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Abstract

Incomplete data are often represented as vectors with filled missing attributes joined with
flag vectors indicating missing components. In this paper, we generalize this approach
and represent incomplete data as pointed affine subspaces. This allows to perform various
affine transformations of data, such as whitening or dimensionality reduction. Moreover,
this representation preserves the information, which coordinates were missing. To use our
representation in practical classification tasks, we embed such generalized missing data into
a vector space and define the scalar product of embedding space. Our representation is easy
to implement, and can be used together with typical kernel methods. Performed experiments
show that the application of SVM classifier on the proposed subspace approach obtains
highly accurate results.

Keywords Incomplete data - SVM - Linear transformations - Imputation - Missing values

1 Introduction

Incomplete data analysis is an important part of data engineering and machine learning,
since it appears in many practical problems. In medical diagnosis, a doctor may be unable
to complete the patient examination due to the deterioration of health status or lack of
patient’s compliance (Burke et al. 1997); in object detection, the system has to recognize
the shape from low resolution or corrupted images (Berg et al. 2005); in chemistry, the com-
plete analysis of compounds requires high financial costs (Stahura and Bajorath 2004). In
consequence, the understanding and the appropriate representation of such data is of great
practical importance.

A missing data is typically viewed as a pair (x, J,), where x € RY is a vector with
missing components J, C {1, ..., N}. In the most straightforward approach, one can fill
missing attributes with some statistic, e.g., mean, taken from existing data. Although such
a strategy can be partially justified when the features are missing at random, we lose the
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Fig. 1 Representation of incomplete data as pointed subspaces, their affine transformation, and final
embedding as projections onto subspaces

knowledge about unknown attributes!. To preserve this information, we usually add a flag
indicating which components were missing. More precisely, we supply x with a binary
vector LUy, in which 1 denotes absent feature while 0 means the present one (Fig. 1).

Summarizing, we perform the embedding ¥+ Jx) = (X, 17.) of missing points into a
vector space of extended complete data. This allows us to apply typical classification tools,
like SVM, with the scalar product defined by the following:

(6, T, (0, Ky)) = (6, 3) + (L, Tk ), 0

In practical classification problems, we usually perform various affine transformations of
data, as whitening or dimensionality reduction, before training a classifier. Moreover, we
may know that the data satisfy some affine constraint. It is nontrivial how to modify the flag
vectors so as to keep the correspondence with such affine transformations. Thus, our main
problem behind the paper can be stated as follows:

How to transform the flag vectors indicating the missing components if we perform
the linear (or affine) mapping of data?

In this contribution, we show that the answer can be given by viewing the incomplete data
as pointed affine subspaces, i.e., the subspace with a distinguished point called basepoint.
We first observe that a pair (x, Jy) can be formally associated with a pointed affine subspace
of RV:

X + span(e;)jey,
where (¢;)’_, denotes the canonical base of RY and x is a selected basepoint. In other
words, this is the set of all points which coincide with the representative x on the coordi-
nates different from J,. In consequence, by a generalized missing data point in RV, we
understand a pointed affine subspace S, = x 4+ V of R, where x € R" is a basepoint and
V =S¢ — x is a linear subspace.

Such a definition allows us to efficiently extend linear and affine operations from the
standard points to missing ones, by taking the image of the subspace and the point. For
example, a linear mapping F : w — Aw + b, can be extended to the case of pointed
subspace x + V by the following:

Fx+4+V)=F(x)+AV.

'In the medical data, typically some component is missing if the state of the patient is so bad, that a given
numerical procedure cannot be performed. Consequently, the knowledge that given component is missing
could say a lot about the state of the patient.
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Given an affine constraint W, we restrict® x + V by the formula (x + V)NW =x+ (VN
(W —x)).

There appears another question: how to work with such data and in particular how to
embed the generalized missing data into a vector space in such a way to respect the scalar
product (1) given by the flag embedding. Our main observation shows that this can be
achieved by identifying a linear subspace V with an orthogonal projection py : RN — V
by considering the embedding (x, V) — (x, py) € RY x RV*N_ We show that the scalar
product of embeddings coincides with (1), i.e.,

((x, ]l‘]x)a (&, ]11()-» = ((x, Pspan(ej:jejx))’ (y, Pspan(ek:keKy))>~

The above scalar product strictly depends on the selection of basepoint. Although a base-
point can be chosen with use of any imputation technique, most of them are very simple
and do not take into account intrinsic characteristic of data. In this contribution, we propose
a new imputation method, which uses the most likely values to fill absent attributes. Given
amean m and a covariance X estimated from incomplete data, our imputation for x + V is
defined as a projection p% of m onto the subspace x 4+ V with respect to the Mahalanobis
scalar product given by X:

X — p\g (x —m).
The above formula uses data distribution to find the most likely values for missing features.

