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Abstract Finite element analysis is nowadays widely

used for product testing. At various moments during

the design phase, aspects of the physical behaviour of the

product are simulated by performing an analysis of the

model. For each analysis, a mesh needs to be created that

represents the geometry of the model at that point. In

particular during the later stages of the development cycle,

often only minor modifications are made to a model

between design iterations. In that case it can be beneficial

to reuse part of the previous mesh, especially if it was

costly to construct. A new method is presented that effi-

ciently constructs a tetrahedral mesh based on a tetrahedral

mesh of a feature model at an earlier point of the design

cycle. This is done by analysing the difference of the two

feature models from the point of view of the individual

features. By this means we can find a natural correspon-

dence between the geometries of the feature models, and

relate this to the mesh of the earlier model. We discuss the

algorithm, gained improvements, quality of the results, and

conditions for this method to be effective.

Keywords Finite elements analysis � Remeshing �
Feature model � Cellular model � Feature difference

1 Introduction

Finite element analysis (FEA) is nowadays widely used by

industry to perform product tests. These tests reduce the

number of real world test models that have to be built. This

is beneficial as building prototypes is costly in terms of

both time and money.

Although FEA saves time and money in comparison to

traditional product testing, it is nonetheless a time-con-

suming operation by itself. For complex models, the

analysis process can take multiple months from start to

finish, with the actual numerical analysis taking far less

time than the work in preparation of the analysis. This is

partly due to lack of automation and tool integration, poor

data conversion, and (manual) repetition of tasks. One of

the pivotal steps that precedes the simulation is mesh

generation, the decomposition of the virtual product model

into a mesh of simple geometric elements.

The computation time and accuracy of the analysis

depend, amongst many factors, on the mesh and the quality

of its elements. In general, the use of higher quality

meshes, decreases the time spent on analysis.

With more sophisticated algorithms for quality mesh

generation coming at our disposal, more CPU time is being

spent on meshing. Meshing algorithms that strive to opti-

mise some quality measure on the mesh are often of vari-

ational nature, minimising an energy functional related to

the quality measure. Some examples are [1–3]. This is a

relatively costly operation. Alternatively, an extensive set

of heuristics aiming to optimise mesh quality can also take

significant time [4].

In this light, we look at the possibility of cutting the time

spent on meshing by basing the construction of a new mesh

on a previous mesh, which has been used in an earlier

design iteration. Iterative improvements to a model, in
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particular during the latter stages, often have a local scope,

i.e. change the geometry in a relatively limited way. If the

meshing procedure is computationally expensive, we

expect to save time by adapting the previous mesh, instead

of meshing the modified model from scratch. Figure 1

gives an example of the evolution of a model. Figure 2

shows how this approach fits into the product design cycle

in comparison with the common design cycle. We assume

that the models are feature models, as feature modelling is

now the prevalent way to develop product models.

This paper is structured as follows. We start with some

background on FEA, mesh generation, and feature models

in Sect. 2. In Sect. 3 we summarise variational tetrahedral

meshing (VTM) for mechanical models, the method on

which our remeshing procedure is based. In Sect. 4 we

summarise the principal concept behind our remeshing

approach, the feature difference, which gives the relation

between the geometry of the original and the modified

feature model. Then, in Sect. 5, we introduce our approach

to remeshing, which leans on VTM and the feature dif-

ference. In Sect. 6 we describe how, based on the feature

difference, node subsets of an earlier generated mesh are

copied, and in Sect. 7 how we fill the areas of the model

that have remained void of nodes with new nodes. In

Sect. 8 we discuss how to complete the new mesh by

combining the copied nodes and the new nodes, and effi-

ciently constructing a quality mesh from all these nodes.

This is followed by Sect. 9 with a presentation of various

results that demonstrate the gain in efficiency and the

quality of the meshes. Finally we conclude the paper in

Sect. 10.

2 Background

Finite element analysis (FEA) is used to test a product by

computationally simulating physical behaviour. It is per-

formed from early on in the design cycle to keep a check

on global compliance. Later on the analysis becomes more

detailed, as the design gains detail. The results help to steer

the design. Not only must the product effectively fulfil its

purpose, but also the cost of material and production must

be kept low.

FEA can also be used to automatically optimise the

shape. In such a case, the shape is determined directly by

the outcome of analysis, instead of through an engineer/

designer who interprets the results of the analysis. During

shape optimisation, commonly a whole range of calcula-

tions is performed, each for a slightly different model.

Two principal measures in analysis are computation

time and accuracy. A certain minimal accuracy is required

for most applications. The accuracy of an analysis is gen-

erally not known, but can be estimated. A posteriori esti-

mates are more precise than a priori error estimates. The

engineer chooses the parameters of the analysis such that

he can be reasonably certain that the required accuracy is

attained. With the analysis parameters set for a certain

accuracy, computational time is effectively fixed. The

primary ways to reduce it are better algorithms and more

computing power.

In general, increasing the number of mesh elements

lowers the discretisation error, which is often the main

component of the error in the analysis. It is, however, also

known that the shape of individual mesh elements is

important for the accuracy, and that the global accuracy

strongly depends on the accuracy of the worst element in

the mesh [5]. It takes only a few bad elements, or some-

times just one, to spoil an analysis. It is thus essential that

the quality of individual mesh elements is looked after.

In general, for a fixed number of nodes, the use of high-

quality meshes decreases the time spent on analysis.

Therefore, a more expensive meshing method can still

decrease the total time of analysis if it provides a higher
Fig. 1 Model modification. a Original model, b modified model: four

holes added

Fig. 2 The incorporation of remeshing into the product design cycle

with analysis
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quality mesh. The application of FEA can thus benefit from

more efficient mesh creation, which we achieve by means

of remeshing.

Another benefit of remeshing over meshing from scratch

is that points and connectivity in certain areas can remain

identical. This can aid in the comparison between analysis

results. If points and elements can be mapped as identical

entities between two models, then their values can be

compared without interpolation.

