect to Γg, where Vig = ûigbigIp + (1 − ûig)E2ig. We employ an optimization routine
that uses two simpler majorization-minimization algorithms. Our optimization routine exploits
the convexity of the objective function in (24), providing a computationally stable algorithm for
estimating Γg. Specifically, we follow Kiers (2002) and Browne and McNicholas (2014) and use the
surrogate function

f(Γg) ≤ C +
n∑
i=1

tr{FrgΓg}, (25)

where C is a constant that does not depend on Γg, r ∈ {1, 2} is an index, and the matrices Frg are
defined in (26) and (27).

Therefore, on each M -step, we calculate either

F1g =

n∑
i=1

ẑig

[
−xi

(
Vigµ̂g + α̂g

)′
Φ̂−1
g + xix

′
iΓ
′
gΦ̂
−1
g Vig − α1igxix

′
iΓ
′
g

]
(26)

or

F2g =
n∑
i=1

ẑig

[
−xi

(
Vigµ̂g + α̂g

)′
Φ̂−1
g + xix

′
iΓ
′
gΦ̂
−1
g Vig − α2igVigΦ̂

−1
g Γ′g

]
, (27)

where α1ig is the largest eigenvalue of the diagonal matrix Φ−1
g Vig, and α2ig is equal to ẑigx

′
ixi,

which is the largest eigenvalue of the rank-1 matrix ẑigxix
′
i. Following this, we compute the singular

value decomposition of Frg given by
Frg = PBR′.

It follows that our update for Γg is given by

Γ̂g = RP′.

25



The p-dimensional concentration and index parameters, i.e., ωg and λg, are estimated by max-
imizing the function

qjg(ωjg, λjg) = − logKλjg(ωjg) + (λjg − 1)Ē3jg −
ωjg
2

(Ē1jg + Ē2jg). (28)

This leads to

λ̂jg = Ē3jgλ
prev

jg

[
∂

∂v
logKv(ω

prev

jg )

∣∣∣∣
v=λprevjg

]−1

and

ω̂jg = ωprev

jg −

[
∂

∂v
qjg(v, λ̂jg)

∣∣∣∣
v=ωprev

jg

][
∂2

∂v2
qjg(v, λ̂jg)

∣∣∣∣
v=ωprev

jg

]−1

,

where the superscript “prev” denotes that the estimate from the previous iteration is used. The
univariate parameters ω0g and λ0g are estimated by maximizing the function

q0g(ω0g, λ0g) = − log(Kλ0g(ω0g)) + (λ0g − 1)Cg −
ω0g

2
(Ag +Bg), (29)

giving

λ̂0g = Cgλ
prev

0g

[
∂

∂v
logKv(ω

prev

0g )

∣∣∣∣
v=λprev0g

]−1

and

ω̂0g = ωprev

0g −

[
∂

∂v
q0g(v, λ̂0g)

∣∣∣∣
v=ωprev

0g

][
∂2

∂v2
q0g(v, λ̂0g)

∣∣∣∣
v=ωprev

0g

]−1

.

Our GEM algorithm is iterated until convergence, which is determined using the Aitken accel-
eration (Aitken, 1926). Formally, the Aitken acceleration is given by

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
,

where l(k) is the value of the log-likelihood at the iteration k and

l(k+1)
∞ = l(k) +

1

1− a(k)

(
l(k+1) − l(k)

)
,

is an asymptotic estimate of the log-likelihood on iteration k+ 1. The algorithm can be considered

to have converged when l
(k)
∞ − l(k) < ε, provided this difference is positive (Böhning et al., 1994;

Lindsay, 1995; McNicholas et al., 2010). Herein, we set ε = 0.01. When the algorithm converges
we compute the maximum a posteriori (MAP) classification values using the posterior ẑig, where
MAP {ẑig} = 1 if g = arg maxh {ẑih}, and MAP {ẑig} = 0 otherwise.
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B Quasi-Concavity of the cMSGHD

In essence, we might want to consider only densities whose contours contain a set of points that
are convex. Formally, such densities are quasi-concave. Extensive details on quasi-concavity, quasi-
convexity, and related notions are given by Niculescu and Persson (2006) and Rockafellar and Wets
(2009).

Definition 1. A function f(x) is quasi-concave if each upper-level set Uα(f) = {x | f(x) ≥ α} is
convex, for α ∈ R.