The paper is organized as follows. The next section covers related approaches to incom-
plete data analysis. In Section 3, we define a generalized missing data point and present
how to embed such data into a vector space. Next, we propose a new imputation strat-
egy and define a scalar product for generalized data points. The connections between our
approach and existing flag representation is described at the end of Section 3. In Section 4,
we examine the performance of our method in SVM classification experiments.

2 Related Works

Imputation is one of the most popular techniques for dealing with missing data (McKnight
et al. 2007). Once missing attributes are filled, classical machine learning methods can be
applied on complete data (Little and Rubin 2014). The simplest approaches relies on replac-
ing missing features by a mean values, zeros, or by taking the average value from neighbors
of a given point. To account the influence of missing attributes on classification accuracy (Liu
et al. 2016) proposed an adaptive imputation strategy. In Conversano and Siciliano (2009),
a nonparametric approach to missing data imputation was introduced, which iteratively
fills missing values with use of tree-based method. D’ Ambrosio et al. (2012) added some
methodological improvements to this techniques in terms of accuracy and computational
efficiency, and extended the approach used for missing data imputation also to data fusion.
Although, the imputation-based techniques are easy to use for practitioners, they lead to the
loss of information which features were missing and do not take into account the reasons
of missingness. To preserve the information of missing attributes, one can use an additional
vector of binary flags, which was discussed in the introduction (Chechik et al. 2007).

If absent attributes are missing at random (MAR), then one can estimate a distribution
on incomplete data space with use of EM algorithm (Ghahramani and Jordan 1994; Schafer

2Qbserve that if such a constraint W is given the augmentation of the missing components must be performed
in such a way as to choose the representation in W, and consequently we may assume that x € W.
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1997). Then, it is possible to generate the most probable values from obtained probabil-
ity distribution for missing attributes (McKnight et al. 2007). Multiple imputation allows
to draw several candidates for filling missing attributes without estimating density on the
whole space (Azur et al. 2011; Sulis and Porcu 2017). Density model can also be used for a
direct tuning of classifiers. This option was already investigated in the case of linear regres-
sion (Williams et al. 2005a), kernel methods (Smola et al. 2005; Williams and Carin 2005b),
or by using second-order cone programming (Shivaswamy et al. 2006). Generalized RBF
was constructed on incomplete data set using the information of data distribution (Smieja
et al. 2017). One can also estimate the parameters of the probability model and the classifier
jointly, which was considered in Dick et al. (2008) and Liao et al. (2007).

In Chechik et al. (2008), a modified SVM classifier is trained by individual scaling the
margin according to observed features. The alternative approaches to learning a linear clas-
sifier, which avoid features deletion or imputation, are presented in Dekel et al. (2010) and
Globerson and Roweis (2006). In Grangier and Melvin (2010), the embedding mapping of
feature-value pairs is constructed together with a classification objective function. Pelck-
mans et al. (2005) modeled the expected risk of prediction using incomplete data. Hazan
et al. (2015) designed a kernel method, which performs comparably to the classifier which
have an access to complete data, under low-rank assumption. Goldberg et al. (2010) consid-
ered a transductive classification problem and used matrix completion strategy to fill both
missing attributes and absent class labels.

In our contribution, we generalize the imputation-based techniques in such a way to
preserve the information of missing features. To select a basepoint, we propose to choose
the most likely point form a subspace identifying a missing data point; however, other
imputation methods can be used as well. Constructed representation allows to apply vari-
ous affine data transformations preserving classical scalar product before applying typical
classification methods.

3 Generalized Incomplete Data

In this section, we introduce the subspace approach to incomplete data. First, we define a
generalized missing data point, which allows to perform affine transformation of incomplete
data. Then, we show how to embed generalized missing data into a vector space and select
a basepoint. Finally, we define a scalar product on the embedding space.

3.1 Incomplete Data as Pointed Affine Subspaces

Incomplete data X can be understood as a sequence of pairs (x;, J;), where x; € RY and
Ji C {1,..., N} indicates missing coordinates of x;. Therefore, we can associate a missing
data point (x, J) with an affine subspace x + span(e;);cs, where (e;); is the canonical
base of RV Let us observe that x +span(e i) jes is a set of all N-dimensional vectors which
coincide with x on the coordinates different from J.

