
UCRL-JRNL-213577

Toward Interoperable Mesh, Geometry
and Field Components for PDE
Simulation Development

K. K. Chand, L. F. Diachin, X. Li, C. Ollivier-Gooch, E.
S. Seol, M. Shephard, T. Tautges, H. Trease

July 13, 2005

Engineering with Computers

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

Updated October 14, 2003

Engineering with Computers manuscript No.
(will be inserted by the editor)

Toward Interoperable Mesh, Geometry and

Field Components for PDE Simulation

Development

Kyle K. Chand1, Lori Freitag Diachin1, Xiaolin Li2, Carl

Ollivier-Gooch3, E. Seegyoung Seol4, Mark S. Shephard4,

Timothy Tautges5, Harold Trease6

1 Center for Applied Scientific Computing, Lawrence Livermore National Labo-
ratory

2 Dept. of Applied Mathematics and Statistics, SUNY Stonybrook
3 Advanced Numerical Simulation Laboratory, University of British Columbia
4 Scientific Computation Research Center, Rensselaer Polytechnic Institute
5 Mathematics and Computer Science Division, Argonne National Laboratory
6 Pacific Northwest National Laboratory

The date of receipt and acceptance will be inserted by the editor

Abstract Mesh-based PDE simulation codes are becoming increasingly
sophisticated and rely on advanced meshing and discretization tools. Un-
fortunately, it is still difficult to interchange or interoperate tools developed
by different communities to experiment with various technologies or to de-
velop new capabilities. To address these difficulties, we have developed com-
ponent interfaces designed to support the information flow of mesh-based
PDE simulations. We describe this information flow and discuss typical roles
and services provided by the geometry, mesh, and field components of the
simulation. Based on this delineation for the roles of each component, we
give a high-level description of the abstract data model and set of interfaces
developed by the Department of Energy’s Interoperable Tools for Advanced
Petascale Simulation (ITAPS) center. These common interfaces are critical
to our interoperability goal, and we give examples of several services based
upon these interfaces including mesh adaptation and mesh improvement.

1 Introduction

Simulation codes for solving problems in mathematical physics using mesh-
based techniques continue to become increasingly sophisticated. These codes
rely on many different technological advances to help create automated, re-
liable and flexible simulation tools. For example, technologies such as mesh

2 Kyle K. Chand et al.

generation and adaptation contribute significantly to simulation automation
and reliability. Robust partial differential equation (PDE) discretization and
error control are central components to solution reliability. The continued
development of more sophisticated physical models, discretizations and cou-
pling of physical processes in multi-physics simulations requires software
agile enough to adapt via augmentation or replacement of the original ap-
proaches.

Traditionally, there have been four approaches used to provide tools and
technologies to simulation code developers:

1. complete simulation codes that support the integration of specific user-
defined modules,

2. simulation frameworks that support the overall development process,
3. libraries that support specific aspects of the simulation process, and
4. components that encapsulate specific functionalities.

The first two approaches are typified by simulation environments into which
the user inserts small customization modules. These approaches often re-
quire less effort on the part of the user, but provide the least flexibility.
The latter two approaches are the opposite. In these cases, the users insert
technologies developed by different communities into their simulation codes
and the coupling of technologies developed by different groups can become
quite challenging. Depending on the starting point, and needs of the specific
code development process, each approach has been found to be useful, and
we briefly describe each below.

There are many examples of complete simulation codes that provide a
small set of predefined routines that allow users to add specific capabili-
ties [1–4]. These codes rigidly control the entire simulation information flow
with predetermined representations for the geometry, mesh and solution.
Predefined routines allow limited access to specific aspects of the simula-
tion’s model or discretization. One such well known example is ABAQUS
[1] which supports user-defined material and finite element routines that al-
low users to include their own constitutive relationships and finite element
type, respectively. These predefined user routine interfaces place specific
limits on the functionality that can be added, but have proven useful in
allowing some customization while minimizing the development effort re-
quired by the user. For example, the ABAQUS material routine has been
successfully used to include hundreds of new material models ranging from
simple curve fits to complex homogenized constitutive relations constructed
from multiscale analysis. The key disadvantages of this approach are that
the new capabilities that can be added are quite limited, and they can only
be added through a specific interface.

Simulation frameworks provide an overall structure to support the effec-
tive development and extension of the framework to provide new capabilities
[5–11]. Simulation framework development efforts have taken advantage of
modern programming languages to provide users a high degree of flexibility.
However, the user must typically use predetermined data formats, interface

Interoperable Components for Simulation Development 3

methods, and algorithmic and data services. These can vary substantially
among the different frameworks, and the differences correspond to the trade-
offs associated with the types and levels of generality supported and the
computational efficiency that can be obtained. Frameworks can effectively
manage the information flow through simulations as long as that informa-
tion matches design decisions built into the infrastructure (e.g., one does
not attempt to use an unstructured mesh in a structured framework). The
framework approach is best suited for new simulation code development.
However, for users with an existing code who are focused on incorporating
new capabilities, the framework approach is not ideal because integrating
existing capabilities into the framework can be a time consuming, error
prone process.

The use of numerical libraries to support the development of simulation
codes has a long history. The area where numerical libraries have been,
and continue to be, most successful is for execution of computationally
intensive core numerical algorithms such as solvers for algebraic systems,
ordinary differential equations, and differential-algebraic systems (e.g., [12–
17]). These libraries provide capabilities that are most efficiently executed
by the careful selection and implementation of specific numerical algorithms.
Although quite successful in their specific areas, numerical libraries do not
support development of other portions of the code. Furthermore, integration
with different functionalities (e.g., coupling a linear solver to a discretiza-
tion method) often requires developing specific interface and coupling code
for each new library. Hence, incorporating a new numerical library into an
existing simulation can require significant code development and inhibits
experimentation with new ideas and methods.

Recently, application scientists have started to use component technolo-
gies for the development of simulation codes [18–25]. A component is a soft-
ware object that uses a clearly defined interface to encapsulate a specific
functionality. Components are required to conform to a prescribed behavior
which allows the object to interact with other components via their in-
terfaces. Typically, each interface is supported by multiple implementations
which allows code developers to easily experiment with different approaches.
The use of components is ideal in the case where there is already a substan-
tial investment in the simulation code and the developers are interested in
incorporating advanced functionality or experimenting with several differ-
ent, related approaches. Several groups are developing component imple-
mentations for different aspects of the numerical solution process including
numerical solvers [13,14]), ODE integrators [26,27], and visualization tools
[28]. However, more work is required to increase the number of tools and
technologies that use a component-based approach, particularly for mesh-
based simulation tools.

One of the most challenging aspects of developing a component-based
approach for mesh-based simulations is the management of the flow of infor-
mation throughout the solution process. For example, in Figure 1 we show
a typical example of information flow, starting with problem specification

4 Kyle K. Chand et al.

and domain discretization (e.g., mesh generation). This continues to PDE
discretization and solution. Once the initial solution is computed, it is pos-
sible for the information flow to return to the problem specification and
domain discretization in design optimization or adaptive mesh refinement
loops. This information flow must be effectively managed so that data is
readily available at each stage of the solution process without the overhead
associated with data copy.

Ongoing research in the Interoperable Tools for Advanced Petascale Sim-
ulation (ITAPS) Center is addressing this challenging problem by develop-
ing geometry, mesh, and solution field components. These three components
are key conduits of the simulation information flow and provide access to a
broad set of technologies supporting simulation automation, solution relia-
bility and software flexibility. Simulation automation is supported through
the geometry and mesh components because they provide ready access to
CAD-based geometry definitions and automatic mesh generators. Solution
reliability is supported because these are the components needed to support
the effective creation and adaptive control of meshes. The field and mesh
components are key to the effective coupling of multiple simulation codes
in the construction of multiscale, multiphysics simulations.

A high level view of the information flow associated with mesh-based
simulations is presented in Section 2. This information flow starts with a
generalized problem definition and indicates the roles of the geometry, mesh,
and field components. Section 3 presents ITAPS’ data model and component
specification. In Section 4, we illustrate the use of ITAPS’ interfaces in a
number of diverse applications such as adaptive mesh control and mesh
quality improvement.

2 Information Flow in Mesh-based Simulation

ITAPS uses the information flow through a mesh-based simulation to guide
the development of interoperable geometry, mesh and solution field com-
ponents. While the information flow is modeled using the requirements of
a mesh-based PDE solver, the resulting components are general enough to
provide the infrastructure for a variety of other tools including pre/post-
processing of discrete data, mesh and geometry manipulation, and error es-
timation. A simulation’s information flow, depicted in Figure 1, begins with
a problem definition. Described in more detail in Section 2.1, the prob-
lem definition consists of a description of the simulation’s geometric and
temporal domain annotated by attributes designating mathematical model
details and parameters. In the next stage of the information flow, mesh-
based simulation procedures approximate the PDEs by first decomposing
the geometric domain into a set of piecewise components, the mesh, and
then approximating the continuous PDEs on that mesh using, for example,
finite difference, finite volume, finite element, or partition of unity methods.
Once the domain and PDEs are discretized, a number of different meth-
ods can be used to solve the discrete equations and visualize or otherwise

Interoperable Components for Simulation Development 5

interrogate the results. Simulation automation and reliability often imply
feedback of the PDE discretization information back to the domain dis-
cretization (i.e. in adaptive methods) or even modification of the physical
domain or attributes The following sections present ITAPS’ model of the
information flow in mesh-based simulations; these sections also introduce
the concepts of geometry, mesh and solution fields used to define ITAPS’
interoperable interfaces.