The type of models we regard are feature models. This is

currently the most common type of CAD model. A feature

model is built through the combination of smaller objects

(features) with a generic shape that often carry specific

semantics within the context of the design. Examples of

features are holes, ribs, rings, bumps, etc. See Fig. 1, in

which the holes and the pins are features. They can,

however, be more complex. For example, if the circular

base plate, including holes and pins, would occur similarly

in many designs, then this combination could be parame-

terised as a single feature.

A feature model is modified through the addition and

removal of features, and by changing parameter values of

features. These values affect the size, shape and location of

the features in the model. This is a more high-level

approach to creating a model than that of earlier days in

design, when manipulation of geometry took more of the

designer’s time. The features that the designer has at his

disposal in feature modelling, allow him to interact more

intuitively with the model [6]. The features can carry more

information than just geometry, such as semantics and

material properties. In advanced feature modelling sys-

tems, the additional information is used to actively support

the designer in his decisions and to warn him of unintended

consequences, e.g. with respect to manufacturability of the

product [7].

For our work it is important that the models are com-

plete feature models. This means that the resulting model is

completely determined by the aggregation of features, and

that each feature has its individual geometry instead of

implicitly being defined based on possibly non-persistent

BRep (Boundary Representation) entities pertaining to

other features. Blends in current commercial systems, for

instance, are not implemented as features with a geometric

definition of their own, but rather are BRep modifying

features [8]. We, however, need to track the geometry of

each feature throughout the design process. If a feature that

has a blend attached, is moved together with the blend to a

different location in the model, we should be able to relate

the geometry of the blend at its new location, to the

geometry on its previous location.

In our work, the analysis model is assumed to be a

feature model. In current practice the design model and the

analysis model are not always the same model. Research is

currently being directed at improving the integration of the

analysis model with the design model. We assume that

the design model is the analysis model, or that changes to

the design model can be automatically propagated to the

analysis model, analogous to the integration of various

views in multiple-view feature modelling [9].

Our aim is to improve the speed of automated quality

mesh generation. Tetrahedral elements are popular largely

because they are easy to deal with automatically. Our

(re)meshing procedure is based on variational tetrahedral

meshing [10, 11]. This method generates high-quality

meshes by means of an optimisation process that simulta-

neously takes care of the boundary and the interior of the

mesh (see Sect. 3). Our approach to remeshing is not

strictly bound to this particular method though.

We look at model modification either in the context of a

humanly controlled design cycle or an automatic shape

optimisation process. In particular in the latter case, many

meshes can be created. One way to avoid remeshing at

each step of shape optimisation is to use mesh morphing /

deformation, which in principle maintains mesh connec-

tivity by only changing the node positions. Two recent

expositions of this approach can be found in [12, 13]. Both

work with surface meshes. The latter intends to extend the

method to volumetric meshes for the purpose of analysis.

This approach is most effective when the changes in the

model are subtle. In fact, the range of shapes that can be

dealt with by this approach is limited. In particular changes

in topology pose a problem.

To our knowledge there are few published works on

remeshing models after more general model modification.

The best examples we know of are [14, 15]. The first work

proposes two strategies of which the first is akin to mesh

morphing. Changes in topology cannot be handled this

way. The other strategy removes tetrahedrons around

modified features and locally reconstructs the mesh for

those features. With the first strategy, the quality of the

elements decreases with the impact of the modification.

The second strategy is only effective for changes with a

local geometric scope. The work in [15] offers no single,

generic approach, but discusses a range of techniques that

can be applied in several different situations. The focus is

specifically on parametric model modification. For tetra-

hedral meshes, the principal ideas are mesh morphing

combined with selective quality improvement of bad ele-

ments that have appeared. Topological changes are not

dealt with here either.

In our opinion it is natural, in the context of efficient

remeshing of a feature model, to regard the geometry of the

model and the changes therein from the point of view of the

features. Instead of relating parts of two models in a global

sense, such as by way of the boolean difference of the two

models as a whole, we relate the two models on a feature
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basis. When, for example, a feature is relocated, it can still

be identified as the same feature, and as such it relates the

geometry pertaining to this feature between the two models

[16]. Based on this observation, we have conceived a new,

efficient remeshing approach that copies parts of the mesh,

exploiting the relations of the features between the two

models.

The method we describe can handle more complex

shape modifications than the aforementioned approaches,

including changes in topology caused by parameter modi-

fications and feature addition/removal. It also tends to

conserve larger portions of the mesh. Subtractive features

and overlapping features are not an obstacle to our

approach. Maintaining the quality of the existing elements

and delivering a complete quality mesh as a result are our

objectives. To this end we determine exactly how the

geometry differs between the two models. This approach

has, to our knowledge, not been explored before.

3 Variational tetrahedral meshing of mechanical

models

We use variational tetrahedral meshing (VTM) [10] as a

basis for our meshing procedure, as it generates meshes

with highly regular elements, which increase accuracy and

reduce the chance of problems with analysis. Since this

algorithm was not intended for meshing mechanical mod-

els for finite element analysis, we have made several

enhancements, mainly concerned with the accuracy of the

representation of the boundary by the mesh, to make the

procedure suitable for this task [11]. Figure 3 illustrates

the evolution of a mesh during VTM.

We here summarise the working of the algorithm. For a

more detailed treatment, we refer to [10, 11]. The VTM

algorithm supports mesh grading, but in our remeshing

procedure we work with uniformly graded meshes. We

thus review the procedure that creates uniformly graded

meshes. The algorithm consist roughly of four steps:

1. initialisation of data structures

2. node distribution

3. node optimisation

4. mesh extraction

3.1 Initialisation of data structures

An efficient point location test is needed, both for the

distribution of nodes and for the extraction of the final

mesh from the resulting Delaunay mesh that covers the

convex hull of the nodes. For the latter we need to decide

for tetrahedrons whether they fall inside or outside the

model boundary. A constrained or conforming Delaunay

mesh of the original model is used for this. We call this the

control mesh. It accurately represents the boundary, which

is important for the overall accuracy of the procedure.

Boundary samples, which direct the formation of the

boundary, are created and categorised into sets corre-

sponding to the edges or the faces they belong to. These

samples are points lying as a fine-mazed net over the

boundary of the model, and collectively represent this

boundary. They can be created as the nodes of a fine-

sampled surface mesh. The samples are also referred to as

quadrature samples.