In this paper, we focus on transforming incomplete data by affine mappings. For this pur-
pose, we generalize the above representation to arbitrary affine subspaces, or more precisely
pointed affine subspaces, which do not have to be generated by canonical bases.

Definition 1 A generalized missing data point is defined as a pointed affine subspace S, =
x 4+ V, where x € R is a basepoint and V = S, — x is a linear subspace of RV,
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A basepoint can be selected by filling missing attributes with a use of any imputation
method, which will be discussed in the next subsection.

Remark 1 Observe that the notion of pointed affine subspace differs from classical affine
subspace. In particular, pointed subspace depends on the selection of basepoint. In conse-
quence, we can create two different generalized missing data points Sy, S; from the same
missing data point (x, J) by using different imputation methods.

First, we show that the above definition is useful for defining linear mappings on incom-
plete data. Let Sy = x + V be a generalized missing data point and let f : RN 3 w —
Aw + b be an affine map. We can transform a generalized missing data point x 4+ V into
another missing data point by the formula:

fx+V)={Aw+b:wex+ V}

The basepoint x is mapped into Ax + b, while the linear part of f(x 4+ V) is given by the
following:
fx+V)—fx)=AV.

Consequently, we arrive at the definition:

Definition 2 For a generalized missing data point Sy = x + V and an affine mapping
f:w— Aw + b we put:

FE+V) = (Ax+b) + AV,

where Ax + b is a basepoint and AV is a linear subspace.

One can easily compute and represent AV, if the orthonormal base vy, ..., v, of V is
given, namely we simply orthonormalize the sequence Avy, ..., Av,.

3.2 Embedding of Generalized Missing Data and Basepoint Selection

The above representation is useful for understanding and performing affine transformations
of incomplete data, such as whitening, dimensionality reduction or incorporating affine con-
straints to data. Nevertheless, typical machine learning methods require vectors or a kind of
kernel (or similarity) matrix as the input. We show how to embed generalized missing data
into a vector space.

A generalized missing data point S, = x + V consists of a basepoint x € RY which is an
element of vector space and a linear subspace V. To represent a subspace V, we propose to
use a matrix of orthogonal projection py onto V. To get an exact form of py, let us assume
that (v;) jes is an orthonormal base of V. Then, the projection of y € R¥ can be calculated

by the following:
pv(y) = Z(y» vjvj = Zvjvfy = (Z vV} )Y,
jed jeJ jed

which implies as follows;

T
pv = va”./~

jel

Summarizing, our embedding is defined as follows:
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Definition 3 A generalized missing data point is embedded in a vector space by the
following:
Sy = (x, py) € RY x RNV,

where Sy, = x + V and x is a basepoint.

The selection of basepoint relies on filling missing attributes with some concrete values,
which is commonly known as imputation. In our setting, by the imputation we denote a
function ® : X — RY such that

D (Sx) € Sy,

for a generalized missing data Sy.

In the case of classical incomplete data, missing attributes are often filled with a mean or
a median calculated from existing values for a given attribute. However, these imputations
cannot be easily defined in a general case, because the linear part of generalized missing
data point might be an arbitrary linear subspace (not necessarily a subspace generated by
a subset of canonical base). Let us observe that another popular imputation method which
fills the missing coordinates with zeros can be defined for generalized incomplete data.
This is performed by selecting a basepoint of an incomplete data point Sy = x + V as the
orthogonal projection of missing data x onto the subspace orthogonal to V, i.e.,

Xyl :x—pv(x):x—Z(x,vj)vj, 2)
jeJ
where (v;) ey is an arbitrary orthonormal base of V. If V is represented by canonical base,
then this is equivalent to filling missing attributes with zeros.

The above imputations do not take into account intrinsic characteristic of data such its
distribution. Therefore, it is highly probable that filled values are far from the correct ones.
To overcome this problem, we propose another technique for setting missing values, which
extends zero imputation method. Let us assume that (m, ) are the mean and the covariance
matrix estimated for incomplete dataset X. To find the most probable values for missing
data points x + V, we calculate the orthogonal projection of m onto x 4+ V with respect
to the Mahalanobis scalar product parametrized by X, which we call the most likely point
imputation:

Definition 4 Let m and ¥ be a mean and covariance matrix estimated from the incomplete
data set X. By the most likely point imputation for incomplete data points x 4+ V, where
(v}) jes defines orthogonal base of V, we understand a projection:

z
' = x = P, 3)

where p(vm’z)(x) = Zjej(x —m, vj)x - v; is the projection matrix onto V with respect to
the Mahalanobis scalar product (-, -)x.