2.1 Problem Definition

To identify the operations and information needed by a mesh-based simula-
tion, we begin with a problem definition containing the domain over which
the simulation is to be performed and attributes describing the problem that
is to be solved. For the classes of simulations being considered here, the do-
main includes a spatial component that is one-, two-, or three-dimensional
and can also include a temporal component if the solution changes with
time. To support a numerical simulation, the domain representation must
be able to support any geometry interrogation and/or modification required
by mesh generators and simulations, and the association of mathematical
and physical attributes with the geometry. Attributes specify the mathemat-
ical information required to solve a particular problem. This information
includes, e.g., equations, material properties, forcing functions, boundary
conditions, and initial conditions. For example, a PDE solver may require
a domain definition annotated with the mathematical form governing the
simulation (PDEs, variational principle, etc) and any parameters associated
with the governing mathematical equations. Other problem definitions e.g.,
data analysis, adaptive loops, mesh optimization, etc., may require addi-
tional or different attributes.

2.1.1 Geometric Domain Supporting geometry interrogation, modification
and attribute association requires a complete and flexible interface to the
spatial domain definition. We consider geometric models that are subsets
of three-dimensional space bounded by a collection of geometric entities
(points, curves, surfaces, and volumes) [29]. There is substantial computer-
aided design literature on various domain representations. Boundary repre-
sentations (b-reps), which are the most common geometric representation
in CAD systems, are particularly well-suited for geometric models as we
define them. Other domain representations are also possible, including con-
structive solid geometry; discrete (mesh-based) representations; and image
data (typically in the form of voxels or octrees).

For our purposes, details of how the geometric shape of the domain is
represented are immaterial. We focus instead on the topological abstractions
to represent the geometric entities. Topologically 3-, 2-, 1- and 0-dimensional
entities are referred to as regions, faces, edges and vertices, respectively. Ver-
tices form the boundaries of edges (except in periodic edges, whose boundary

6 Kyle K. Chand et al.

set is null), edges bound faces and faces are used to define regions. The topo-
logical structure of the geometric model is completely described by these
entities and their adjacencies. The actual geometric information associated
with a geometric model entity, its shape, can be thought of as an attribute
of the entity.

The effective interaction of multiple domain definition sources requires
the definition of abstract interfaces that use information that is common
to all of them: that is, their topological entities. The ability to generalize
these interfaces is further enhanced by the fact that the geometry shape
information needed by most simulation procedures consists of pointwise
interrogations that can be easily answered in a method independent of the
modeler shape representation.

2.1.2 Attributes Analysis attributes are information associated with spe-
cific geometric entities in the domain definiton. In a PDE solver, these at-
tributes include the PDEs and initial conditions associated with a model re-
gion, boundary conditions associated with boundary faces, and source terms
located within a model region. Some attributes may be tensor-quantities
defined in various coordinate systems leading to the need for coordinate
transformations that allow other parts of the simulation process to access
the data. For example, a source term in the governing PDE is associated
with a geometric location in space and could be expressed using polar,
spherical or cartesian coordinates depending on the discretization.

2.2 Domain Discretization

The mesh is a piecewise decomposition of the space/time domain. It is
common to employ different discretizations for the spatial and temporal
domains. Because the definition of the spatial mesh is typically the more
complex of the two, it is the focus of this discussion. In addition to the case
where a single mesh covers the entire geometric (spatial) domain, we also
consider cases where more than one mesh is associated with a domain. For
example, in hybrid meshing approaches, the domain is decomposed first into
a set of sub-domains that may be meshed using different meshing strategies.
Also, different full geometry meshes can be used during different stages of
the numerical solution, as in the case of multilevel or adaptive methods. In
each of these cases, the meshes can be associated with the underlying geo-
metric domain so that any changes made to the domain propagate properly
to all meshes.

While different discretization approaches place different requirements on
the mesh and mesh entities, in general the mesh is required to

– have the appropriately defined union of the mesh entities represent the
domain of interest,

– maintain, or have access to, the geometric shape information needed for
processes such as differentiation and integration,

Interoperable Components for Simulation Development 7

– support the PDE discretization process over the mesh entities, and
– maintain relationships of the mesh entities needed to support the as-

sembly of the complete discrete system and construction of the solution
fields.

Meshes can take many different forms, the simplest of which is a con-
forming mesh where the intersections of two mesh entities is null and the in-
tersections of their closure is either null or the closure of a common boundary
mesh entity (face, edge or vertex). Other mesh forms include non-conforming
meshes, hierarchical, patch-based meshes, or overlapping meshes. In each of
these cases, there are rules on how the mesh entities interact, how equation
discretizations are performed over them, and how the complete discrete
system is assembled.

The geometric shape of the mesh entities is needed to support the equa-
tion discretization process and can be effectively associated with the topo-
logical entities defining the mesh. In many cases, this is limited to the coor-
dinates of the mesh vertices and, if they exist, higher-order nodes associated
with mesh edges, faces, or regions. It is also possible to associate other forms
of geometric information with the mesh entities, for example, associating
Bezier curves and surface control points with mesh edges and faces for use
in p-version finite elements [30].

It is possible to obtain mesh shape information by maintaining an ex-
plicit link between mesh entities and a high-level description of the geometric
domain when it is available. However, obtaining information in this way is
expensive and is often only used when necessary. Consider the case of mesh
adaptation, the original domain geometry must be used to ensure that the
mesh approximates the geometric domain to the same order of accuracy as
the equation discretization process approximates the continuous problem.
For example, as piecewise linear elements approximating curved portions
of the geometry are refined, the new mesh vertices must be placed on the
curved boundary, or as the polynomial order of an element is increased, the
geometric approximation of the closure of that entity must be increased to
the correct order. If this high level geometric information is not needed,
for example, in the case of fixed mesh simulations, it is typical to use only
geometric shape information associated directly with the mesh entities.

The data model for the mesh must maintain an association with the do-
main definition, the discretization functions, the assembled discrete system
and the solution fields. From the perspective of maintaining its relation-
ship to the geometric domain, the use of mesh topological entities and their
adjacency is ideal [31–33]. In this manner it is possible to associate the
mesh entities to the domain entities to obtain needed attributes and geo-
metric information. In other cases, using topological entities is not ideal.
For example, when using partition of unity (so called meshfree) methods,
an octree, or some other spatially-based structure, is more appropriate. In
the case of structured meshes maintaining an explicit list of mesh entities is
unnecessary; instead one can maintain the boundaries of the mesh patches
augmented with the rules of mesh patch interaction.

8 Kyle K. Chand et al.

We refer to the association of the mesh with respect to the geometric
model as classification [31,34]. In particular, the mesh topological entities
are classified with respect to the geometric model topological entities upon
which they lie as defined below.

Definition: Classification - The unique association of mesh topological
entities of dimension di, Mdi

i to the topological entity of the geometric model

of dimension dj, G
dj

j where di ≤ dj, on which it lies is termed classification

and is denoted Mdi

i v G
dj

j where the classification symbol, v, indicates that
the left hand entity, or set, is classified on the right hand entity.

Definition: Reverse Classification - For each model entity, Gd
j , the

set of equal order mesh entities classified on that model entity define the re-
verse classification information for that model entity. Reverse classification
is denoted as:

RC(Gd
j) =

{

Md
i |M

d
i v Gd

j

}

. (1)

The concept of mesh entity classification to a higher level model can be
extended to include additional levels of model decomposition. Two impor-
tant cases of this are parallel mesh partitions and structured mesh parti-
tions. In the cases when these partitions are non-overlapping, the associa-
tions are obvious. The concepts can be extended to the case of overlapping
partitions through the definition of appropriate interaction rules for entities
in the different models.

2.3 Equation Discretization and the Definition of Solution Fields

The PDEs being solved are written in terms of dependent variables that are
functions of the space/time domain. Let the independent variables of space
be denoted x, and the independent variable time be denoted t. For purposes
of this discussion, let the set of PDEs being solved be written in the form:

D(u, σ) − f = 0 (2)

where

– D represents the appropriate differential operators,
– u(x, t) represents one or more vector dependent variables,
– σ(x, t) represents one or more scalar dependent variables, and
– f(x, t) represents the forcing functions.

Note that the complete statement of a PDE problem must include a set of
boundary and, for time dependent problems, initial conditions.