3.2 Node distribution

The requested number of nodes is spread out roughly

uniformly over the model. This is done by iterating over

the cells of a grid that covers the bounding box of the

model. In a first iteration, the number of cells that have

their center inside the control mesh, is counted. Based on

Fig. 3 Resulting mesh from VTM applied to a nut model. a After

initialisation, b after one optimisation loop, c after ten optimisation

loops
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this number, in a second iteration, a fair proportion of the

nodes are placed randomly inside those grid cells. After

this process we end up with a cloud of nodes that covers

approximately the volume of the original model, and has a

more or less uniform density. Figure 3a shows an example

of what the mesh is like at this stage.

3.3 Node optimisation

During the optimisation process, the nodes fall in two

categories: boundary nodes and interior nodes. Every node

starts as an interior node, but can become a boundary node

when it is selected as such during the determination and

repositioning of the boundary nodes. Each iteration of the

optimisation loop starts with the identification and posi-

tioning of the boundary nodes. After that, the rest of the

nodes, deemed part of the interior set, is optimised.

So at the start of each iteration it is determined which

nodes are part of the boundary. These boundary nodes are

then (re)positioned, aiming for balanced node spacing on the

boundary. This is achieved by employing the quadrature

samples.

For each quadrature sample, we locate its nearest node

and have the sample exert a virtual pull on that node equal

to the area that the sample covers. This is the weight of the

pull or quadrature value of the sample. The nodes that have

at least one sample pulling on them, are now considered

part of the boundary set. They are moved to the average

location of the pulling samples, weighted by the quadrature

values. The rest of the nodes belongs to the interior.

To ensure that nodes end up at the edges and at the

vertices, we treat their samples differently from the surface

samples. The quadrature value for samples on edges is set

to the length that the sample covers, and to vertex samples

an infinite quadrature value is assigned, to ensure the

assignment of nodes there. The procedure starts with the

regular surface samples pulling in and repositioning nodes,

then the edges and finally the vertices are taken care of.

If a node is being pulled on by boundary samples from

different sets, we can decide to split this node, as this situa-

tion might indicate a local lack of nodes to accurately rep-

resent the boundary. Splitting such a node into two nodes,

helps in ensuring that the final mesh represents the boundary

correctly. For a more detailed motivation, see [11].

After dealing with the boundary, the Delaunay mesh is

reconstructed as nodes have moved. Then each interior

node, i.e. each node xi that was not selected as a boundary

node, is moved according to the formula:

xnew
i ¼ 1

jXij
X

Tj2Xi

jTjjcj ð1Þ

Here Xi denotes the one-ring of tetrahedrons that share

node xi, jXij represents its volume, jTjj denotes the volume

of tetrahedron Tj, and cj is the circumcenter of tetrahedron

Tj. The effect of this relocation is similar in idea to the

relocation of a node towards the center of its Voronoi cell.

Instead of optimising the compactness of the Voronoi cell,

this operation aims at improving the compactness of the

tetrahedrons in the one-ring around the node. For a more

detailed motivation, we refer to [3]. If the new location

would invalidate the Delaunay property of the mesh, then

the connectivity is changed to keep it a Delaunay mesh.

The optimisation loop alternates between these two

phases of (1) determining and repositioning the boundary

nodes, and (2) optimising the location of the interior nodes.

Either a fixed number of iterations is performed, or a

condition on the evolution of the quality improvement is

used.

3.4 Mesh extraction

After the node optimisation, the mesh representing the

model has to be extracted from the resulting Delaunay

tetrahedrisation, which covers the convex hull of the nodes.

As the model is usually not convex, it needs to be decided

which tetrahedrons contribute to the model, i.e. are inside,

and which tetrahedrons fall outside the model. This process

is called peeling, as it can be envisioned as the removal of

tetrahedrons that are outside the mesh that represents the

real model boundary. It is worthwhile to ask why this is

possible in the first place. Normally, the Delaunay tetra-

hedrisation of a node set of a model does not contain the

complete boundary; some faces and edges have to be

recovered. Why can we expect the model boundary to be

present in the tetrahedrisation after the optimisation pro-

cedure in VTM?

There are no theoretical guarantees that the boundary

will be present, but with the quadrature samples being

finer, the chance of success increases; see Fig. 4. If a node

encroaches upon the minimal circumsphere defined by two

adjacent nodes on the same boundary edge, that node is

likely to be drawn to the boundary, since a sample near the

center of the edge between the two nodes will most likely

have the encroaching node as its nearest node. This pro-

cedure of pulling the node closest to a boundary sample to

the boundary, aims for a distribution of nodes over the

edges, such that for each point on an edge, the closest node

lies on that edge. This, in turn, means that the minimal

circumsphere of any two adjacent nodes on an edge, will be

empty of other nodes. A segment between two such nodes

is called Gabriel, and it is guaranteed to be present in the

Delaunay mesh [17]. We expect that the edges can be

(almost) completely covered by Gabriel segments, and thus

that all edges from the model are found in the Delaunay

mesh. Segments that are not Gabriel, are not guaranteed to

be in the mesh, but it is still highly likely that they are. The
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reasoning holds similarly for the presence of triangles that

can represent the faces of the model. The procedure might,

however, fail near small angles.

With the expectation that an accurate representation of

the boundary is present, the final mesh can easily be

extracted from the Delaunay mesh. The nodes are already

divided into boundary and interior nodes. Any tetrahedron

that has at least one interior node at its vertices, is clearly

inside. The remaining tetrahedrons all have four boundary

nodes. If the centroid of such a tetrahedron falls inside the

control mesh, then we consider it part of the final mesh. All

other tetrahedrons are outside and thus removed. A more

concise description and motivation of this procedure is

given in [11].