Definition 2. A function f(x) is quasi-convex if each sub-level set Sα(f) = {x | f(x) ≤ α} is
convex, for α ∈ R.

Lemma 1. The class of elliptical distributions, whose density functions have the form

f(x) =
1√
|Σ|

g (δ (x,µ | Σ))

are quasi-concave if the generator function, g, is monotonic non-increasing.

Proof. Result follows from the fact that if the function δ (x,µ | Σ) is convex since Σ is positive
definite and the function g is monotonic non-increasing, then the function f(x) is quasi-concave.

Theorem 1. The generalized hyperbolic distribution (GHD) is quasi-concave.

Proof. It is straightforward to show that the function

h(x) =
√
a+ b δ (x,µ | Σ)

is convex, where a and b are positive constants, and δ (x,µ | Σ) is the Malahanobis distance between
x and µ. Let τ = λ− p/2. Then, the function

k(z) = τ log z + logKτ (z),

where z ∈ R+, and Kτ is the modified Bessel function of the third kind with index τ , is monotonic
decreasing (or non-increasing) because the first derivative

k′(z) =
τ

z
+

(τ/z)Kτ (z)−Kτ+1(z)

Kτ (z)
=

2τ

z
− Kτ+1(z)

Kτ (z)
= −Kτ−1(z)

Kτ (z)

is negative for all τ ∈ R and z > 0. In addition to being monotonic decreasing, k(z) is convex
for τ < 1/2, concave and convex (linear) for τ = 1/2, and concave for τ > 1/2. Because k(z)
is a monotonic function, it satisfies the criteria for quasi-convexity and quasi-concavity, so it is
simultaneously quasi-convex and quasi-concave. In this context, monotone functions are also known
as quasi-linear or quasi-montone.

Recall that if the function U is quasi-convex and the function g is decreasing, then the function
f(x) = g(U(x)) is quasi-concave. It follows that the composition k(h(x)) is quasi-concave. Consider
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the skewness part of the GHD density function, i.e, a(x) = − (x− µ)′Σ−1α, which is a linear
function. It follows that the function

exp {k(h(x)) + a(x)} (30)

is also quasi-concave, and the result follows from the fact that (30) is proportional to the density
of the GHD.

Theorem 2. The convex multiple scaled generalized hyperbolic distribution (cMSGHD) is quasi-
concave. In other words, the multiple scaled generalized hyperbolic distribution (MSGHD) is quasi-
concave provided that λj > 1 for all j = 1, . . . , p.

Proof. A p-dimensional multiple scaled distribution is a product of p independent univariate den-
sities. The density of the MSGHD has form

gp(x1, x2, . . . , xp) = g1(x1 | θ1)g1(x2 | θ2)× · · · × g1(xp | θp),

where g1(xj | θj) is the density of the univariate hyperbolic distribution with parameters θj ,
j = 1, . . . , p. From Theorem 1, log g1(xj | θj) is a concave function for τj > 1/2, i.e., for λj > 1
(because p = 1). Therefore, the function

log gp(x1, x2, . . . , xp) = log g1(x1 | θ1) + log g1(x2 | θ2) + · · ·+ log g1(xp | θp)

is concave provided that λj > 1 for all j = 1, . . . , p. Therefore, the function

gp(x1, x2, . . . , xp) = g1(x1 | θ1)g1(x2 | θ2)× · · · × g1(xp | θp)

is quasi-concave provided that λj > 1 for all j = 1, . . . , p.

Note that addition does not preserve quasi-convexity or quasi-concavity. The sum of two
quasi-convex functions defined on different domains will be quasi-concave if they are additively
decomposed (see Debreu and Koopmans, 1982). Debreu and Koopmans (1982) give necessary and
sufficient conditions for the sum f of a set of functions f1, . . . , fm to be additively decomposed.
These conditions depend on the convexity index c(f) in which f is quasi convex if and only if either
of the following hold: (i) c(fi) ≥ 0 for every i, or (ii) c(fj) < 0 for some j, c(fi) > 0 for every
i 6= j, and

∑m
i=1

1
c(fi)

≤ 0. For differentiable functions, the convexity index satisfies the inequality

f ′′(x)/[f ′(x)]2 ≥ c(f).
We have that a sufficient condition for the MSGHD to be quasi-concave is that all λj > 1.