To obtain the values for m and ¥ in practice, one can use a sample mean and a covari-
ance matrix calculated using existing attributes of incomplete data. Alternatively, if data
satisfy missing at random assumption, then the EM algorithm can be applied to estimate the
probability model describing data (Schafer 1997).

The above most likely point imputation is the imputation based on two first moments—
mean and covariance. Since it takes into account the correlation between components, it is
able to predict more reliable estimates than the mean imputation, which is based only on the
first moment. Regression imputation is an example of imputation, which also uses two first
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moments (Aste et al. 2015). It is commonly used in multiple imputation procedure, where
absent values are iteratively filled (Azur et al. 2011; Buuren and Groothuis-Oudshoorn
2011). In order to fill missing attributes, a regression imputation solves a mean square error
problem for every coordinate. In contrast, our most likely point imputation finds the clos-
est point to the mean of data set with respect to the Mahalanobis norm induced by a data
set covariance. Two first moments are also used in other estimators derived from maxi-
mum likelihood approach using, e.g., EM algorithm (Aste et al. 2015). Clearly, there are
also more flexible imputation techniques, which use various machine learning methods
(Garcia-Laencina et al. 2010).

Example 1 To illustrate the effect of missing data imputation and transformation, let us
consider the whitening operation:

Whitening(x) = =72 (x — m),

where X is the covariance, and m the mean of X. For a generalized missing data, the above
operation is defined by the following:

Whitening(x + V) = 212 —m)+ 5712V,

In other words, we map a basepoint in a classical way and transform a subspace V into a
linear subspace £~ !/2V . The illustration is given in Fig. 2.

Example 2 1In the case of high dimensional data, we sometimes reduce a dimension of input
data space by applying the principle component analysis, which is defined by the following:

PCA(x) = W (x —m),

(a) Zero imputation. (b) Whitening for zero (c) Most likely point im-
imputation. putation.

(d) Whitening for most
likely point.

Fig.2 Whitening of data with a single element containing one missing attribute. Missing feature was filled
with zero (a), (b) or most likely point imputation (c), (d)
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(a) Image. (b) 2D projection.

Fig. 3 The image (a) with two missing pixels and its projection onto two principal components (b). Image
was represented by the feature vectors consisting of 8 x 8 blocks. Missing pixels are identified by the pointed
subspaces with basepoints chosen by zero imputation strategy

where m is a mean of a dataset and k columns of W are the leading eigenvectors of covari-
ance matrix X. This operation can be extended to the case of generalized missing data by
the following:

PCAG +V) =Wl (x—m)+W'V.

An example of the above operation is illustrated in the Fig. 3.

3.3 Scalar Product for SVM Kernel

To apply most of classification methods, it is necessary to define a scalar product (kernel
matrix) on a data space. As a natural choice, one could sum the scalar products between
basepoints and embedding matrices, i.e.,

(x+V,y+ W)= (x,y)+ (pv, pw). 4

However, for a data space of dimension N, we have || pv||2 = N, which implies that
the weight of projection can dominate the first part of (4) concerning basepoints. Conse-
quently, we decided to introduce an additional parameter to allow reducing the importance
of projection part:

Definition S Let D € [0, 1] be fixed. As a scalar product between two generalized missing
data points, we put:

(x+V,y+W)p=(x,y)+ D{(pv, pw). )

Let us observe that the above parametric scalar product can be implemented by taking
the embedding x + V — (x, VD pv) and then using formula (4) for a scalar product.

Remark 2 Observe that the value of function (5) strictly depends on the selection of base-
points, which makes it a not well-defined scalar product in the space of classical affine
subspaces. Indeed, x + V defines the same affine subspace as x + v + V, where v € V,
but such shifts may lead to different values of the right hand side of (5). However, this is a
well-defined scalar product in the case of pointed affine subspaces, because two different
selections of basepoints give different pointed affine subspaces (see Remark 1). In conse-
quence, it might be safely used in the case of generalized missing data points considered in
this paper.
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The following proposition shows how to calculate a scalar product between matrices
defining two orthogonal projections onto linear subspaces.