4 The difference between two feature models

For the remesh procedure, a description is needed of the

difference between two models, such as the models in

Fig. 1. The model that was made first is being referred to as

the original model. When the original model has been

adapted, the resulting model is being referred to as the

modified model. Our goal is to determine for each section

of the geometry of the modified model, both of BRep

elements and the volume, whether it relates to some section

of the previous model or not. The sections that can be

related might carry the same mesh, whereas for the

remaining geometry new mesh elements have to be con-

structed. Of course, if we reuse a mesh subset for a section

of the model, it must be connected to other subsets of the

mesh, either also reused or newly constructed. We must

take specific care that the mesh quality in those regions is

on par with the overall quality.

Our approach to remeshing builds on the concept of

feature difference [16]. The approach distinguishes itself

from other methods for model comparison. The majority

deals exclusively with the BRep, whereas the feature dif-

ference explicitly maps sections of volume between the

original model and the modified model as well. We need

this for the purpose of copying mesh elements between

corresponding sections of volume. Also many of the

existing methods lack the geometric precision and com-

pleteness that we need.

The feature difference essentially describes how two

feature models differ from each other from the point of

view of the individual features. This is another signifi-

cant difference with the conventional approaches to

model comparison, where there is only a single point of

view for the comparison, namely the complete model.

With a single point of view, every geometric element

only has a single interpretation, i.e. related to the other

model or not related. In our approach, a geometric ele-

ment can be related to the other model from the point of

view of one feature, whereas from the point of view of

another feature there is no relation. Multiple points of

view only occur in the feature difference where features

overlap each other.

We will now discuss the concepts and data models that

are used to accomplish our goal. We start with a review of

the cellular model, which is the data structure that is used

for storing and maintaining the feature models, in Sect. 4.1.

Next, in Sect. 4.2, comes a review of the feature difference

concept. This essentially describes for each individual

feature how the model has changed from its particular point

of view. We also motivate the relevance of this concept for

the application of remeshing. Lastly, in Sect. 4.3, we show

how the set of all feature differences, which is referred to

as the difference model, relates to both the original and the

modified model, as it can be used to describe either of them

and to deduce geometrical relations between them. Such

deductions supply the information needed for our reme-

shing procedure.

4.1 The cellular model

Basically, a cellular model, in contrast to BRep models,

stores the complete geometry of all the features that

compose the model. The information stored in the cellular

model can be used for validity maintenance, visualisation

of functional information, and multiple-view modelling

[9]. Features that intersect with other features, are divided

into cells. A feature that covers a cell, is said to own that

cell. Each cell is owned by at least one feature; where

features overlap, the cell has multiple owners. The cells

that contribute material to the model are said to have

positive nature, whereas the other cells have negative nat-

ure. Figure 5 shows a simple cellular model. In this figure,

there are three features: a base block, and two slots. For

each cell with negative nature it is indicated which feature

owns it.

The cellular model allows features to be added and

removed, while keeping track of the feature ownership for

all cells and faces. To keep track of the cell geometry, and

ownership, we partly rely on the cellular topology

component of ACIS [18]. A thorough description and

discussion of the cellular model can be found in [19].

e < a

a

e
encroaching node
boundary node

distance

sample near circumcenter
edge sample
edge

Fig. 4 Encroaching of part of edge
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We use cellular models to store and query the original

and the modified feature model. Also, we copy subsets of

these cellular models to other cellular models for the

construction of the feature difference.

4.2 The feature difference

The analysis mesh conforms to the geometry of the model,

which in turn depends on the features. Changes in the

geometry result from manipulation of features. The mesh

thus depends indirectly on the geometry of the features.

If, after a model modification, the geometry of an

additive feature, including its interactions with other fea-

tures, has not changed, then the mesh corresponding to that

feature does not need to change either, and can thus be

reused in the mesh for the modified model. See, for

example, Figure 6, which shows the meshes of two variants

of a model with a base block feature and a rib feature,

including two cylindrical protrusions, on top: the mesh

section of the rib feature on top could be identical in both

meshes, as the geometry of this feature is identical in both

models. The geometry of the base block, on the other hand,

is subtly different between the two models, as its top sur-

face connects in different locations to the rib feature (see

Figs. 6, 7). Therefore, the mesh corresponding to the base

block feature cannot be identical for both models. How-

ever, as the difference is subtle, the meshes could for the

larger part still be the same. For this we need a description

of how the geometry of the base blocks differs between the

two models.

If we know for each feature whether its geometry has

remained the same, or, alternatively, how it is different

from its original geometry, we have enough information to

reuse sections of the original mesh in the mesh for the

modified model. All details of the remeshing procedure are

discussed in Sect. 5 and onward. We proceed here with the

description of how the geometry of a feature relates

between two models. This description can be constructed

for any feature of the two models, and is called the feature

difference.

An aspect important to the concept of feature difference

is that a feature, placed into a model, is affected by its

interaction with other features. One of the clearest exam-

ples hereof is the interaction of features having different

nature (adding material or removing material): when a slot

feature is added to a block, then the geometry of the block

changes, as does the volume the block occupies. This is

illustrated in Fig. 8. More subtle is the change when an

additive feature is attached to another additive feature. This

was already illustrated in Fig. 7. When looking at the

geometry of a feature in a particular model, we also take

this additional geometry into account.

We now explain in some more detail what the feature

difference is. For a particular feature, it is the comparison

of the feature as it was in the original model, with the

Fig. 5 Example of a cellular model

Fig. 6 Original and modified model and their meshes. a Original

model: base block with a rib feature on top, b mesh of original model,

c modified model: base block with rib feature translated, d mesh of

modified model

Fig. 7 Subtle difference in geometry of base block. a Geometry of

base block in original model, b geometry of base block in modified

model
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feature as it is in the modified model. This comparison

includes the whole of the geometry of the feature, as it is

stored in the cellular models, which is more than what

appears in a BRep. In a BRep only those elements appear

that are part of the boundary of the model, whereas in the

cellular model the complete boundary of each individual

feature is stored. We refer to those elements that are part of

the cellular model, but do not appear in the BRep, as non-

boundary geometry. The feature difference is thus defined

for each feature, and consists of both BRep and non-

boundary geometry of the feature as part of the original

model, combined with the corresponding geometric infor-

mation of the feature as part of the modified model.