In mesh-based PDE solvers, the dependent variables are discretely rep-
resented over individual mesh entities or compact groups of entities, either
by direct operator discretization (e.g., difference equations) or in terms of
a set of basis functions. In both cases, this process specifies a set of distri-
bution functions defining how the discretized variables vary over the mesh

Interoperable Components for Simulation Development 9

entities and a set of yet to be determined multipliers, called degrees of free-
dom (DOF). The DOF can always be associated with a single mesh entity
while the distribution functions are associated with one or more mesh enti-
ties. Three common cases that employ different combinations of interactions
between the mesh entities, the DOF, and the distributions are:

Finite difference methods. In this case, the solution is represented by direct
operator discretization: difference stencils are written for all terms in the
PDE. These stencils are written in terms of DOF that are the pointwise
solution values for a compact collection of mesh vertices.

Finite volume methods. Finite volume methods compute the average value
of the solution in a set of control volumes that tesselate the computa-
tional domain; these averages are the DOF. Control volumes are asso-
ciated with mesh entities (vertices, edges, faces, or regions, depending
on the details of the scheme). The distribution functions are piecewise
polynomials with discontinuities at control volume boundaries; the co-
efficients of the polynomials are found using the DOF in neighboring
control volumes.

Finite element methods. Finite element distribution functions, referred to
as shape functions, are written over individual mesh entities, referred
to as elements. The DOF represent values of the solution at particular
points in the mesh entity, refered to as nodes. The shape functions asso-
ciated with neighboring elements can be made Cm, m ≥ 0, continuous
by having common DOF associated with the shared lower-dimensional
mesh entities. In this case, the full set of DOF used by the element dis-
tribution function can be associated with any of the mesh entities in the
closure of the mesh entity of the element.

Applying the discretization operation locally over the appropriate mesh
entities will produce a local contribution to the complete fully discrete sys-
tem. These can be combined to yield a discrete representation of the original
PDEs over the entire domain. The construction of the system contributors
can be controlled by the appropriate traversal of information in the high-
level problem definition (e.g., the geometric domain), or at a level above the
mesh such as the mesh patch level for structured methods.

Note that the solution fields represent the variations of the tensor vari-
ables over the domain of the problem. These fields must be maintained in a
form that is useful for queries and manipulation as needed. These manipula-
tions include the transfer of the fields to other meshes during a multiphysics
analysis step, or to maintain the description of the mesh on an adapted field.
Another common function that fields must support is the construction of
new fields through operations that project the data onto new distributions
with higher order continuity, combine with other fields, etc..

10 Kyle K. Chand et al.

3 The ITAPS Interface Definition efforts

To support the flow of information in mesh-based simulations, a number of
tools and technologies have been developed by different research groups in
academia, industry, and the government labs. For these tools to have max-
imum impact, it is important that they be interoperable, interchangeable,
and easily inserted into existing application simulation codes. Accomplish-
ing this goal will allow easier experimentation with different, but function-
ally similar, technologies to determine which is best suited for a given appli-
cation. In addition, it will provide mechanisms for combining technologies
together to create hybrid solution techniques that use multiple advanced
tools. To accomplish this goal, we have defined an abstract data model that
encompasses a broad spectrum of mesh types and usage scenarios and a set
of common interfaces that are implementation and data structure neutral.
Our goal has been to keep the interfaces small enough to encourage adoption
but also flexible enough to support a broad range of mesh types.

The ITAPS data model partitions the data required by a simulation into
three core data types: the geometric data, the mesh data, and the field data.
Interfaces to the data represented by these abstractions channel the flow
of information throughout the simulation. For example, ITAPS adaptive
mesh refinement services access solution information for error estimation
via the field interface; modify the mesh using the mesh interface; and query
the geometry interface when creating mesh entites on domain boundaries.
These core data types are associated with each other through data relation
managers. The data relation managers control the relationships among two
or more of the core data types, resolve cross references between entities in
different groups, and can provide additional functionality that depends on
multiple core data types. In addition, there are a number of basic function-
alities and concepts that are common to all three of the core data types, for
example, entities, creating sets of entities, and attaching user-defined data
to entities. We discuss these concepts in Section 3.1. Work on the mesh
data model and application programming interface (API) has progressed
the farthest, and we describe it in some detail in Section 3.2. Preliminary
work on the geometry and field data model and interfaces are discussed as
well in Sections 3.3 and 3.4.

A key aspect of the ITAPS approach is that we do not enforce any
particular data structure or implementation with our interfaces, requiring
only that certain questions about the geometry, mesh, or field data can be
answered through calls to the interface. To encourage adoption of the in-
terface, we aim to create a small set of interfaces that existing mesh and
geometry packages can support. The latter point is critical. The DOE, NSF,
DoD and other federal agencies have invested hundreds of person-years in
the development of a wide variety of geometry, mesh generation and mesh
management toolkits. These software packages will not be rewritten from
scratch to conform to a common API, rather the API must be data struc-
ture neutral and allow for a broad range of underlying mesh, geometry, and

Interoperable Components for Simulation Development 11

field representations. However, only a small set of functionalities can be
covered by a ’core’ set of interface functions. To increase the functionality
of the ITAPS interface, we define additional, optional, interfaces for which
we will provide reference implementations based on the core interface meth-
ods. Developers can incrementally adopt the interface by implementing the
optional functions on their own mesh database as needed.

One of the most challenging aspects of this effort remains balancing
performance of the interface with the flexibility needed to support a wide
variety of mesh types. Performance is critical for kernel computations involv-
ing mesh and geometry access. To address this need, we provide a number
of different access patterns including array and iterator-based. The user
may choose the access pattern that is best suited for their application; the
underlying implementation must provide both styles of access even though
only one is likely to be native. Further challenges arise when considering the
support of many different scientific programming languages. This aspect is
addressed through our joint work with the Common Component Architec-
ture Forum [35] to provide language independent interfaces by using their
SIDL/Babel technology [36].

3.1 The ITAPS Basic Interface

The ITAPS data models for mesh, geometry and fields all make use of the
concepts of entities, entity sets, and tags, and we describe these now in some
detail.

ITAPS entities are used to represent atomic pieces of information such
as vertices in a mesh or edges in a geometric model. To allow the interface
to remain data structure neutral, entities (as well as entity sets and tags)
are uniquely represented by opaque handles. Unless entities are added or
removed, these handles must be invariant through different calls to the inter-
face in the lifetime of the ITAPS interface, in the sense that a given entity
will always have the same handle. This is required to ensure consistency
among the several different calls that use and return entity handles and
to allow for easy entity handle comparison. Entities do not have interface
functionality that is separate from mesh, geometry or field interfaces, and
we describe these functionalities in more detail in the sections that follow.

Entity adjacency relationships define how the entities connect to each
other and both first-order and second-order adjacencies are supported for
the mesh and geometry interfaces.

– First-order adjacencies: For an entity of dimension d, first-order adja-
cencies return all of the entities of dimension q, which are either on the
closure of the entity (d > q, downward adjacency), or which it is on the
closure of (d < q, upward adjacency).

– Second-order adjacencies: Many applications require not only informa-
tion about first-order adjacencies, but also about the next level of neigh-
bors. Although such information can always be determined from the

12 Kyle K. Chand et al.

appropriate first-order adjacencies, their application is common enough
that supporting a second-order adjacency function is useful. A second-
order adjacency determines the set of topological entities of a given type
adjacent to entities that share common boundary entities of the speci-
fied type. An example would be the set of regions that share a bounding
edge with the given region.

An ITAPS entity set is an arbitrary collection of ITAPS entities that
have uniquely defined entity handles. Each entity set may be an unordered
set or it may be a (possibly non-unique) ordered list of entities. When an
ITAPS interface is first created in a simulation, a Root Set is created. The
root set can be populated by string name using the load function call. The
action taken by load is implementation specific and can range from reading
mesh data from a file to generating a mesh on the fly from a named CAD
file.

Two primary relationships among entity sets are supported:

– Entity sets may contain one or more entity sets. An entity set contained
in another may be either a subset or an element of that entity set. The
choice between these two interpretations is left to the application; ITAPS
supports both interpretations. If entity set A is contained in entity set
B, a request for the contents of B will include the entities in A and the
entities in sets contained in A if the application requests the contents
recursively. We note that the Root Set cannot be contained in another
entity set.

– Parent/child relationships between entity sets are used to represent re-
lations between sets, much like directed edges connecting nodes in a
graph. This relationship can be used to indicate that two meshes have a
logical relationship to each other, including multigrid and adaptive mesh
sequences. Because we distinguish between parent and child links, this is
a directed graph. Also, the meaning of cyclic parent/child relationships
is dubious, at best, so graphs must be acyclic. No other assumptions are
made about the graph.

Users are able to query entity sets for their entities and entity adjacency
relationships. Both array- and iterator-based access patterns are supported.
In addition, entity sets also have ”set operation” capabilities; in particular,
existing ITAPS entities may be added to or removed from the entity set,
and sets may be subtracted, intersected, or united.

ITAPS tags are used as containers for user-defined opaque data that can
be attached to ITAPS entities and entity sets. Tags can be multi-valued
which implies that a given tag handle can be associated with many differ-
ent entities. In the general case, ITAPS tags do not have a predefined type
and allow the user to attach any opaque data to ITAPS entities. To im-
prove ease of use and performance, we support three specialized tag types:
integers, doubles, and entity handles. Tags have and can return their string
name, size, handle and data. Tag data can be retrieved from ITAPS entities

Interoperable Components for Simulation Development 13

by handle in an agglomerated or individual manner. The ITAPS implemen-
tation is expected to allocate the memory as needed to store the tag data.