Furthermore, a sufficient condition for the MSGHD not to be quasi-concave is that all λj < 1 and
finite. Interestingly, this means the multiple scaled t-distribution cannot provide convex level sets
for any finite degrees of freedom. For large degrees of freedom, the multiple scaled t-distribution
will behave similarly to a normal distribution near the mode; however, as one moves away from
the mode, non-convex contours will be encountered. Finally, note that Debreu and Koopmans
(1982) give necessary and sufficient conditions that suggest a quasi-concave MSGHD with some λj
positive and others negative is possible, but going this route would greatly complicate the estimation
procedure.
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C Finite Mixture Identifiability

In this section we consider the notion of identifiability for finite mixtures of MSGHDs and coalesced
generalized hyperbolic distributions (CGHDs). Herein, we take the term identifiability to mean
finite mixture identifiability.

C.1 Background

Holzmann et al. (2006) prove identifiability of finite mixtures of elliptical distributions. They
state that “finite mixtures are said to be identifiable if distinct mixing distributions with finite
support correspond to distinct mixtures”. A finite mixture of the densities fp(x|Ψ1), . . . , fp(x|ΨG)
is identifiable if the family {fp(x|Ψ) : Ψ ∈ Ap} is linearly independent. The founding work on finite
mixture identifiability is by Yakowitz and Spragins (1968), who state that this linear independence
is a necessary and sufficient condition for identifiability.

The GHD can be expressed as a normal variance-mean mixture. The stochastic relationship of
the normal variance-mean mixture is given by

X = µ+Wα+
√
WU, (31)

where U v Np(0,Σ) and W , independent of U, is a positive univariate random variable with
density h(w|θ). Browne and McNicholas (2015) proved identifiability for finite mixtures of GHDs
through additivity of disjoint sets of identifiable distributions.

Definition 3. In the present context, a finite mixture of the multiple scale distributions f(x|θ1), . . . , f(x|θG)
is identifiable if

G∑
g=1

πgf (x|θg) =
G∑
g=1

π?gf
(
x|θ?g

)
(32)

for x ∈ Rp, where G is a positive integer,
∑G

g=1 πg =
∑G

g=1 π
?
g = 1 and πg, π

?
g > 0 for g = 1, . . . , G,

implies that there exists a permutation σ such that (πg,θg) = (πσ(g),θσ(g)) for all g.

Browne and McNicholas (2015) prove identifiability for normal variance-mean mixtures, which
includes the generalized hyperbolic. Here we view the results from a different vantage point to
illustrate the concepts required for the identifiability of the multiple scaled distributions. We begin
by noting the characteristic function for the generalized hyperbolic arises from the characteristic
function of the normal variance-mean mixture,

ϕX(v) = exp
{
iv′µg

}
MW

(
β′gvi−

1

2
v′Σgv

∣∣∣∣∣ Γg

)
, (33)

where

MW (u) =

[
ω

ω − 2u

]λ
2 Kλ

(√
ω(ω − 2u)

)
Kλ (ω)

=
[
1− 2

u

ω

]−λ
2
Kλ

(√
ω(ω − 2u)

)
Kλ (ω)

.

The characteristic function for the generalized hyperbolic is

ϕX(v) = exp{iv′µ}
[
1 +

v′Σv − 2iβ′v

ω

]−λ
2 Kλ

(√
ω
[
ω + (v′Σv − 2iβ′v)

])
Kλ (ω)

.
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In context of a coalesced distribution, with a eigen-decomposed scale matrix, the characteristic
function is

ϕX(v) = exp{iv′µ}
[
1 +

v′ΓΦΓ′v − 2iβ′v

ω

]−λ
2 Kλ

(√
ω
[
ω + (v′ΓΦΓ′v − 2iβ′v)

])
Kλ (ω)

.

Now, we let v = tz and obtain

ϕX(v = tz) = exp{itz′µ}
[
1 +

t2(z′ΓΦΓ′z)− 2it(β′z)

ω

]−λ
2 Kλ

(√
ω
[
ω + t2(z′ΓΦΓ′z)− 2it(β′z)

])
Kλ (ω)

.