Proposition 1 Let us consider subspaces
V =span(v; : j € J), W =span(w; : j € K).
where v; and wy are orthonormal sequences. If py, pw denote orthogonal projections onto
V, W, respectively, then
(pv, pw) = Z {vj, w)?.

jed.kek

Proof By the definition of orthogonal projections and the scalar product between matrices,
we have as follows:

(pv.pw)= Y t(@jv)T (wewl)). (6)
jeJkeK
Making use of tr(AB) = tr(BA), we get
tr((jv)) (wewy)) = tr(wjv] wewy ) = tr@] wiwf vj) = @] we) - (W vj) = (vj, we)>.
Finally,
(pv.pwh =Y (v, wi)
jel kek
O

Concluding, the scalar product between embedding of two generalized missing data
points given by Definition 5 can be calculated as follows:

XAV, y+Wip=(x,9)+DY (pv)ij(pw)ij =X, ) +D Y (vj,w),
ij jeJ.keK

where (vj)jes, (Wi)rek are orthonormal bases of V, W, respectively. The last expression
can be more numerically efficient if the dimension of the subspaces (the number of missing
attributes) is much smaller than the dimension of the whole space.

Remark 3 One of typical representations of missing data (x, J) relies on filling unknown
attributes and supplying it with a binary flag vector 1, € R™ in which bit 1 denotes coor-
dinate belonging to J. This leads to the embedding of the missing data into a vector space
given by the following:

(x,J) = (x,1;) e RN xRV,
Then, the scalar product of such embedding can be defined by the following:
((x, Ly )(y, 1g)) = (x, y) +(Ly, Lg) = (x, y) + card(J N K). (7)

It is worth noting that the formula (7) coincides with a scalar product defined for gener-
alized missing data (4) (for D = 1). Indeed, if V = span(e; : j € J) and W = span(e :
ke K),for J, K C {1,..., N}, then by Proposition 1, we have as follows:

(pv.pw)= Y lejer)’= > (e e)’= Y 1=card(JNK),

jed kek leJNK leJNK
which is exactly the RHS of (7).
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Table 1 Summary of data sets

used in the experiments Data # Instances # Attributes
Australian 690 14
Bank 1372 4
Breast cancer 699 8
Crashes 540 18
Heart 270 13
Liver disorders 345 6
Pima 768 8
Phoneme 5404 5
Ring 7400 20
Sonar 208 60

Therefore, our approach generalizes and theoretically justifies the flag approach to
missing data analysis. The importance of our construction lies in its generality, which in
particular allows for performing typical affine transformations of data. In the case of flag
representation, there is no obvious solution how to perform such mappings on flag vector.

4 Experiments

To verify our pointed subspace approach, we applied it in SVM classification experiments.
We examined how a missing data mechanism influences its classification results. More-
over, we tested various imputation strategy for a basepoint selection. Since SVM classifiers
works better on normalized data, we applied a whitening to scale the feature vectors to unit
covariance (on a training set) as described in Definition 2.

4.1 Experimental Setting

If not stated otherwise, for a basepoint selection we used the most likely point imputation
(3). This parametrization of our method will be denoted by most likely+. Its results were
compared with classical imputation strategy, which also fills absent coordinates using most
likely point imputation, referred to as most likely. We also used multiple imputation by
chained equation (mice) (Buuren and Groothuis-Oudshoorn 2011) implemented in R pack-
age mice®. Additionally, we considered two specialized SVM classifiers, which do not use
any direct imputation. The first one is a geometric max-margin classifier, geom, proposed
in Chechik et al. (2008), which focuses on maximizing the margin for each example in its
own relevant subspace determined by visible features. The second technique, referred to as
karma, is an iterative SVM algorithm based on low-rank assumption (Hazan et al. 2015).
Finally, we used an extension of classical RBF kernel to the case of incomplete data (Smieja
et al. 2017), which is denoted by genRBF. Since most data sets are not linearly separable,
every method was combined with RBF kernel.

All experiments assumed double fivefold cross-validation. More precisely, for every divi-
sion into train and test sets, the required hyperparameters were tuned using inner fivefold
cross-validation applied on training set. The combination of parameters maximizing mean

3https://cran.r-project.org/web/packages/mice/index.html
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Table2 Classification accuracy of examined methods on UCI data sets, where missing entries satisfy MAR