3.2 The ITAPS Mesh Interface

ITAPS mesh entities are the fundamental building blocks of the ITAPS
mesh interface and correspond to the individual pieces of the domain de-
composition (mesh). Under the assumption that each topological mesh en-
tity of dimension d, Md

i , is bounded by a set of topological mesh entities
of dimension d− 1,

{

Md
i

{

Md−1
}}

, the full set of mesh topological entities
are:

TM =
{{

M
{

M0
}}

,
{

M
{

M1
}}

,
{

M
{

M2
}}

,
{

M
{

M3
}}}

(3)

where
{

M
{

Md
}}

, d = 0, 1, 2, 3, are respectively the set of vertices, edges,
faces and regions which define the topological entities of the mesh domain.
It is possible to limit the mesh representation to just these entities under
the following restrictions [31].

1. Regions and faces have no interior holes.
2. Each entity of order di in a mesh, Mdi , may use a particular entity of

lower order, Mdj , dj < di, at most once.

3. For any entity Mdi

i there is a unique set of entities of order di − 1,
{

Mdi

i

{

Mdi−1

}

}

that are on the boundary of Mdi

i .

The first restriction means that regions may be directly represented by
the faces that bound them, faces may be represented by the edges that
bound them, and edges may be represented by the vertices that bound them.
The second restriction allows the orientation of an entity to be defined in
terms of its boundary entities. For example, the orientation of an edge, M 1

i

bounded by vertices M0

j and M0

k is uniquely defined as going from M 0

j

to M0

k only if j 6= k. The third restriction means that a mesh entity is
uniquely specified by its bounding entities. Most representations including
that used in this paper employ that requirement. There are representational
schemes where this condition only applies to interior entities; entities on the
boundary of the model may have a non-unique set of boundary entities [31].

Specific examples of mesh entities include, for example, a hexahedron,
tetrahedron, edge, triangle and vertex. Mesh entities are classified by their
entity type (topological dimension) and entity topology (shape). Just as for
geometric entities, allowable mesh entity types are vertex (0D), edge (1D),
face (2D), and region (3D). Allowable entity topologies are point (0D); line
segment (1D); triangle, quadrilateral, and polygon (2D); and tetrahedron,
pyramid, prism, hexahedron, septahedron, and polyhedron (3D); each of
these topologies has a unique entity type associated with it. Mesh entity
geometry and shape information is associated with the individual mesh
entities. For example, the vertices will have coordinates associated with

14 Kyle K. Chand et al.

them. Higher-dimensional mesh entities can also have shape information
associated with them. For example the coordinates of higher-order finite-
element nodes can be associated with mesh edges, faces, and regions.

Higher-dimensional entities are defined by lower-dimensional entities
with shape and orientation defined using canonical ordering relationships.
To determine which adjacencies are supported by an underlying implemen-
tation, an adjacency table is defined which can be returned by a query
through the interface. The implementation can report that adjacency in-
formation is always, sometimes, or never available; and to be available at
a cost that is constant, logarithmic (i.e., tree search), or linear (i.e., search
over all entities) in the size of the mesh. The use of a table allows the imple-
mentation to provide separate information for each upward and downward
adjacency request. If adjacency information exists, entities must be able
to return information in the canonical ordering using both individual and
agglomerated request mechanisms.

ITAPS mesh entity sets are extensively used to collect mesh entities to-
gether in meaningful ways, for example, to represent the set of all faces
classified on a geometric face, or the set of regions in a domain decomposi-
tion for parallel computing. For some computational applications, it is useful
for entity sets to comprise a valid computational mesh. The simplest exam-
ple of this is a nonoverlapping, connected set of ITAPS region entities, for
example, the structured and unstructured meshes commonly used in finite
element simulations. Collections of entity sets can compose, for example,
overlapping and multiblock meshes. In both of these examples, supplemen-
tal information on the interactions of the mesh sets will be defined and
maintained by the application. We note that in other cases, for example,
smooth particle hydrodynamic (SPH) applications, molecular dynamics, or
mesh-free methods, one can use meshes that consist of a collection of ITAPS
vertices with no connectivity or adjacency information.

The mesh interface, including the use of mesh entity sets, is extendable
to include “modification operators” that change the geometry and topology.
Capabilities include changing vertex coordinates and adding or deleting en-
tities. No validity checks are provided with this basic interface so that care
must be taken when using these interfaces. These interfaces are intended
to support higher-level functionality such as mesh quality improvement,
adaptive schemes, front tracking proceedures, and basic mesh generation
capabilities, all of which would provide validity checking. Modifiable meshes
require interactions with the underlying geometric model including classi-
fying entities.

Several implementations of the ITAPS mesh interface are well underway
and are supported by mesh management toolkits such as FMDB (RPI) [37],
MOAB (SNL) [38], NWGrid (PNNL) [39], and GRUMMP (University of
British Columbia) [40]. In addition to the development of underlying im-
plementations, the ITAPS mesh interface has also been used in a variety
of contexts as well. In particular, it serves as the interface to the Mesquite
mesh quality improvement and Frontier front tracking tools (see Section 4).

Interoperable Components for Simulation Development 15

3.3 The ITAPS Geometry Interface

The goal of the geometry interface is to provide access to the entities defin-
ing the geometric domain, the ability to determine required geometric shape
information associated with those entities and, possibly, the ability to mod-
ify the geometric domain. The geometry interface must account for the fact
that the software modules that provide geometry information are typically
independent of mesh generators and PDE solvers.

Three types of geometric models will be supported using the ITAPS
inteface. These include:

– Commercial modelers (e.g., Parasolid, ACIS, Granite).
– Geometric modelers that operate from a utility that reads and operates

on models that have been written to standard files like IGES and STEP
(e.g., an ACIS model read into Parasolid via a STEP file).

– Geometric models constructed from an input mesh.

The first two geometric modeler types have no difficulty up-loading the
model topology and linking to the shape information. In the first case, the
modeler already has it, and in the second case, the model structure is defined
within the standard file. In the last case, the input is a mesh and algorithms
must be applied to define the geometric model topological entities in terms
of the sets of appropriate mesh entities. Such algorithms are not unique
and depend on both the level of information available with the mesh and
knowledge of the analysis process. The mesh interface can be used to load a
mesh, and algorithms such as those found in [41–43] can be used to construct
the topological entities of the corresponding geometric model. The shape of
the geometric model topological entities can be defined directly by the mesh
geometry of the entities classified on it, or that information can be enhanced
[44,43].

A large fraction of the geometry needs in mesh-based simulations can
be satisfied through interfaces keyed by the topological entities found in
boundary representations: regions, faces, edges and vertices. A few situa-
tions, particularly those dealing with evolving geometry, will have need for
the additional topological constructs of loops and shells. Moreover, some in-
terface functions will handle only topological entities and their adjacencies,
whereas others will also provide the geometric shape information associated
with the topological entities, provide control information, etc.

It should be possible to employ the most effective means possible to
determine any geometric parameters that have to be calculated. The pri-
mary complexity that arises is that not all geometric model forms support
the same methods and using the least common denominator can introduce
a large computation penalty over alternatives that are supported in most
cases. The primary example of this is the use of parametric coordinates
for model faces and edges. The vast majority of the CAD systems employ
parametric coordinates and algorithms such as snapping a vertex to a model
face. Using parametric values can be two orders of magnitude faster than

16 Kyle K. Chand et al.

using the alternative of closest point to a point in space. Therefore, it is
critical that the geometry interface functions support the use of parametric
values while having the ability to deal with those cases when they are not
available. This can be done by having functions for when one does and does
not have a parameterization.

The geometric interface functions are grouped by the level of geometric
model information needed to support them and the type of information they
provide [45]. The base level includes:

– Model loading which must load the model and initiate any supporting
processes. Although the functions are the same for all sources of geo-
metric models, the implementation of them is a strong function of the
model source. If the source is a CAD API (e.g., ACIS or Parasolid API),
the appropriate API must be initiated and functions mapping to the
geometry interface functions defined. If it is a standard file structure
(e.g., STEP or IGES), the model must be loaded into an appropriate
geometric modeling functionality. If the source is a mesh model, it must
be loaded, processed and linkage to the mesh geometry constructed.

– Topological queries based on the primary topological entities of regions,
faces, edges, and vertices. The functions in this group include determin-
ing topological adjacencies and entity iterators.

– Pointwise interrogations which request geometric shape information with
respect to a point in a single global coordinate system. Typical functions
include returning the closest point on a model entity, getting coordinates,
normals, tangents and curvatures, and requesting bounding boxes of
entities.

– Entity level tags for associating user-defined information with entities.

Other groups of functions increase the functionality and/or the efficiency
of the interface. Some of these are commonly used while others are not.
Functions of this type that have been defined for the geometry interface
include:

– Geometric sense information that indicates how face normals and edge
tangents are oriented.

– Support of parametric coordinates systems for edges and faces. The func-
tions in this group include conversion between global and parametric
coordinates, conversion between parametric coordinates of points on the
closure of multiple entities, and the full set of pointwise geometric inter-
rogations for a point given its classification and parametric coordinates.