To prove identifiability of the generalized hyperbolic we could now use the results from Browne and
McNicholas (2015) and Yakowitz and Spragins (1968,p. 211) that implies there exists z such that
the tuple (z′Σgz,β

′
gz, z

′µg), where Σg = ΓgΦgΓ
′
g is unique for all g = 1, . . . , G, allows a reduction

to the univariate case. Now, we rewrite the term z′Σgz as

z′Σgz = z′ΓgΦgΓ
′
gz = tr

[
z′ΓgΦgΓ

′
gz
]

= tr
[
Γ′gzz′ΓgΦg

]
=

p∑
j=1

Φjg[Γ
′
gz]2j ,

which implies the tuple

(
z′ΓgΦgΓ

′
gz,β

′
gz, z

′µg
)
≡

 p∑
j=1

Φjg[Γ
′
gz]2j ,β

′
gz, z

′µg


is unique for all g = 1, . . . , G. A similar argument indicates there exists a z such that the tuple p∑

j=1

Φjg|[Γ′gz]j |,β′gz, z′µg

 (34)

is unique. In fact, a more general statement indicates that there exists a z such that the tuple p∑
j=1

Φjgϕ([Γ′gz]2j ),β
′
gz, z

′µg


is unique for monotonic ϕ : R+ 7→ R+. Deriving this unique set of tuples facilitates the reduction
to the univariate case. This is useful because the univariate generalized hyperbolic density is
identifiable (see Browne and McNicholas, 2015).

C.2 Identifiability of a Finite Mixture of Multiple Scaled Distri-
butions

For a multiple scaled distribution, we only need to find a single direction where the distribution
is finite mixture identifiable because, as noted in Remark 2 of Kent (1983), a distribution might
be non-identifiable on a subset of Rp but identifiability can endure over Rp. In other words, for
a distribution to be non-identifiable, a linear combination has to be equal to zero for all x ∈ Rp.
This is illustrated by the example given in Kent (1983):
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“the polynomials P (x1, x2) = 1 and P (x1, x2) = (x2
1 + x2)3, x ∈ R2, are equal on

the unit circle, but are not the same on all of R2.”

As a consequence, if a multivariate distribution is identifiable in some direction then it is identifiable
over Rp.

To begin, consider that if there is at one least direction or column of Γg that is equal across
g = 1, . . . , G, then the identifiability of a multiple scaled distribution follows from the identifiability
of the univariate distribution. Whereas if one column of Γg is unequal, that implies, by the nature
of orthonormal matrices, that two columns of Γg are unequal. We will now illustrate how the
bivariate multiple scaled distribution is identifiable, which implies identifiability for finite p.

When Γg differ, the identifiability of the multiple scaled distribution depends on the behaviour
of the multiple scaled distribution’s density and moment generating functions when we consider
moving along directions other than the columns of Γg. For example, a bivariate multiple scaled
t-distribution behaves (by definition) like a t-distribution with ν1 and ν2 degrees of freedom along
each of it’s principal axes, but along any other direction, a bivariate multiple scaled t-distribution
behaves asymptotically like a t-distribution with ν1 + ν2 degrees of freedom.

Consider the following three orthonormal matrices in the context of an eigen-decomposition of
a matrix;

Γ1 =

[
1 0
0 1

]
, Γ2 =

[
0 1
1 0

]
and Γ3 =

[
−1 0
0 1

]
.

If we have equal eigenvalues then we cannot distinguish between Γ1 and Γ2. In the same way, if we
have the same distribution along the first and second axis, we cannot distinguish between them.
However, if we have eigenvalue ordering we can distinguish between Γ1 and Γ2, but eigenvalue
ordering will not allow us to distinguish between Γ1 and Γ3, since they yield the same basis or set
of directions. Therefore, in general, Γ is unique up to multiplication by[

±1 0
0 ±1

]
.

One way to establish uniqueness is to require the largest value of each column of Γ to be positive.
An equivalent requirement is for Γ1 6= Γ2 which requires that

Γ′1Γ2 6= R or [Γ′1z]j 6= −[Γ′2z]j (35)

for j = 1, . . . , p, z ∈ RP , z 6= 0p and R is a set of diagonal matrices such that diag(R) =
(±1, . . . ,±1) excluding the identity matrix. Note that [a]j denotes the jth element of the vector
a. However, if we had two orthonormal matrices such that Γ′1Γ2 = I, then Γ1 = Γ2. If Γ′1Γ2 = R,
then our orthonormal condition amounts to Γ′1 = Γ2 or equivalently, for all directions z ∈ RP and
z 6= 0p

|[Γ′1z]j | = |[Γ′2z]j | for all j = 1, . . . , p then Γ1 = Γ2. (36)

This prevents the jth column of Γ2 from being in the opposite direction of the jth column of Γ1.
This form of the condition is easier to incorporate into the identifiability illustration.
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In the MSGHD, if we consider moving the amount t in a direction z, which entails setting
x = tz, we can write the density as

fMSGHD (x = tz | µ,Γ,Φ,α,ω,λ)