Additionally, the structure consists of cells that represent

regions of volume. The feature difference relates the

complete geometric information of a single feature,

including geometry emerged from interaction with other

features, between the two models. The collection of all

feature differences is called the difference model. Since

features overlap—if not with their volumes, then with their

faces—some geometric elements are part of the feature

difference for more than one feature. Dependent on the

point of view of an involved feature, it can vary how that

element is interpreted (as unchanged geometry, new or

old). The following example will illustrate the feature

difference.

In Fig. 9a there are two models. On the left is the ori-

ginal model and on the right is the modified model. The

original model consists of two features and the modified

model of three. In Fig. 9b we see the feature difference for

each of the features. For the purpose of remeshing, we

discern four classifications of geometry in the feature dif-

ference: (1) persistent-identical, (2) persistent-different, (3)

new, and (4) old. Persistent-identical geometry is, from the

point of view of a particular feature, identical in every

aspect in both models. The complete geometry of feature

F2 is an example of this, as both its shape and its interac-

tions with other features are the same in the original and

the modified model. Feature F3 is an example of new

geometry, as it has been added to the model. Feature F1

carries an example of persistent-different geometry: the

separation between feature F1 and feature F3 already

existed as part of the BRep in the original model. In the

modified model, however, it is not part of the BRep, but it

does exist in the cellular model, since it is part of the

geometry of the individual features. We classify this in the

feature difference as persistent-different geometry, which

thus indicates that the element was part of the BRep in one

of the two models, but not in the other. The vertices at the

ends of the persistent-different geometry are new to feature

F1, as they were not present in the original model. Table 1

Fig. 8 Block feature interacting with a slot feature. a Cellular model

of block feature (single cell), b block feature with a slot feature,

c cellular model of block feature resulting from interaction with slot

feature (two cells)

Fig. 9 Difference model. a Original model (left) and modified model

(right), b difference model, consisting of the feature difference for all

three features

Table 1 Classification of the feature difference for faces, edges and

vertices

orig. modif. Classification

b b Persistent-identical: boundary

n n Persistent-identical: non-boundary

n b Persistent-different: modified to boundary

b n Persistent-different: modified to non-boundary

b New: boundary

n New: non-boundary

b Old: boundary

n Old: non-boundary

b = boundary geometry, n = non-boundary geometry, ‘ ’ = not in

model
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lists all possible classifications of geometry that can be

encountered in the feature difference for faces, edges and

vertices, whereas Table 2 does this for cells. Except for the

terminology, the two classification schemes are very sim-

ilar, as the ‘boundary/non-boundary’ and ‘positive/negative

nature’ classifications fulfil analogous roles. The distinc-

tion in the names helps to reason more intuitively with the

concepts.

The feature differences from Fig. 9 are easy to con-

struct: take all the geometry from the cellular model that is

owned by a particular feature for both the original and the

modified model, and then overlay and merge these geom-

etries with a non-regular union operation, to find the

classification of the elements. See [16] for more details.

In Fig. 9, none of the individual features change shape.

The case that features do change shape is essentially han-

dled in the same way, only now with the geometries of the

differently shaped features being overlaid. This is illus-

trated by feature F2 in the difference model of Fig. 10. The

feature difference for feature F2 may seem surprising. In

overlaying the geometries, the feature center has been used

as a point of reference to align on. The reasons for this are

detailed in [16]. In short: the preference for a particular

point of reference is subjective, and tends to vary with the

context. This is particularly the case when there are

dependent and interacting features.

We have here explained only the essence of the feature

difference; it is discussed in detail in [16].

4.3 Relation between the feature differences

and the two models

The feature difference for a particular feature contains

the combined geometrical description of the feature for

the two models that are being compared. All the geo-

metric elements carry a feature difference classification

(see Table 1), and a list of the features that own the

element. From the classification it can be inferred to

which model(s) an element belongs. This is enough

information to reconstruct the geometry of a feature in

either the original or the modified model from the fea-

ture difference. For example, from the feature difference

F2 in Fig. 10b, we can recover the geometry of the

feature in the original model, by removing all geometric

elements classified as new; the geometry of the feature

in the modified model can be obtained by removing the

old elements.

Each feature in a model is associated with a transfor-

mation, which relates to a global point of reference by

which the positions of all features are linked in the model’s

cellular model. We regard the transformation as part of the

feature parameterisation. When the feature parameterisa-

tion is known for all features in a model, then its cellular

model can be (re)constructed.

It follows from the previous two paragraphs that from

the feature difference, both the original and the modified

model might be obtained. Of course we do not actually do

this, as we already have those models, but in a similar vein

we can also combine the feature differences applying the

feature transformations of either the original model or the

modified model. Figure 11 shows a simple model modifi-

cation (a and b) and its corresponding features differences

(c–e). The model consists of three features: a base block, a

through hole and a rib. Figure 12 shows how the three

feature differences can be combined into two different

structures: (a) the combined original model (applying the

positioning of the features in the original model), and (b)

the combined modified model (applying the positioning of

the features in the modified model). Notice how the two

structures differ. For the combined original model, the

feature difference for the through hole and the rib are

positioned w.r.t. the base block such that the original fea-

ture geometry lines up. For the combined modified model,

the feature differences are positioned such that the modi-

fied feature geometry lines up.

Table 2 Classification of the feature difference for cells

orig. modif. Classification

? ? Persistent-identical: positive nature

- - Persistent-identical: negative nature

- ? Persistent-different: modified to pos. nature

? - Persistent-different: modified to neg. nature

? New: positive nature

- New: negative nature

? Old: positive nature

- Old: negative nature

‘?’ = positive nature, ‘-’ = negative nature, ‘ ’ = not in model

Fig. 10 Difference model including reshaped feature. a Original

model (left) and modified model (right), b difference model,

consisting of the feature difference for both features
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A combined model captures the interaction of feature

differences, and by this means enables us to relate the

modified geometry to the original geometry, or vice versa.

By selecting the right subset of cells from the model in

Fig. 12b, we can construct the model of Fig. 11b. To each

of these cells, at least one difference classification is

associated, e.g. the feature differences for the through hole

and the base block both carry classifications that end up at

cells that overlap in the combined model. From the dif-

ference classifications, we know whether the geometry is

persistent (or not) and thus can be related to geometry of

the original model (or not). Through these relations we find

the mesh subsets to copy from the mesh of the original

model, the areas where new mesh needs to be constructed,

and all other areas where attention to the mesh is required,

e.g. places where mesh sections of different origin meet.