– Support of geometric model tolerance information. These functions pro-
vide access to the geometric modeling tolerances used by the modeling
system in the determination of how closely adjacent entities must be
matched. This information is used to ensure that consistent decisions
are made by mesh-based operations using geometric shape information.

Additional functions of value to specific mesh-based applications that
have not yet been defined include:

Interoperable Components for Simulation Development 17

– Support of more complete topological models including shells and loops
as well as complete non-manifold interactions,

– Model topology and shape modification functions, and
– Entity geometric shape information that defines the complete shape of

model entities.

Functional geometry interfaces for mesh-based applications have been
under development and have been in use for a number of years for automatic
mesh generators [46,34]. They have also been used in the support of specific
finite element applications such as determining exact Jacobian information
to support p-version element stiffness matrix evaluation [5]. The current
interoperable geometry interface is being defined and implemented building
on these previous efforts.

3.4 The ITAPS Fields Interface

Simulation fields represent tensor quantities defined in terms of numerical
analysis discretizations in a form useful to support queries and operations by
other functions or simulations. Common examples where fields are used are
(i) multiphysics analysis where the solution fields from each physics analy-
sis represents a forcing function or boundary condition for another, (ii) the
construction of external adaptive control loops where the solution fields are
used by error estimation procedures to obtain estimates of the discretiza-
tion errors and to construct new mesh size field, and (iii) visualization and
analysis/postprocessing.

Tensor quantities used in the quantification of problems of mathemat-
ical physics are of order zero or greater and are defined over a physical
space or space/time domain. Knowledge of the order of a tensor and the
dimension of the spatial domain over which it is defined, gives the number
of components needed to uniquely define the tensor [47]. The symmetries,
for tensors of order 2 or greater, define those components that are identical
to, or the negative of (antisymmetric), other components. The components
of the tensor are, in general, functions of the domain parameters as well as
other problem parameters. The ability to understand and use a tensor at
any particular instant requires knowledge of the coordinate system in which
the components of the tensor are referred.

The qualification of a tensor over a domain is called a field. The field
inherits the tensor order and spatial domain dimension from the tensor
along with any symmetries and constraints. The field discretizes the tensor
component values over the domain with distributions and degrees of freedom
(DOFs). The distributions are defined over the mesh entities (and temporal
discretization entities as needed) and give the variation of the components
of the field. Thus, they must have the same functional domain that the
components of the tensor have. The DOFs multiply the distributions and
set the magnitude of the variation of the individual distributions.

18 Kyle K. Chand et al.

A complex simulation process can involve a number of fields defined over
various portions of the domain of the simulation. A single field can be used
by a number of different analysis routines that interact, and the field may be
associated with multiple meshes and have a different relationship with each
one. In addition, different distributions can be used by a field to discretize its
associated tensor. The ability to have a specific tensor defined over multiple
meshes and/or discretized in terms of multiple distributions is handled by
supporting multiple instances. A field instance has a single set of distribu-
tions over a given mesh. These distributions are defined over mesh entities
which are of same dimension as the tensor it is discretizing. A field instance
can exist in an evaluated form where the DOF have been determined, or in
an unevaluated form where the DOF are not yet determined.

ITAPS is currently defining interoperable field functions to:

– construct/load/save a field over a mesh,
– interrogate the field at specific points and over mesh entities,
– transform a field from one coordinate system to another,
– project a field to a different set of basis functions (e.g., projecting a

discontinuous stress field onto a set of continuous shape functions), and
– transfer fields between different meshes including the use of different

distributions.

4 ITAPS interface use cases

The ITAPS data model and interfaces have been defined and implementa-
tions are underway at many different institutions. In particular, the mesh
interface is the most mature and in this section we give several examples
of its use in adaptive loop construction for two different applications and
in mesh quality improvement tools. The appendix provides code for two
elementary examples illustrating some simple uses of the mesh interface.

4.1 Adaptive Loop Construction

Although mesh-based PDE codes are capable of providing results to the re-
quired levels of accuracy, the vast majority lack the ability to automatically
control the mesh discretization errors through the application of adaptive
methods [48–50], thus leaving it to the user to attempt to define an appro-
priate mesh.

One approach to support the application of adaptive analysis is to alter
the analysis code to include the error estimation and mesh adaptation meth-
ods needed. The advantage of this approach is that the resulting code can
minimize the total computation and data manipulation time required. The
disadvantage is the amount of code modification and development required
to support mesh adaptation is extensive since it requires extending the data
structures and all the procedures that interact with them. The expense and

Interoperable Components for Simulation Development 19

time required to do this for existing fixed mesh codes is large and, in most
cases, considered prohibitive.

The alternative approach is to leave the fixed mesh analysis code unal-
tered and to use the interoperable mesh, geometry and field components to
control the flow of information between the analysis code and a set of other
needed components. This approach has been used to develop multiple adap-
tive analysis capabilities in which the mesh, geometry and field components
are used as follows.

– The geometry interface supports the integration with multiple CAD sys-
tems. The API of the modeler enables interactions with mesh genera-
tion and mesh modification to obtain all domain geometry information
needed [46].

– The mesh interface provides the services for storing and modifying mesh
data during the adaptive process. The Algorithm-Oriented Mesh Database
[37] was used for the examples given here.

– The field interface [5] provides the functions to obtain the solution in-
formation needed for error estimation and to support the transfer of
solution fields as the mesh is adapted.

One approach to support mesh adaptation is to use error estimators to
define a new mesh size field that is provided to an automatic mesh gener-
ator that creates an entirely new mesh of the domain. Although a popular
approach, it has two disadvantages. The first is the computational cost of an
entire mesh generation each time the mesh is adapted. The second is that in
the case of transient and/or non-linear problems, it requires global solution
field transfer between the old and new meshes. Such solution transfer is
not only computationally expensive, it can introduce additional error into
the solution which can dictate the ability of the procedure to effectively
obtain the level of solution accuracy desired. An alternative approach to
mesh adaptation is to apply local mesh modifications [51] that can range
from standard templates, to combinations of mesh modifications, to local-
ized remeshing. Such procedures have been developed that ensure the mesh’s
approximation to the geometry is maintained as the mesh is modified [52].
This is the approach used to adapt the mesh in the examples presented
here.

4.1.1 Adaptive Loop for Accelerator Design The Stanford Linear Acceler-
ator Center’s (SLAC) eigenmode solver, Omega3P, is used to design of next
generation linear accelerators. ITAPS researchers have collaborated with
SLAC scientists to augment this code with adaptive mesh control [53] to
improve the accuracy and convergence of wall loss (or quality factor) cal-
culations in accelerator cavities. The simulation procedure consists of inter-
facing Omega3P to solid models, automatic mesh generation, general mesh
modification, and error estimator components to form an adaptive loop.
The accelerator geometries are defined as ACIS solid models [54]. Using
functional interfaces between the geometric model and meshing techniques,

20 Kyle K. Chand et al.

the automatic mesh generator MeshSim [55] creates the initial mesh. After
Omega3P calculates the solution fields, the error indicator determines a new
mesh size field, and the mesh modification procedures [51] adapt the mesh.

The adaptive procedure has been applied to a Trispal 4-petal accel-
erator cavity. Figure 5 shows the mesh and wall loss distribution on the
cavity surface for initial, first and final adaptive meshes. The procedure has
been shown to reliably produce results of the desired accuracy for approx-
imately one-third the number of unknowns as produced by the previous
user-controlled procedure [53].

4.1.2 Metal Forming Simulation In 3D metal forming simulations, the
workpiece undergoes large plastic deformations that result in major changes
in the domain geometry. The meshes of the deforming parts typically need
to be frequently modified to continue the analysis due to large element dis-
tortions, mesh discretization errors and/or geometric approximation errors.
In these cases, it is necessary to replace the deformed mesh with an im-
proved mesh that is consistent with the current geometry. Procedures to
determine a new mesh size field considering each of these factors have been
developed and used in conjunction with local mesh modification [43]. The
procedure includes functions to transfer history dependent field variables as
each mesh modification is performed [43].

Figure 6 shows the set-up, initial mesh and final adapted meshes for a
steering link manufacturing problem solved using the DEFORM-3D analysis
engine [56] within a mesh modification-based adaptive loop. A total stroke
of 41.7mm is taken in the simulation. The initial workpiece mesh consists
28,885 elements. The simulation is completed with 20 mesh modification
steps producing a final mesh with 102,249 elements.

4.2 Mesh Quality Improvement

Mesh quality improvement techniques can be applied based on a priori geo-
metric quality metrics or a posteriori solution-based metrics improvements.
Low-level mesh improvement operations include vertex relocation, topology
modification, vertex insertion, and vertex deletion.

The ITAPS center is supporting the development of a stand-alone mesh
quality improvement toolkit, called Mesquite [57]. Mesquite currently pro-
vides state-of-the-art algorithms for vertex relocation and is flexible enough
to work on a wide array of mesh types ranging from structured meshes to
unstructured and hybrid meshes and a number of different two-and three-
dimensional element types.