=

p∏
j=1

ωj + Φ−1
j

(
t [Γ′z]j − µj

)2

ωj + α2
jΦj

−1


λj−

1
2

2 Kλj− 1
2

(√
[ωj + α2

jΦj
−1]

[
ωj + Φ−1

j

(
t [Γ′z]j − µj

)2
])

(2π)
1
2 Φj

1
2Kλj (ωj) exp {−(t [Γ′z]j − µj)αjΦ

−1
j }

,

(37)

Note, if z is equal to the kth eigenvector, which is the kth column of Γ, then the density reduces to

ck

[
ωk + Φ−1

k (t− µk)2

ωk + α2
kΦk

−1

]λk− 1
2

2 Kλk− 1
2

(√
[ωk + α2

kΦk
−1]
[
ωk + Φ−1

k (t− µk)2
])

(2π)
1
2 Φk

1
2Kλk(ωk) exp

{
− (t− µk)αkΦ−1

k

} ,

where

ck =

p∏
j=1,j 6=k

[
ωj + Φ−1

j µ2
j

ωj + α2
jΦj

−1

]λj− 1
2

2 Kλj− 1
2

(√
[ωj + α2

jΦj
−1]
[
ωj + Φ−1

j µ2
j

])
(2π)

1
2 Φj

1
2Kλj (ωj) exp

{
µjαjΦ

−1
j

} .

Therefore, the density is simply proportional to

∝

[
ωk + Φ−1

k (t− µk)2

ωk + α2
kΦk

−1

]λk− 1
2

2 Kλk− 1
2

(√
[ωk + α2

kΦk
−1]
[
ωk + Φ−1

k (t− µk)2
])

(2π)
1
2 Φk

1
2Kλk(ωk) exp

{
− (t− µk)αkΦ−1

k

} .

First, note that if the parameterizations are one-to-one, then if one parameterization is shown
to be identifiable, the others are identifiable as well. Similar to Browne and McNicholas (2015), we

let δj = βj/Φj , αj =
√
ωj/Φj + β2

j /Φ
2
j and κj =

√
Φjωj , where αj ≥ |δj |. Under this reparame-

terization, we now have

Φj =
κj√
α2
j − δ2

j

, ωj = κj

√
α2
j − δ2

j and βj =
δjκj√
α2
j − δ2

j

. (38)

For large z, the Bessel function can approximated by

Kλ(z) =

√
π

2z
e−z

[
1 +O

(
1

z

)]
,

which yields, using the alternative parameterization,

f(t | θ) ∝

[
1 +

(t− µj)2

κ2
j

]λj/2
exp {−αj |t− µj |+ δj (t− µj)} . (39)
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If z is not equal to the kth eigenvector, than, using the reparameterization given in (38), we
have

f(t | θ) ∝ exp

−
p∑
j=1

αj

∣∣∣t [Γ′z]j − µj∣∣∣+

p∑
j=1

δj

(
t
[
Γ′z
]
j
− µj

)
p∏
j=1

1 +

(
t [Γ′z]j − µj

)2

κ2
j


λj−

1
2

2

∝ exp

−
p∑
j=1

αj

∣∣∣t [Γ′z]j − µj∣∣∣+

p∑
j=1

δj

(
t
[
Γ′z
]
j
− µj

) t2
∑p
j=1 I([Γ′z]j 6=0)

λj−
1
2

2

∝ exp


p∑
j=1

[
−αj

∣∣∣t [Γ′z]j − µj∣∣∣+ δj

(
t
[
Γ′z
]
j
− µj

)
+ 2I

([
Γ′z
]
j
6= 0
) λj − 1

2

2
log(t)

]
∝

p∏
j=1

exp

{
−αj

∣∣∣t [Γ′z]j − µj∣∣∣+ δj

(
t
[
Γ′z
]
j
− µj

)
+ 2I

([
Γ′z
]
j
6= 0
) λj − 1

2

2
log(t)
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(40)

The characteristic function for a multiple scaled distribution can be written as

ϕX(v) =

P∏
j=1

exp{i|[Γ′v]j |µj}
[
1 +

Φj |[Γ′v]j |2 − 2βj |[Γ′v]j |i
ωj

]−λj
2

×
Kλj

(√
ωj [ωj + (Φj |[Γ′v]j |2 − 2βj |[Γ′v]j |i)]

)
Kλj (ωj)

,

which, under the alternative parameterization from equation (38), becomes

ϕX(v) =
P∏
j=1

exp{i|[Γ′v]j |µj}

[
1 +
|[Γ′v]j |2 − 2δj |[Γ′v]j |i

α2
j − δ2

j

]−λj
2

×
Kλj

(√
κ2
j

[
|[Γ′v]j |2 − 2δj |[Γ′v]j |i+ α2

j − δ2
j

])
Kλj

(
κj
√
α2
j − δ2

j

) .