Data set Most likely Most likely+ mice geom karma genRBF
Australian 0.822 0.821 0.819 0.785 0.814 0.850
Breast cancer 0.955 0.953 0.952 0.936 0.944 0.957
Bank 0.900 0917 0.885 0.769 0.907 0.909
Crashes 0.923 0.923 0.918 0914 0.907 0.917
Heart 0.811 0.811 0.808 0.796 0.818 0.819
Liver disorders 0.617 0.607 0.610 0.573 0.587 0.598
Pima 0.741 0.743 0.740 0.705 0.743 0.746
Phoneme 0.751 0.793 0.731 0.718 0.778 0.793
Ring 0.950 0.970 0.956 0.936 0.964 0.957
Sonar 0.612 0.589 0.587 0.636 0.670 0.676

accuracy score (on validation set) was used to learn a final classifier on a entire training
set, while the performance was evaluated on a test set (it was not used during training). The
accuracy was averaged over all five trails. All data set was scaled using a whitening opera-
tor applied on train set. Every method tuned a standard margin parameter C € {10 : k =
—1,0, ..., 8} and the width of RBF radius y € {10k : k=-8,-7,..., 1}. Additionally,
our method selected a trade-off parameter D from the range {0.1, 0.2, ..., 1}, while karma
was parametrized by the factor ykarma € {1, 2, 3}.

We considered examples from UCI repository summarized in Table 1, where selected
attributes were removed based on two strategies. In the first one, attributes were removed
at random, while in the second case missing features were determined by the class labels.
Details of these strategies are described in the following subsections.

6.0

Ranking

25

x < @ <
& ¢ P P
Q@(\

Fig.4 Box plots of ranks for MAR removing strategy (the lower the better)
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4.2 Missing at Random

In the first experiment, we considered a removing process following MAR assumption,
where absence of attributes depends on visible features. For this purpose, we drawn N points
x1,...,xy of adataset X C RY. Then, for every x € X, we removed its ith attribute with
a probability exp(—¢||x — x;||x)), where ||x||x denotes the Mahalanobis norm of x with
respect to X. In other words, the removal of ith attribute was determined by a distance to
ith selected point. Parameter # > 0 was chosen to remove approximately 30% of attributes.

Table 2 shows that our method usually provided one of the highest results. It signif-
icantly outperformed comparative methods on ring data set, while in other cases, except
sonar data, had similar accuracy to the best techniques. However, in many cases, the differ-
ences between the results were slight. Since missing coordinates were removed at random,
the use of additional information about absent features was not a significant benefit over
other methods.

To summarize the results, we ranked examined methods over all data sets. The best per-
forming technique on a given data set got rank 1, second best got rank 2, etc. Box plot of ranks
presented in Fig. 4 shows that our approach was the second best performing method on average,
just after genRBF'. In particular, it was better than typical imputation method (Table 3).

4.3 Type of Imputation

Our approach can use various imputation strategies for basepoint selection. In this experi-
ment, we examined the influence of the type of imputation on the classification results.

Our subspace representation was combined with three imputation strategies. The first
one, zero+, fills missing attributes with zeros. The second, mean+, uses the mean value of a
given attribute, while the last one is the proposed most likely imputation, most likely+. The
experiment used the same data sets as in previous case.

The summary of the results, presented in Fig. 5, show that most likely imputation was
the best option in most cases. It also confirms statistical differences between the results.

4.4 Structural Removal

The first experiment suggested that the advantage of using subspace approach in MAR case
is slight. However, in real situation, the removal process may be much more complex. In

Table 3 Score accuracy for two

strategy removing data: MAR Data set Zero+ Mean+ Most likely+

(left side) and beta distribution

with parameterso = 1, 8 = 1.5 Australian 0.808 0.820 0.821

(right side) Breast cancer 0.949 0.951 0.953
Bank 0914 0.914 0917
Crashes 0911 0.922 0.923
Heart 0.780 0.805 0.811
Liver disorders 0.592 0.602 0.607
Pima 0.738 0.734 0.743
Phoneme 0.784 0.781 0.793
Ring 0.959 0.967 0.970
Sonar 0.589 0.603 0.589
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Fig.5 Box plots of ranks for MAR strategy removing data

particular, the absence of some features may be determined by a corresponding class label.
For instance, a doctor may be unable to complete patient examination due to the bad health
status, which results in missing values. In consequence, the inability of measurements is
influenced by a target value describing the illness.