Vertex relocation schemes must operate on the surface of the geometric
domain as well as in the interior of the domain to fully optimize the mesh.
As such, the software must have functional access to both the high level
description of the geometric domain and to individual mesh entities such
as element vertices. In particular, to operate on interior vertices, Mesquite

Interoperable Components for Simulation Development 21

queries an ITAPS implementation for vertex coordinate information, adja-
cency information, and the number of elements of a given type or topology.
After determining the optimal location for a vertex, Mesquite requests that
the ITAPS implementation update vertex coordinate information. To oper-
ate on the surface mesh, Mesquite must also use ITAPS geometric queries to
determine the surface normal and the closest point on the surface. Explicit
classification of the mesh vertex against a geometric surface is required, as
there are some cases for which the closest point query will return a point
on the wrong surface, resulting in inverted or invalid meshes.

The ITAPS center is also supporting the development of a simplicial
mesh topology modification tool, which performs face and edge swapping
operations.[58] This tool has been implemented using the ITAPS mesh inter-
face, enabling swapping in any ITAPS implementation supporting triangles
(2D) or tetrahedra (3D).

In gathering enough information to determine whether a swap is de-
sirable, any mesh topology modification scheme must make extensive use
of the ITAPS entity adjacency and vertex coordinate retrieval functions.
Reconfiguring the mesh, when this is appropriate, requires deletion of old
entities and creation of new entities through the ITAPS interface. In addi-
tion, classification operators are again essential. For instance, reconfiguring
tetrahedra that are classified on different geometric regions results in tetra-
hedra that are not classified on either region, so this case must be avoided.
Likewise, classification checks make it easy to identify and disallow mesh
reconfigurations that would remove a mesh edge classified on a geometric
edge.

In addition to basic geometry, topology and classification information,
a ITAPS implementation must provide additional information for mesh im-
provement schemes to operate effectively and efficiently. For example, even
for simple mesh improvement schemes, the implementation must be able
to indicate which entities may be modified and which may not. For mesh
improvement schemes to operate on an entire mesh rather than simply ac-
cepting requests entity by entity, an ITAPS implementation must support
some form of iterator. Furthermore, advanced schemes may allow the user
to input a desired size, orientation, degree of anisotropy, or even an initial
reference mesh; exploiting such features will require the implementation to
associate many different types of information with mesh entities and pass
that information to the mesh improvement scheme when requested.

5 Concluding Remarks

A simulation’s information flow provides a conceptual framework for de-
signing interoperable tools for geometry management, mesh generation and
discretization. Using this framework, the Interoperable Tools for Advanced
Petascale Simulation center has developed a set of language independent
interfaces to geometry, mesh, and solution field information. Several groups

22 Kyle K. Chand et al.

have successfully implemented the ITAPS mesh interface with a diverse
range of technologies ranging from structured composite grids to fully un-
structured infrastructures. These implementations have provided mesh ser-
vices for ITAPS-based interoperable components providing technologies such
as mesh adaptation, design optimization and mesh improvement. In prin-
ciple, any implementation of the the ITAPS mesh interface now has access
to these advanced technologies without requiring new source code develop-
ment.

While the utility of these interfaces has been demonstrated in a number
of applications, the current work remains a proof of principle. Advancing
the interface definition to a reliable standard requires further investigation
and demonstration. For example, the nascent solution field and operator
interfaces have yet to be completed and implemented. In addition, more
implementations of the interfaces need to be created and exercised to make
extensive interoperability and interchangeability a possibility. Furthermore,
the performance ramifications of using these interfaces must be carefully
examined in order to assure that applications built upon this infrastruc-
ture are not plagued by low performance. Collaborations with the Common
Component Architecture group [35] will lead to the development of higher
level components that advanced services to simulation code developers.

More information on the ITAPS center can be found at http://www.itaps-
scidac.org/.

Acknowledgements We would like to thank Tamara Dahlgren of LLNL for her
insightful comments on the ITAPS interface design.

This work was performed under the auspices of the U.S. Department of Energy
by the University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48 (UCRL-JRNL-213577); the Canadian Natural Sci-
ences and Engineering Research Council under Special Research Opportunities
Grant SRO-299160; and by Rensselaer Polytechnic Institute under DOE grant
number DE-FC02-01ER25460.

References

1. Abaqus webpage. http://www.abaqus.com/, 2005.
2. ANSYS webpage. http://www.ansys.com, 2005.
3. Fluent webpage. http://www.fluent.com, 2005.
4. Kiva webpage. http://www.lanl.gov/orgs/t/t3/codes/kiva.shtml, 2003.
5. M.W. Beall and M.S. Shephard. An object-oriented framework for reliable

numerical simulations. Engineering with Computers, 15(1):61–72, 1999.
6. D. L. Brown, W. D. Henshaw, and D. J. Quinlan. Overture: Object-oriented

tools for overset grid applications. Technical report, Lawrence Livermore
National Laboratory, 1999. UCRL-JC-134018.

7. S.A. Brown. PACT user’s guide. Lawrence Livermore National Laboratory,
1993. UCRL-MA-112087.

8. AR Bruaset and HP Langtangen. A comprehensive set of tools for solving par-
tial differential equations; DIFFPACK. In Numerical Methods and Software

Interoperable Components for Simulation Development 23

Tools in Industrial Mathematics, pages 61–90. Brinkhauser Boston, Boston,
MA, 1997.

9. PRB Devloo. PZ: an object oriented environment for scientific programming.
Comp. Meth. Appl. Mech. Engng., 150((1-4)):133–153, 1997.

10. P Donescu and TA Laursen. A generalized object oriented approach to solv-
ing ordinary and partial differential equations using finite elements. Finite
Elements in Analysis and Design, 22:93–107, 1996.

11. J.R. Steward and H.C. Edwards. A framework approach for developing par-
allel adaptive multiphysics applications. Finite Elements in Analysis and
Design, 40(12):1599–1617, 2004.

12. U Ascher and L. Petzold. Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

13. S. Balay, K. Buschelman, D. Gropp, W.D. Kaushik, M. Knepley, B.F.
McInnes, L.C. Smith, and H. Zhang. PETSc home page. http://www.mcs.

anl.gov/petsc, 2004.

14. S. Balay, W.D. Gropp, L.C. McInnes, and B.F. Smith. Efficient management
of parallelism in object-oriented numerical software libraries. In A.M. Bruaset
E. Arge and H.P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhauser Press, 1997.

15. Eispack webpage. http://www.netlib.org/eispack/, 2004.

16. Lapack webpage. http://www.netlib.org/lapack/, 2004.

17. Linpack webpage. http://www.netlib.org/linpack/, 2004.

18. K. Keahey, P. Beckman, and J. Ahrens. Ligature: Component architec-
ture for high performance applications. Intl. J. High-Perf. Computing Appl.,
14(4):347–356, Winter 2000.

19. J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L. Janssen, L. C. McInnes,
M. Krishnan, J. Nieplocha, E. Jurrus, C. Fahlstrom, and T. L. Windus.
Component-based integration of chemistry and optimization software. J. of
Computational Chemistry, 25(14):1717–1725, 2004.

20. J. W. Larson, B. Norris, E. T. Ong, D. E. Bernholdt, J. B. Drake, W. R.
Elwasif, M. W. Ham, C. E. Rasmussen, G. Kumfert, D. S. Katz, S. Zhou,
C. DeLuca, and N. S. Collins. Components, the Common Component Ar-
chitecture, and the climate/weather/ocean community. In 84th American
Meteorological Society Annual Meeting, Seattle, Washington, 11–15 January
2004. American Meteorological Society.

21. S. Lefantzi and J. Ray. A component-based scientific toolkit for reacting
flows. In Proceedings of the Second MIT Conference on Computational Fluid
and Solid Mechanics, June 17-20, 2003, Cambridge, MA, volume 2, pages
1401–1405. Elsevier, 2003.

22. S. Lefantzi, J. Ray, and H. N. Najm. Using the Common Component Architec-
ture to design high performance scientific simulation codes. In Proceedings of
the 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), 22-26 April 2003, Nice, France. IEEE Computer Society, 2003.

23. B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland, L. McInnes, and
B. Smith. Parallel components for PDEs and optimization: Some issues and
experiences. Parallel Computing, 28(12):1811–1831, 2002.

24. S. G. Parker. A component-based architecture for parallel multi-physics PDE
simulation. In Proceedings of the International Conference on Computational
Science-Part III, pages 719–734. Springer-Verlag, 2002.

24 Kyle K. Chand et al.

25. S. Zhou, A. da Silva, B. Womack, and G. Higgins. Prototyping the ESMF
using DOE’s CCA. In NASA Earth Science Technology Conference 2003,
College Park, MD, 24–26 June 2003.

26. B. A. Allan, S. Lefantzi, and J. Ray. ODEPACK++: Refactoring the LSODE
Fortran library for use in the CCA high performance component software ar-
chitecture. In Proceedings of the 9th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS 2004),
Santa Fe, NM, April 2004. IEEE Press.

27. K. Smith, J. Ray, and B. A. Allan. CVODE component user guidelines.
Technical Report SAND2003-8276, Sandia National Laboratory, May 2003.