The geometry of a combined model can get fairly

complex as the feature differences, which already contain

the geometry of two different versions of a feature, can

intersect once more amongst each other. By inspecting this

structure, we can find the information that the remeshing

procedure needs.

Before delving into the details of using the information

in the combined model, we take a step back, and discuss

the overall remeshing procedure.

5 The remeshing procedure

The remeshing procedure is conceptually simple. We wish

to generate a mesh for a model that is a modified version of

an earlier design model (the modified and the original

model respectively). Part of this mesh is going to be sup-

plied by the mesh of the original model. The procedure for

this is:

1. analyse the difference between the two models

2. initialise the new mesh with all mesh sections that can

be copied

3. construct new mesh elements in remaining void areas

4. perform VTM with an appropriate subset of the nodes

and boundary samples.

This procedure is schematically illustrated in Fig. 13.

The first step consists of the construction of the feature

difference and the combined modified model, which have

been discussed in Sect. 4.

In the second step, we map sections of the previous

mesh to the new model. The idea is that we determine from

the combined modified model which (parts of) features

from the original model can serve as a mesh source. Here

Fig. 11 Feature difference for a

simple model, for which the

through hole has been enlarged

and relocated, and the rib

enlarged. a Original model,

b modified model, c feature

difference for base block,

d feature difference for through

hole, e feature difference for rib

Fig. 12 Combining feature differences according to the feature

configuration of either the original or the modified model. a
Combined original model, b combined modified model
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we aim to copy large and continuous mesh sections, such

that extra work to improve connections between separately

copied mesh sections is minimised. Any section of the new

model that is not assigned a mesh by copying, remains

without mesh.

In the third step, we fill up these voids. We now have the

basis for the new mesh.

In the fourth step, the VTM algorithm is executed, with

the result of the previous two steps as initialisation of the

mesh. Since copied sections of the mesh do not need

optimisation, we adapt the VTM algorithm to work only

with a subset of the nodes and the boundary samples. The

attention is focussed on the new sections and the other

places were the mesh needs improvement, such as between

adjacent mesh sections where a good connection is lacking.

Until now we have consistently talked about copying

‘‘sections of the mesh’’. Since the VTM algorithm gener-

ates a Delaunay mesh, we can suffice with copying just the

mesh nodes, as the connectivity is handled in the VTM

algorithm by the Delaunay criterium. This makes the pro-

cedure considerably easier to implement. The input for the

VTM algorithm will be the set of initial nodes to start with,

accompanied by a flag that indicates which nodes are free

and thus are in need of optimisation. The new nodes and

the nodes in areas of transition between copied mesh

subsets, are the free nodes. The other nodes are fixed. Their

relative positioning can remain untouched. We now con-

tinue to discuss the procedure for copying nodes.

6 Copying mesh nodes

The idea behind the copying procedure is that the modified

model can receive nodes through the relation of persistent

feature volume with the original model. Each feature

whose feature difference contains some persistent volume

of positive nature, can copy nodes that belong to that

volume in the original model, to the modified model.

Since features can overlap, we cannot simply copy the

nodes for each cell of persistent volume in each feature.

Where features overlap in volume, too many nodes would

be assigned. Also, we want the copied nodes to form large

and continuous sections, such that the need for optimisation

between copied sections is minimised. To this end, we sort

the features by the size of their persistent-identical volume

of positive nature, and start with copying nodes from the

feature for which this volume is largest. Next comes the

feature with the second largest persistent volume, etc.

The complete procedure is as follows:

1. assign nodes to features in the original model

2. find cells with persistent volume of positive nature

(copycells) and cells with new volume (newcells) in

the combined model for the modified model

3. determine which features correspond to which copy-

cells and calculate for each feature the volume of

copycells that it covers

4. copy nodes of features to empty copycells, starting

with the feature with the largest volume to copy.

The last step is finished when all copycells have nodes

copied to them. Due to overlap of features, it is not required

that all features have contributed nodes at the end of this

step.

6.1 Assign nodes to features in the original model

This step is independent of the modified model, and as such

it is not strictly part of the remeshing procedure. It can be

performed long in advance.

The original model is stored as a cellular model. All

nodes of the corresponding mesh are assigned to cells of

the cellular model. To speed up the operation, the nodes are

first tested for inclusion with the bounding boxes of the

cells. Then, for each node on or inside a bounding box, an

accurate inclusion test (an internal function of ACIS) with

the corresponding cell is performed. A few nodes might not

be assigned to any cells at all, due to tiny differences

between the coordinates of the mesh and the geometry of

the model. In such a case the projection distance of the

node to the cells is calculated and the node is assigned to

the closest cell, assuring that every node is assigned to at

least one cell.

For each cell it is known to which features it corre-

sponds. After the assignment of the nodes to the cells, we

can thus retrieve all nodes inside or on the boundary of

each feature.

6.2 Determine copycells and newcells

In the combined modified model (cf. Fig. 12b), all cells

have classifications attached, indicating for each feature

that (co)owns the cell how its geometry relates to the

Fig. 13 Schematic illustration

of the four steps of the

remeshing procedure
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original model (persistent-identical, persistent-different,

new or old). This classification can differ between the

owning features. We limit our attention to the cells of

positive nature that contribute to the representation of the

modified model, since these are the cells that need to be

covered by mesh elements. Of those cells, we mark each

cell that can be regarded as a persistent volume, according

to at least one classification, as a copycell. The volume of

such a cell can be related, in at least one way, to the ori-

ginal model, as the persistent classification indicates that a

similar counterpart exists in the original model. All

remaining cells of positive nature belong to the set of

newcells. These also need to be covered by mesh elements,

but they cannot be provided by the mesh of the original

model.

6.3 Create map from features to copycells

At this point, we know which cells in the combined mod-

ified model are copycells and which nodes are contained in

each cell of the original model. Unfortunately, there is no

one-to-one map between the cells in the modified com-

bined model and those in the original model. A cell from

the original model can relate to multiple cells in the

modified combined model. It should be possible to identify

those relations, but instead we have opted for another

approach.

