Skip to main content
Log in

Two-dimensional metric tensor visualization using pseudo-meshes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Riemannian metric tensors are used to control the adaptation of meshes for finite element and finite volume computations. To study the numerous metric construction and manipulation techniques, a new method has been developed to visualize two-dimensional metrics without interference from an adaptation algorithm. This method traces a network of orthogonal tensor lines, tangent to the eigenvectors of the metric field, to form a pseudo-mesh visually close to a perfectly adapted mesh but without many of its constraints. Anisotropic metrics can be visualized directly using such pseudo-meshes but, for isotropic metrics, the eigensystem is degenerate and an anisotropic perturbation has to be used. This perturbation merely preserves directional information usually present during metric construction and is small enough, about 1% of the prescribed target element size, to be visually imperceptible. Both analytical and solution-based examples show the effectiveness and usefulness of the present method. As an example, pseudo-meshes are used to visualize the effect on metrics of Laplacian-like smoothing and gradation control techniques. Application to adaptive quadrilateral mesh generation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vallet M-G (1992) Génération de maillages éléments finis anisotropes et adaptatifs. PhD Thesis, Université Pierre et Marie Curie, Paris VI

  2. George P-L, Borouchaki H (1998) Delaunay triangulation and meshing. Applications to finite elements. Hermès, Paris

    Google Scholar 

  3. Frey PJ, George P-L (2000) Mesh generation. Application to finite elements. Hermès, Paris

    MATH  Google Scholar 

  4. Tchon K-F, Khachan M, Guibault F, Camarero R (2005) Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness. Comput Aided Design 37:173–187

    Article  Google Scholar 

  5. Borouchaki H, Hecht F, Frey PJ (1998) Mesh gradation control. Int J Numer Methods Eng 43:1143–1165

    Article  MATH  MathSciNet  Google Scholar 

  6. Li X, Remacle J-F, Chevaugeon N, Shephard MS (2004) Anisotropic mesh gradation control. Thirteenth international meshing roundtable. Sandia National Laboratories, Williamsburg, September

  7. Alauzet F, Frey PJ (2003) Estimateur d’erreur géométrique et métriques anisotropes pour l’adaptation de maillage. Partie I : aspects théoriques. Tech. Rep. RR–4759, Institut National de Recherche en Informatique et en Automatique, France

  8. Laidlaw DH, Ahrens ET, Kremers D, Avalos MJ, Jacobs RE, Readhead C (1998) Visualizing diffusion tensor images of the mouse spinal cord. IEEE Visualization ’98, Research Triangle Park, NC, pp 127–134

  9. Dickinson R (1989) A unified approach to the design of visualization software for the analysis of field problems. Three-dimensional visualization and display technologies. SPIE—The International Society of Optical Engineering, Los Angeles, CA, January, vol 1083 of SPIE Proceedings, pp 173–180

  10. Delmarcelle T, Hesselink L (1993) Visualizing second-order tensor fields with hyperstreamlines. IEEE Comput Graph Appl 13:25–33

    Article  Google Scholar 

  11. Delmarcelle T, Hesselink L (1994) The topology of symmetric, second-order tensor fields. IEEE Visualization ’94, Washinton, pp 140–147

    Google Scholar 

  12. Zheng X, Pang A (2002) Volume deformation for tensor visualization. IEEE Visualization ’02, Boston, pp 379–386

    Google Scholar 

  13. Zheng X, Pang A (2003) HyperLIC. IEEE Visualization ’03, Seattle, pp 249–256

    Google Scholar 

  14. Kindlmann G, Weinstein D, Hart D (2000) Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans Visual Comput Graph 6:124–138

    Article  Google Scholar 

  15. Alliez P, Cohen-Steiner D, Devillers O, Lévy B, Desbrun M (2003) Anisotropic polygonal remeshing. ACM Transactions on Graphics. Special issue: proceedings of ACM SIGGRAPH 2003 22:485–493

  16. Ciarlet PG (1991) Basic error estimates for elliptic problems. In: Ciarlet PG, Lions J-L (eds) Handbook of numerical analysis, vol II. North-Holland, Amsterdam, pp 17–351

  17. Tricoche X (2002) Vector and tensor field topology simplification, tracking, and visualization. PhD Thesis, Schriftenreihe Fachbereich Informatik (3), Universität Kaiserslautern, Germany

  18. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  19. Bonet J, Peraire J (1991) An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int J Numer Methods Eng 31:1–17

    Article  MATH  MathSciNet  Google Scholar 

  20. Jobard B, Lefer W (1997) Creating evenly-spaced streamlines of arbitrary density. In: 8th Eurographics workshop on visualization in scientific computing, Boulogne-sur-Mer, France, April, pp 45–55

  21. Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. IEEE Visualization ’00, Salt Lake City, pp 163–170

    Google Scholar 

  22. Tricoche X, Scheuermann G, Hagen H, Clauss S (2001) Vector and tensor field topology simplification on irregular grids. In: Ebert DS, Favre JM, Peikert R (eds) Data visualization 2001. Springer, Wien, pp 107–116

    Google Scholar 

  23. Labbé P, Dompierre J, Vallet M-G, Guibault F, Trépanier J-Y (2001) A measure of the conformity of a mesh to an anisotropic metric. Tenth international meshing roundtable, Sandia National Laboratories, Newport Beach, October, pp 319–326

  24. Tchon K-F, Dompierre J, Camarero R (2004) Automated refinement of conformal quadrilateral and hexahedral meshes. Int J Numer Methods Eng 59:1539–1562

    Article  MATH  Google Scholar 

  25. Dompierre J, Labbé P, Guibault F (2003) Controlling approximation error. In: Bathe K (ed) Second M.I.T. conference on computational fluid and solid mechanics, Massachusetts Institute of Technology, Cambridge, June, pp 1929–1932

  26. Tchon K-F, Dompierre J, Vallet M-G, Camarero R (2004) Visualizing mesh adaptation metric tensors. Thirteenth international meshing roundtable, Sandia National Laboratories, Williamsburg, VA, September, pp 353–363

  27. Tchon K-F, Guibault F, Dompierre J, Camarero R (2005) Adaptive hybrid meshing using metric tensor line networks. In: 17th AIAA computational fluid dynamics conference, Toronto, ON, Canada, June, no. AIAA–2005–5332

  28. Price MA, Armstrong CG, Sabin MA (1995) Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges. Int J Numer Methods Eng 38:3335–3359

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its financial support. Furthermore, please note that the solutions, meshes and iconic tensor visualizations were plotted using medit, a mesh visualization program developed by Pascal J. Frey of the French National Institute for Research in Computer Science and Control (INRIA) as well as VU, a configurable visualization software tool for the display and analysis of numerical solutions developed by Benoît Ozell at the now defunct Centre for Research on Computation and its Applications (CERCA), Montréal, Québec, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko-Foa Tchon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchon, KF., Dompierre, J., Vallet, MG. et al. Two-dimensional metric tensor visualization using pseudo-meshes. Engineering with Computers 22, 121–131 (2006). https://doi.org/10.1007/s00366-006-0012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-006-0012-3

Keywords

Navigation