28. D. Bernholdt, B. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. Dahlgren,
K. Damevski, W. Elwasif, T. Epperly, M. Govindaraju, D. Katz, J. Kohl,
M. Krishnan, G. Kumfert, J. Larson, S. Lefantzi, M. Lewis, A. Malony,
L. McInnes, J. Nieplocha, B. Norris, S. Parker, J. Ray, S. Shende, T. Win-
dus, and S. Zhou. A component architecture for high-performance scientific
computing. In to appear in the International Journal of High Performance
Computing Applications, ACTS Collection Special Issue, 2005.

29. Michael E. Mortenson. Geometric Modeling. John Wiley and Sons, Inc.,
second edition, 1997.

30. X. Luo, M.S. Shephard, J.-F. Remacle, R.M. O’Bara, M.W. Beall, B.A. Sz-
abo, and R. Actis. p-version mesh generation issues. In Proceedings of the
11th International Meshing Roundtable, pages 343–354. Sandia National Lab-
oratories, 2002.

31. M.W. Beall and M.S. Shephard. A general topology-based mesh data struc-
ture. International Journal of Numerical Methods in Engineering, 40(9):1573–
1596, 1997.

32. S. Dey, R.M. O’Bara, and M.S. Shephard. Curvilinear mesh generation in 3d.
Computer-Aided Design, 33:199–209, 2001.

33. T.J. Tautges. The common geometry module (CGM): A generic, extensible ge-
ometry interface. In Proceedings of the 9th International Meshing Roundtable,
Sandia report SAND 2000-2207, pages 337–359. Sandia National Laborato-
ries, 2000.

34. M.S. Shephard and M.K. Georges. Reliability of automatic 3-D mesh gener-
ation. Comp. Meth. Appl. Mech. and Engng., 101:443–462, 1992.

35. CCA Forum homepage. http://www.cca-forum.org/, 2004.
36. T. Dahlgren, T. Epperly, and G. Kumfert. Babel User’s Guide. CASC,

Lawrence Livermore National Laboratory, version 0.9.0 edition, January 2004.
37. J.-F. Remacle and M.S. Shephard. An algorithm oriented mesh database. In-

ternational Journal for Numerical Methods in Engineering, 58:349–374, 2003.
38. T. J. Tautges. MOAB: A Mesh-Oriented datABase. http://cubit.sandia.

gov/MOAB, 2004.
39. Harold Trease and Lynn Trease. NorthWest Grid Generation Code. http:

//www.emsl.pnl.gov/nwgrid/index_nwgrid.html, 2004.
40. Carl F. Ollivier-Gooch. GRUMMP — Generation and Refinement of Un-

structured, Mixed-element Meshes in Parallel. http://tetra.mech.ubc.ca/

GRUMMP, 1998–2005.
41. P. Krysl and M. Ortiz. Extraction of boundary representation from surface

triangulations. International Journal of Numerical Methods in Engineering,
50:1737–1758, 2001.

42. A. Pandofi and M. Ortiz. An efficient procedure for fragmentation simulations.
Engineering With Computers, 18(2):148–159, 2002.

Interoperable Components for Simulation Development 25

43. J. Wan, S. Kocak, and M.S. Shephard. Automated adaptive 3D forming
simulation process. Engineering with Computers, 21(1):47–75, 2004.

44. F. Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: a new paradigm for
thin shell finite-element analysis. International Journal of Numerical Methods
in Engineering, 47:2039–2072, 2000.

45. The TSTT Software Webpage. http://www.tstt-scidac.org/software/

software.html, 2005.

46. M.W. Beall, J. Walsh, and M.S. Shephard. Accessing CAD geometry for mesh
generation. Engineering with Computers, 20(3):210–221, 2004.

47. I. Beju, E. Soos, and Teodorescu. Euclidean Tensor Calculus with Applica-
tions. Abacus Press, 1983.

48. M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite Ele-
ment Analysis. Wiley-Interscience, John Wiley and Sons, 2000.

49. I. Babuska and Strouboulis T. The Reliability of the FE Method. Oxford
Press, 2001.

50. W. Bangerth and R. Rannacher. Adaptive finite element methods for differ-
ential equations. In Lectures in Mathematics VIII, volume 207. Birkhauser,
2003.

51. X. Li, M.S. Shephard, and M.W. Beall. 3D anisotropic mesh adaptation by
mesh modifications. Comp. Meth. Appl. Mech. Engng., 194(48–49):4915–4950,
2005.

52. X. Li, M.S. Shephard, and M.W. Beall. Accounting for curved domains in
mesh adaptation. International Journal for Numerical Methods in Engineer-
ing, 58:246–276, 2003.

53. L. Ge, L Lee, L. Zenghai, C. Ng, K. Ko, Y Luo, and M.S. Shephard. Adaptive
mesh refinement for high accuracy wall loss determination in accelerating
cavity design. In IEEE Conference on Electromagnetic Field Computations,
June 2004.

54. Spatial Inc. http://www.spatial.com/components/acis/, 2004.

55. Simmetrix Inc. Simulation modeling suite. http://www.simmetrix.com/,
2004.

56. Fluhrer J. DEFORM-3D Version 5.0 User’s Manual. Scientific Forming
Technologies Corporation, 2004.

57. Michael Brewer, Lori Freitag Diachin, Patrick Knupp, Thomas Leurent, and
Darryl Melander. The Mesquite mesh quality improvement toolkit. In 12th
International Meshing Roundtable, pages 239–250. Sandia National Labora-
tories, 2003.

58. Carl F. Ollivier-Gooch. A mesh-database-independent edge- and face-
swapping tool. AIAA Paper 2006-0533. Presented at the 44th AIAA
Aerospace Sciences Meeting, January 2006.

59. Babel website. http://www.llnl.gov/CASC/components/babel.html, 2004.
Lawrence Livermore National Laboratory.

A Elementary Examples of ITAPS Mesh Interface Usage

This appendix presents very simple examples illustrating usage of the ITAPS
mesh interface. These examples are meant to be illustrative rather than ex-
haustive; much of the functionality of the mesh interface is not showcased

26 Kyle K. Chand et al.

here. The examples are written as stand-alone programs that can be com-
piled and run with any ITAPS-compliant mesh database.

We note that the interface examples described here were developed dur-
ing the first round of SciDAC funding under the predecessor of the ITAPS
center, the Terascale Simulation Tools and Technologies (TSTT) center.
With the advent of the SciDAC-2 program, the center was renamed to
ITAPS, but the team, philosophy and interface definition efforts remain
largely the same. In the examples given here, each interface is in the ITAPS
namespace to avoid potential function definition collisions. The “base” func-
tionality described in Section 3.1, which includes tags, sets, and error han-
dling is in the iBase interface; the mesh functionality described in Section
3.2 is in the iMesh interface.

Full SIDL descriptions of the interfaces are available at http://www.itaps-
scidac.org/ under the Software link. For those interested in providing feed-
back on the interface definitions or participating in the interface definition
activity, please contact the ITAPS management team at itaps-mgmt@lists.llnl.gov.

A.1 Language Interoperability

The ITAPS interface is designed to be not only data-structure neutral, but
also programming language neutral. That is, a mesh server can be written in
one language and client code in another. The ITAPS interface is specified us-
ing an interface description language (SIDL), and translated into language-
specific interfaces through a tool called Babel.[36,59] Babel also generates
glue code that mediates all inter-language issues, including function name
mangling and passage of string and array arguments. As an example of how
this works in practice, consider the case of a request for mesh adjacency
information. An application code using the ITAPS interface makes an ad-
jacency request by calling a stub function (auto-generated by Babel) in the
language of the application. This function re-packages function arguments
and calls an internal object representation function (auto-generated by Ba-
bel, in C), which again repackages arguments and calls a skeleton function
(auto-generated by Babel) in the language of the server. This function, fi-
nally, calls the server implementation of the original SIDL function. This
approach eliminates all language-specific issues, including name mangling
schemes and the treatment of strings and arrays, including dynamic array
handling. In exchange, four versions of each SIDL function exist (three of
which are auto-generated), and a call from client code must pass through
all these layers. Not surprisingly, this complexity in call sequences can have
a significant impact on application efficiency.