Following the above motivation, we constructed a process for attribute removal, where
the chance of attribute absence is induced by a class label. We considered two densities of
beta distributions f_ and f4 on [0, 1] with parameters:

- fora=1;8=15,
- frra=15p8=1,

which are illustrated in Fig. 6. A density f_ is related with negative class, while posi-
tive class is connected with fi. Given an example x € X taken from negative class, we

1.44
1.24
1.04
0.8
0.6 1
0.44
0.2 — f_

0.01 fi

0.0 0.2 0.4 0.6 0.8 1.0
Fig. 6 Two densities of beta distributions f_ (with parameters: « = 1, 8 = 1.5) and f} (with parameters
a=15=1on]0,1]
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Table 4 Classification accuracy, when attributes removal was partially determined by a corresponding class
labels

Data set Most likely Most likely+ mice geom karma genRBF
Australian 0.836 0.867 0.836 0.800 0.845 0.843
Breast cancer 0.953 0.955 0.951 0.952 0.943 0.950
Bank 0.955 0.966 0.942 0.872 0.965 0.952
Crashes 0.919 0.936 0.916 0.913 0.929 0.924
Heart 0.815 0.829 0.802 0.808 0.826 0.827
Liver disorders 0.684 0.687 0.685 0.584 0.680 0.662
Pima 0.740 0.791 0.735 0.701 0.775 0.770
Phoneme 0.823 0.851 0.811 0.763 0.836 0.838
Ring 0.960 0.973 0.961 0.886 0.965 0.966
Sonar 0.772 0.892 0.620 0.594 0.614 0.812

remove its ith attribute with a probability f N f_(x)dx. If x belongs to positive class its ith

. N
attribute is removed with probability || ,W;l f+(x)dx. In other words, the values at first few

coordinates are more likely to be remove[:vd for negative class, while these at last coordinates
are usually absent for positive class. We would like to mention that the removal process is
not deterministic and we selected «, 8 to allow high overlap between these two removal
processes.

The classification results for such prepared data are presented in Table 4. It is clear that
the subspace approach obtained the highest performance among all considered methods.
Typical imputations strategies as most likely and mice, fill absent features and forget which
one were missing, which leads to the loss of information. The ranking of methods presented
in Fig. 7 confirms high performance of our approach. It shows that karma and genRBF were
better than imputation strategies, but cannot performed as well as our method in this case.
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Fig.7 Box plots, when attributes removal was partially determined by a corresponding class labels
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4.5 Summary

In real-life problems, absence of attributes is usually determined by both random and
deterministic processes. For example, some sensors may fail randomly, but also may stop
registering a signal, when a device begins to deteriorate. Experimental results showed that
our approach performs well in both cases; in random situations, it gives comparable results
to other methods, but it can also successfully use the information about missing coordinates.
These make our method a promising tool for analyzing incomplete data.

5 Conclusion

The paper generalized the existing approach of identifying missing attributes with binary
flags. To enable appropriate affine transformations of data, we represented incomplete data
as pointed affine subspaces and embedded them into a vector space by linking a pointed
subspace with a basepoint joined with a corresponding projection matrix. In the same spirit,
we proposed to select a basepoint as the most probable point from a subspace, which
extends the well-known zero imputation strategy. Such a combination provided satisfactory
performance in conducted classification experiments.

Acknowledgments This work was partially supported by the National Science Centre (Poland) grant no.
2015/19/B/ST6/01819.

Funding Information This work was partially supported by the National Science Centre (Poland) grant
no. 2015/19/B/ST6/01819 .

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Aste, M., Boninsegna, M., Freno, A., Trentin, E. (2015). Techniques for dealing with incomplete data: a
tutorial and survey. Pattern Analysis and Applications, 18(1), 1-29.

Azur, ML.J., Stuart, E.A., Frangakis, C., Leaf, PJ. (2011). Multiple imputation by chained equations: what is
it and how does it work? International Journal of Methods in Psychiatric Research, 20(1), 40—49.

Berg, A.C., Berg, T.L., Malik, J. (2005). Shape matching and object recognition using low distortion corre-
spondences. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (pp. 26-33). IEEE.

Burke, L.E., Dunbar-Jacob, J.M., Hill, M.N. (1997). Compliance with cardiovascular disease prevention
strategies: a review of the research. Annals of Behavioral Medicine, 19(3), 239-263.

Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: multivariate imputation by chained equations in R.
Journal of statistical software, 45(3), 1-68.

Chechik, G., Heitz, G., Elidan, G., Abbeel, P., Koller, D. (2007). Max-margin classification of incomplete
data. In Advances in Neural Information Processing Systems (pp. 233-240).

Chechik, G., Heitz, G., Elidan, G., Abbeel, P., Koller, D. (2008). Max-margin classification of data with
absent features. Journal of Machine Learning Research, 9, 1-21.