Since we want to copy sets of cells that are as much as

possible adjacent, to avoid having to perform mesh

improvements between nodes copied from different ori-

gins, we instead copy the nodes on a feature by feature

basis. All nodes copied from a single feature, obviously

have the same, consistent origin, meaning that the relative

positions of these nodes is preserved. An additional benefit

of this approach is that we avoid the need to explicitly

establish relations between the copycells and the cells of

the original model.

We want to start copying nodes from the feature that

occupies the largest volume of copycells. We thus need to

calculate the total copy volume for each feature. This

calculation is combined with the creation of a map that

relates the features to their copycells.

6.4 Copy nodes from features to copycells

Starting with the feature that has the largest persistent

volume, the nodes are copied to the corresponding copy-

cells. For efficient copying, the copycells are joined into a

single body (which can consist of multiple lumps). Then

for each node in the feature, an inclusion test is performed

against the copycell body. The nodes that belong to the

body are included in the mesh of the new model. Before

performing the inclusion test, the coordinates of the nodes

have to be transformed from their location in the original

model to their location in the modified model. This trans-

formation is the compound of the inverse transformation of

the feature’s position in the original model and the trans-

formation that gives the position in the modified model.

We avoid copying multiple times to the same copycell, by

keeping a list of copycells that have been taken care of.

Once nodes have been copied to each copycell, the

model still lacks nodes in those regions of the model that

could not be mapped to the original model, i.e. the new-

cells. See for an example Fig. 15a, where the copied nodes

are shown for remeshing the model of Fig. 14b based on

the mesh of Fig. 14a. At the original location of the four

hole features, there were no nodes to be copied to the mesh

of the modified model. These regions are covered by

newcells, and these need to be filled by nodes as well (see

Fig. 15b). This is elaborated in the next section.

7 Adding new nodes, and the free/fixed distinction

The previous section dealt with filling the set of copycells,

coming from the combined model, with nodes from the

mesh that corresponds to the original model. The newcells

set comprises those cells that have positive nature, but

cannot receive nodes from the original model. This is either

due to a newly added feature, an enlarged feature or the

removal/translation of a feature with subtractive nature.

Fig. 14 Original and modified model (tool1-a and tool1-b).

a Original model, including top view, b modified model, including

top view: four holes translated
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The procedure for filling the set of newcells with nodes

is the same as the node initialisation procedure of standard

VTM [10]. Before the nodes are spread out, the average

node density in the earlier mesh is measured. Then the cells

of a grid that covers the newcells volume are traversed, to

calculate the average number of nodes that each gridcell

should receive. Only gridcells of which the center lies

inside the newcell volume are counted. Finally the gridcells

are traversed once more in serptentine order, this time to

spread out the nodes. Nodes are placed randomly in the

gridcell. If a gridcell requires a non-integer number of

nodes, then the non-integer part is added to the number of

nodes for the next gridcell. This way, the average node

density in the newcells matches well with the required node

density. Figure 15b shows an example of a set a new

nodes, with in the background the copied nodes.

We now have all the nodes that are to be used for the

initialisation of the new mesh. However, to efficiently

process these nodes, the nodes need to be divided into a

fixed and a free set. The free nodes will be actively

involved in the optimisation process, whereas the fixed

nodes will be left untouched. It is clear that the new nodes

belong to the free set. The majority of the copied nodes

should belong to the fixed set—otherwise there would be

little gain in remeshing—but not all of them.

There are two cases that warrant attention to copied

nodes:

1. adjacent cells that have nodes copied to them from

different origins

2. persistent-different faces on copycells.

Both cases are illustrated by the example of Figs. 6 and

7: (1) in the mesh of the modified model, the nodes of the

base block do not match with the nodes of the rib feature

on top, as the node sets connect at a place different from

before; (2) the nodes of the base block near the place where

the rib feature was previously connected, do not properly

represent the surface; previously those nodes were in the

vicinity of a non-boundary face, whereas in the modified

model that face does represent boundary.

The faces from the cellular model affected by the first

case are determined during the node copy operation. If the

copied nodes in two adjacent copycells are transfered from

their original coordinates by the same coordinate trans-

formation, then they have the same origin; otherwise,

attention is required to assure the quality of the mesh

around the separating face.

The second case can be inferred from the combined

modified model: for each face of a copycell it is determined

(1) whether it has nodes lying in that face, i.e. the face was

part of the BRep of the original model, and (2) whether

nodes need to lie in that face, i.e. the face is part of the

BRep of the modified model. If these two results are dif-

ferent, then the nodes in and near that cell face need to be

in the set of free nodes. This can be inferred by looking at

the classifications of the faces, from the point of view of

the features that supplied the nodes on either side of the

face.

We call the faces from the combined modified model

that warrant attention for the nodes in their vicinity, active

faces. For each active face, it is determined which nodes in

its vicinity have to be transferred to the set of free nodes.

This is done by means of regularly spaced sample points on

the surface of the face. Each sample locates its nearest

node. All nodes that are nearest to a sample, become part of

the free set.

Fig. 15 Top view of copied and new nodes for the original and

modified model of Fig. 14. a Copied nodes, b new nodes

Fig. 16 Top view of new, active and expanded active nodes, for the

models of Fig. 14. a New nodes, b free nodes, c expanded free nodes,

d expanded free nodes; rotated view
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8 Efficiently constructing the quality mesh

The meshing procedure is basically the same as the one

described in [11], but adapted to avoid unnecessary com-

putations. Instead of following the procedure for creating

the initial node distribution, we use the nodes as deter-

mined by the procedures described in Sects. 6 and 7.

These nodes have been divided in two sets, fixed and

free. In our optimisation procedure we only handle the free

nodes and leave the fixed nodes untouched. However,

nodes from the fixed set can be transfered to the free set.