(41)

Now if we consider moving t in the direction z

ϕX(v = tz) =

P∏
j=1

exp{it|[Γ′z]j |µj}

[
1 +

t2|[Γ′z]j |2 − 2δjt|[Γ′z]j |i
α2
j − δ2

j

]−λj
2

×
Kλj

(√
κ2
j

[
t2|[Γ′z]j |2 − 2δjt|[Γ′z]j |i+ α2

j − δ2
j

])
Kλj

(
κj
√
α2
j − δ2

j

) ,
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and, for large t, the characteristic function is

ϕX(v = tz) ∝ exp

it
P∑
j=1

|[Γ′z]j |µj − t
P∑
j=1

κj |[Γ′z]j | − log(t)

P∑
j=1

λjI
(
|[Γ′z]j | 6= 0

)
+O(1)


∝ exp

it z′Γµ− t
P∑
j=1

κj |[Γ′z]j | − log(t)
P∑
j=1

λjI
(
|[Γ′z]j | 6= 0

)
+O(1)

 .

Therefore, from the condition given in (34), there exists z such that the tuple (
∑P

j=1 κj |[Γ′z]j | , z′Γµ)
is unique for all g = 1, . . . , G and reduces to the univariate hyperbolic distribution, which is iden-
tifiabile.

C.3 Identifiability of the Coalesced Generalized Hyperbolic Dis-
tribution

To prove the identifiability of the CGHD we only need to show that two sets of distributions, the
multiple scaled and the generalized hyperbolic distribution are disjoint. Consider moving along
the kth eigenvalue such that (λk, κk) is distinct from (λ0, κ0) and the proof easily follows from the
identifiability of the univariate generalized hyperbolic distribution.
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D Figures

Σ = diag(1, 1), α = (0, 0)′, Σ = diag(1, 1), α = (2, 2)′, Σ = diag(1, 1), α = (0, 0)′,

ω = (1, 1)′, λ = (0, 0)′ ω = (1, 1)′, λ = (0, 0)′ ω = (3, 3)′, λ = (0, 0)′

Σ = diag(2, 2),α = (0, 0)′, Σ = diag(1, 1) plus off-diagonal 0.5, Σ = diag(1, 1),α = (0, 0)′,

ω = (1, 1)′, λ = (0, 0)′ α = (0, 0)′, ω = (1, 1)′, λ = (0, 0)′ ω = (1, 1)′, λ = (3, 3)′

Σ = diag(1, 1), α = (2, 2)′, Σ = diag(1, 1), α = (2, 2)′, Σ = diag(1, 1) plus off-diagonal 0.5,

ω = (3, 3)′, λ = (0, 0)′ ω = (3, 3)′, λ = (3, 3)′ α = (2, 2)′, ω = (3, 3)′, λ = (3, 3)′

Figure 5: Bivariate contour plots of the MSGHD density with µ = (0, 0)′ and varying Σ, α,
ω, and λ.
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Σ = diag(1, 1), α = (2, 2)′, $ = 1 Σ = diag(1, 1), α = (2, 2)′, $ = 0.5 Σ = diag(1, 1), α = (2, 2)′, $ = 0

Σ = diag(1, 1) plus off-diagonal 0.8, Σ = diag(1, 1) plus off-diagonal 0.8, Σ = diag(1, 1) plus off-diagonal 0.8,

α = (0, 0)′, $ = 1 α = (0, 0)′, $ = 0.5 α = (0, 0)′, $ = 0

Σ = diag(1, 1) plus off-diagonal 0.8, Σ = diag(1, 1) plus off-diagonal 0.8, Σ = diag(1, 1) plus off-diagonal 0.8,

α = (2, 2)′, $ = 1 α = (2, 2)′, $ = 0.5 α = (2, 2)′, $ = 0

Figure 6: Bivariate contour plots of the MCGHD density varying Σ, α, and $.
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