Conversano, C., & Siciliano, R. (2009). Incremental tree-based missing data imputation with lexicographic
ordering. Journal of Classification, 26(3), 361-379.

D’Ambrosio, A., Aria, M., Siciliano, R. (2012). Accurate tree-based missing data imputation and data fusion
within the statistical learning paradigm. Journal of classification, 29, 1-32.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Journal of Classification (2020) 37:42-57 57

Dekel, O., Shamir, O., Xiao, L. (2010). Learning to classify with missing and corrupted features. Machine
Learning, 81(2), 149-178.

Dick, U., Haider, P., Scheffer, T. (2008). Learning from incomplete data with infinite imputations. In:
Proceedings of the International Conference on Machine Learning (pp. 232-239). ACM.

Garcia-Laencina, PJ., Sancho-Gémez, J., Figueiras-Vidal, A.R. (2010). Pattern classification with missing
data: a review. Neural Computing and Applications, 19(2), 263-282.

Ghahramani, Z., & Jordan, MLI. (1994). Supervised learning from incomplete data via an EM approach. In
Advances in Neural Information Processing Systems (pp. 120-127). Citeseer.

Globerson, A., & Roweis, S. (2006). Nightmare at test time: robust learning by feature deletion. In
Proceedings of the International Conference on Machine Learning (pp. 353-360). ACM.

Goldberg, A., Recht, B., Xu, J., Nowak, R., Zhu, X. (2010). Transduction with matrix completion: three birds
with one stone. In Advances in neural information processing systems (pp. 757-765).

Grangier, D., & Melvin, I. (2010). Feature set embedding for incomplete data. In Advances in Neural
Information Processing Systems (pp. 793-801).

Hazan, E., Livni, R., Mansour, Y. (2015). Classification with low rank and missing data. In Proceedings of
The 32nd International Conference on Machine Learning (pp. 257-266).

Liao, X., Li, H., Carin, L. (2007). Quadratically gated mixture of experts for incomplete data classification.
In Proceedings of the International Conference on Machine Learning (pp. 553-560) ACM.

Little, R.J.A., & Rubin, D.B. (2014). Statistical analysis with missing data. Wiley.

Liu, Z.-G., Pan, Q., Dezert, J., Martin, A. (2016). Adaptive imputation of missing values for incomplete
pattern classification. Pattern Recognition, 52, 85-95.

McKnight, P.E., McKnight, K.M., Sidani, S., Figueredo, A.J. (2007). Missing data: a gentle introduction.
Guilford Press.

Pelckmans, K., De Brabanter, J., Suykens, J.A.K., De Moor, B. (2005). Handling missing values in support
vector machine classifiers. Neural Networks, 18(5), 684—692.

Schafer, J.L. (1997). Analysis of incomplete multivariate data. CRC Press.

Shivaswamy, P.K., Bhattacharyya, C., Smola, A.J. (2006). Second order cone programming approaches for
handling missing and uncertain data. Journal of Machine Learning Research, 7, 1283-1314.

Smieja, M., Struski, L., Tabor, J. (2017). Generalized RBF kernel for incomplete data. arXiv:1612.01480.

Smola, A.J., Vishwanathan, S.V.N., Hofmann, T. (2005). Kernel methods for missing variables. In Proceed-
ings of the International Conference on Artificial Intelligence and Statistics. Citeseer.

Stahura, F.L., & Bajorath, J. (2004). Virtual screening methods that complement HTS. Combinatorial
Chemistry & High Throughput Screening, 7(4), 259-269.

Sulis, I., & Porcu, M. (2017). Handling missing data in item response theory. assessing the accuracy of a
multiple imputation procedure based on latent class analysis. Journal of Classification, 2, 1-33.

Williams, D., Liao, X., Ya, X., Carin, L. (2005a). Incomplete-data classification using logistic regression. In
Proceedings of the International Conference on Machine Learning (pp. 972-979). ACM.

Williams, D., & Carin, L. (2005b). Analytical kernel matrix completion with incomplete multi-view data. In
Proceedings of the ICML Workshop on Learning With Multiple Views.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arXiv.org/abs/1612.01480

	Pointed Subspace Approach to Incomplete Data
	Abstract
	Introduction
	Related Works
	Generalized Incomplete Data
	Incomplete Data as Pointed Affine Subspaces
	Embedding of Generalized Missing Data and Basepoint Selection
	Scalar Product for SVM Kernel

	Experiments
	Experimental Setting
	Missing at Random
	Type of Imputation
	Structural Removal
	Summary

	Conclusion
	References