As an example of the function signatures that Babel creates in various
languages, let us examine the mesh interface function for retrieving the
entities adjacent to a single entity. The SIDL declaration for this function
is

package iMesh{

Interoperable Components for Simulation Development 27

...

void getEntAdj(in opaque entity_handle,

in EntityType entity_type_requested,

inout array<opaque> adj_entity_handles,

out int adj_entity_handles_size) throws iBase.Error;

}

Clients call this function in different ways depending on the language in
which the client is written. The C++ binding most nearly duplicates the
SIDL function declaration;

void iMesh::getEntAdj(void* entity_handle,

::iMesh::EntityType entity_type_requested,

::sidl::array<void*>& adj_entity_handles,

int32_t& adj_entity_handles_size)

throw (::iBase::Error);

In the C binding, the function name has been decorated to prevent nam-
ing clashes between SIDL interfaces, and two arguments have been added.
One of these (self) is a handle for the iMesh data and the other (ex) is
used to return exceptions.

void iMesh_Entity_getEntAdj(iMesh_Entity self,

void* entity_handle,

enum iMesh_EntityType__enum entity_type_requested,

struct sidl_opaque__array** adj_entity_handles,

int32_t* adj_entity_handles_size,

sidl_BaseInterface *_ex);

In Fortran77, all arguments are passed by address, and SIDL uses 64-bit
integers when passing handles. Like the C binding, arguments have been
added for the iMesh data and exception return.

subroutine iMesh_Entity_getEntAdj_f(self, entity_handle,

& entity_type_requested, adj_entity_handles,

& adj_entity_handles_size, exception)

integer*8 self, entity_handle

integer*4 entity_type_requested

integer*8 adj_entity_handles

integer*4 adj_entity_handles_size

integer*8 exception

Finally, the Fortran90 API is organized into modules and takes advan-
tage of user-defined types, in a manner quite similar to the C API.

recursive subroutine getEntAdj_s(self, entity_handle, entity_type_requested, &

adj_entity_handles, adj_entity_handles_size, exception)

implicit none

type(iMesh_Entity_t) , intent(in) :: self

integer (selected_int_kind(18)) , intent(in) :: entity_handle

28 Kyle K. Chand et al.

integer (selected_int_kind(9)) , intent(in) :: entity_type_requested

type(sidl_opaque_1d) , intent(inout) :: adj_entity_handles

integer (selected_int_kind(9)) , intent(out) :: adj_entity_handles_size

type(sidl_BaseInterface_t) , intent(out) :: exception

A.2 Mesh Adjacency Example

This example shows two ways in which entity adjacencies can be retrieved
using the ITAPS iMesh interface. This example is written in C++; because
the ITAPS team uses Babel for interlanguage calls, the underlying imple-
mentation could be in any Babel-supported language.

In line 9, a new mesh instance is created, using a factory. This factory is
implementation-specific, but its interface is not, freeing an application from
any compile-time dependence on a single implementation. The ITAPS im-
plementation is supplied at link time or, with dynamically-loaded libraries,
at run time. In lines 10–12, mesh data is read from a file into the root set
of the mesh.

Lines 14–28 iterate through all the three-dimensional entities (regions) of
the mesh, counting their total number of vertices. The iteration is controlled
by an entity-by-entity iterator, initialized in line 17. Note that this iterator
is not defined as part of the iMesh::Mesh base interface but in a more
specialized interface, iMesh::Entity; line 15 casts the Mesh object to Entity.1

In line 19, the iterator provides both a boolean value indicating whether
more data is available and the handle of the next available entity if there is
one. This syntax is admittedly somewhat awkward, but if a mesh is modified,
it is impossible in general to be certain whether there will be another entity
until one tries to retrieve the next one. Line 24 is the heart of the adjacency
retrieval loop, returning an array of all vertices adjacent to the current
region in the iteration.

Lines 30–41 illustrate block retrieval of entity adjacency information.
Line 32 first retrieves all regions in the mesh. Then, in line 39, all vertices
adjacent to the entities whose handles are in ents (i.e., all regions) are
returned; the contents of offsets identifies, for each ent, where its list of
vertices begins in allverts.

Finally, lines 42–44 report whether the total numbers of adjacent vertices
retrieved by these alternate approaches are consistent.

A.3 Set and Tag Example

This example shows simple retrieval of entity sets and identification of tags
attached to those sets. Again, the underlying ITAPS implementation could
be in any Babel-supported language.

1 While C++ could handle the relationships among interfaces using inheritance,
not all languages can, so Babel does not use this idiom in C++ either.

Interoperable Components for Simulation Development 29

Algorithm 1 Example of adjacency retrieval using the ITAPS mesh inter-
face.
1 #include <iostream>

2 #include "iMesh.hh"

3

4 typedef void* EntityHandle;

5 typedef void* EntitySetHandle;

6 typedef void* IteratorHandle;

7 int main(int argc, char *argv[])

8 {

9 iMesh::Mesh mesh = iMesh::Factory::newMesh("");

10 std::string filename = argv[1];

11 EntitySetHandle rootSet = mesh.getRootSet();

12 mesh.load(rootSet, filename);

13

14 int vert_uses = 0; // Iterate to access adjacencies

15 iMesh::Entity mesh_ent = mesh;

16 IteratorHandle iter;

17 mesh_ent.initEntIter(rootSet, iMesh::EntityType_REGION,

18 iMesh::EntityTopology_ALL_TOPOLOGIES, iter);

19 EntityHandle ent;

20 bool moreData = mesh_ent.getNextEntIter(iter, ent);

21 while (moreData) {

22 sidl::array<EntityHandle> verts;

23 int verts_size;

24 mesh_ent.getEntAdj(ent, iMesh::EntityType_VERTEX,

25 verts, verts_size);

26 vert_uses += verts_size;

27 moreData = mesh_ent.getNextEntIter(iter, ent);

28 }

29

30 sidl::array<EntityHandle> ents; // Block Retrieval

31 int ents_size;

32 mesh.getEntities(rootSet, iMesh::EntityType_REGION,

33 iMesh::EntityTopology_ALL_TOPOLOGIES,

34 ents, ents_size);

35 sidl::array<EntityHandle> allverts;

36 sidl::array<int> offsets;

37 int allverts_size, offsets_size;

38 iMesh::Arr mesh_arr = mesh;

39 mesh_arr.getEntArrAdj(ents, ents_size, iMesh::EntityType_VERTEX,

40 allverts, allverts_size,

41 offsets, offsets_size);

42 std::cout << "Sizes did ";

43 if (allverts_size != vert_uses) std::cout << "not";

44 std::cout << " agree!" << std::endl;

45 return true;

46 }

30 Kyle K. Chand et al.

Algorithm 2 Example of entity set and tag retrieval using the ITAPS mesh
interface.
1 #include <iostream>

2 #include <set>

3 #include "iMesh.hh"

4 #include "iBase.hh"

5

6 typedef void* EntityHandle;

7 typedef void* EntitySetHandle;

8 typedef void* TagHandle;

9

10 int main(int argc, char *argv[])

11 {

12 std::string filename = argv[1];

13 iMesh::Mesh mesh = iMesh::Factory::newMesh("");

14 EntitySetHandle rootSet = mesh.getRootSet();

15 mesh.load(rootSet, filename);

16

17 sidl::array<EntitySetHandle> sets;

18 int sets_size;

19 iBase::EntSet mesh_eset = mesh;

20 mesh_eset.getEntSets(rootSet, 1, sets, sets_size);

21

22 iBase::SetTag mesh_stag = mesh; //Retrieve set tag info

23 std::set<TagHandle> tag_handles;

24 for (int i = 0; i < sets_size; i++) {

25 sidl::array<TagHandle> tags;

26 int tags_size;

27 mesh_stag.getAllEntSetTags(sets[i], tags, tags_size);

28 for (int j = 0; j < tags_size; j++) {

29 tag_handles.insert(tags[j]);

30 }

31 }

32

33 for (std::set<TagHandle>::iterator sit = tag_handles.begin();

34 sit != tag_handles.end(); sit++) {

35 std::string tag_name = mesh_stag.getTagName(*sit);

36 int tag_size = mesh_stag.getTagSizeBytes(*sit);

37 std::cout << "Tag name = ’" << tag_name

38 << "’, size = " << tag_size << " bytes." << std::endl;

39 }

40 return true;

41 }

Interoperable Components for Simulation Development 31

After reading a mesh as in the previous example, all the entity sets
defined for the mesh are retrieved (line 20).

Lines 22–31 retrieve tag information for the sets. Specifically, line 27
retrieves all tags attached to a particular entity set, and the loop from lines
28–30 populates a standard template library set of tag handles.

Finally, the loop from lines 33–39 output information about each tag
found, in order of increasing tag handle. For each tag handle, the name of
the tag (retrieved in line 35) and its size in bytes (retrieved in line 36) are
output.

32 Kyle K. Chand et al.

Fig. 1 The information flow in a mesh-based simulation begins with a problem
definition and continues through the domain and PDE discretizations. Dynamic
processes, such as solution adaptation and design optimization, require compo-
nents capable of feeding information back to other parts of the information flow.

Fig. 2 The problem definition includes a geometric description of the domain as
well as attributes associated with geometric entities. These attributes are used
to define the mathematical problem, its parameters and any other information
needed by the simulation process.

Interoperable Components for Simulation Development 33

Fig. 3 The domain discretization is a piecewise decomposition of the domain;
usually a mesh. Entities in the mesh (Vertices, Edge, Faces, and Regions) can be
associated with entities in the geometric model. This association is referred to as
“classification” of mesh entities on model entities. Reverse classification associates
model entities with mesh entities residing on that portion of the model.

Fig. 4 Solution fields provide access to simulation data and discretizations. In
this example, D is the discrete approximation to the continuous system specified
in the problem definition in Figure 2.

34 Kyle K. Chand et al.

Fig. 5 Adaptive analysis of a Trispal 4-petal accelerator cavity.

Fig. 6 Metal forming example.