This happens twice during the optimisation, as we transfer

the layer of fixed nodes adjacent to the current free set, to

the free set. The underlying idea of this expansion of the set

of free nodes, is to give the optimisation procedure more

freedom to achieve a quality connection between the free

and fixed nodes. It is done once directly after the first

iteration of the optimisation loop, and three iterations later

a second time. The delay in adding the second layer is to

first give the smaller set of free nodes an opportunity to

settle a bit, as the largest variations in node locations occur

during the first couple of iterations. Once the extent of the

changes has diminished, we expand the set of free nodes

one more time. Figure 16 compares the new nodes, the free

nodes at initialisation, and the free nodes after the first

expansion of the free set. The final set of free nodes covers

a sizeable region, compared to the initial set of free nodes.

This is necessary to uphold the quality of the final mesh.

When expanding the free node set, we must take care to

keep the expansion local, as the Delaunay mesh covering

the convex hull also connects nodes that are not adjacent in

the final geometry. The risk of expanding the free set to

another section of the model occurs nearly always when

expanding from a boundary node to a boundary node. For

that case we have added the precondition that the two

nodes share a connection to an internal node.

The other reduction in computational cost is achieved by

adapting the boundary procedure. Normally all boundary

samples look for their closest node, but since a large part of

the mesh does not change at all, this would be unnecessary

work. Instead we only do this once for all boundary sam-

ples at the start. Those boundary samples that have a free

node as their closest node are added to the set of active

samples, the rest is non-active. The samples adjacent to an

active sample are placed in the set of border-active sam-

ples. Only the active and the border-active samples are

used in the boundary procedure to pull on nodes, to pos-

sibly change their positions. Most of the time the border-

active samples will have a fixed node as their closest node,

Fig. 17 Six cases of model modification. a simple-a and simple-b,

b tool1-a and tool1-b, c tool1-a and tool1-c, d tool2-a and tool2-b,

e tool2-b and tool2-c, f tool3-a and tool3-b

c
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but when it does have a free node closest, then this border-

active sample is transfered to the set of active samples and

its non-active adjacent samples turn to border-active sam-

ples. This way we remain confident that the boundary

samples are doing their work where needed, but no more

than that. When the set of free nodes is expanded, the set of

active samples is expanded accordingly.

Summarising, the new meshing procedure is as follows:

1. initialise data structures

2. initialise the mesh with the free and fixed nodes

3. optimisation loop:

• use adjusted boundary procedure based on only the

active samples

• optimise node positions of free nodes

• if iteration-step = 1 or iteration-step = 4: expand set

of free nodes and set of active samples

4. extract mesh.

We will now show some of the results that are achieved

by the complete remeshing procedure.

9 Results and discussion

To study and compare the effectiveness of our remeshing

procedure, we present six cases of model modification, all

shown in Fig. 17:

(a) simple translation of block on top

(b) tool1-ab enlargement of pins

(c) tool1-ac translation of holes

(d) tool2-ab addition of stiffener

(e) tool2-bc translation of pipe

(f) tool3 reparameterisation of base block

These cases cover a diverse range of situations

encountered in model modification. The first case (a) is a

Table 3 Runtime measurements comparing the regular meshing procedure with the remeshing procedure for the six cases of model modification

Model #samples #nodes #iter t1 t2 t3 total1 t4 t5 t6 t7 t8 total2 % time

simple 56,232 15,058–15,062 5 24.85 835.32 3.12 863.29 0.10 5.07 28.26 54.88 3.44 91.74 10.62

simple 56,232 15,058–15,062 10 25.01 1606.25 3.11 1634.37 0.10 5.03 29.82 125.47 3.38 163.80 10.02

simple 111,532 30,087–30,087 5 87.54 3051.84 6.47 3145.85 0.10 9.65 77.10 142.30 7.18 236.34 7.51

simple 111,532 30,088–30,088 10 87.37 5936.73 6.32 6030.42 0.10 9.75 79.93 336.41 7.01 433.20 7.18

tool1-ab 89,290 15,195–15,199 5 42.90 422.75 6.80 472.46 2.01 12.51 45.19 23.94 7.32 90.97 19.25

tool1-ab 89,290 15,195–15,199 10 43.07 882.48 6.81 932.37 1.97 12.46 45.39 46.55 7.24 113.61 12.18

tool1-ab 165,814 30,341–30,345 5 84.99 1437.65 12.69 1535.33 1.99 24.11 88.03 49.74 13.67 177.54 11.56

tool1-ab 165,814 30,341–30,345 10 85.74 2772.13 12.50 2870.37 2.00 24.08 89.09 111.83 13.57 240.57 8.38

tool1-ac 87,352 14,997–15,005 5 41.46 422.27 5.67 469.40 2.34 12.91 44.30 42.42 6.10 108.08 23.02

tool1-ac 87,352 14,999–15,007 10 41.50 875.08 5.71 922.29 2.33 12.89 44.49 100.02 6.10 165.83 17.98

tool1-ac 163,136 30,089–30,097 5 82.97 1434.56 10.88 1528.41 2.37 25.68 89.24 115.09 11.55 243.93 15.95

tool1-ac 163,136 30,075–30,083 10 83.59 2754.29 10.75 2848.63 2.28 25.66 87.24 252.19 11.62 378.99 13.30

tool2-ab 121,788 15,637–15,649 5 28.65 161.59 6.65 196.89 1.40 9.01 38.88 22.18 6.39 77.86 39.54

tool2-ab 121,788 15,637–15,649 10 28.83 297.40 6.53 332.76 1.35 8.98 38.97 42.45 6.35 98.10 29.48

tool2-ab 242,711 31,275–31,287 5 65.89 427.40 12.48 505.77 1.39 16.26 86.78 45.64 11.57 161.64 31.95

tool2-ab 242,711 31,275–31,287 10 67.10 795.11 12.41 874.61 1.38 15.99 87.88 85.55 11.39 202.19 23.11

tool2-bc 117,216 15,047–15,055 5 35.81 149.42 10.12 195.35 2.32 9.42 40.74 21.51 9.59 83.57 42.77

tool2-bc 117,216 15,038–15,046 10 35.91 281.37 10.00 327.27 2.30 9.23 40.48 42.23 9.66 103.91 31.75

tool2-bc 233,187 30,100–30,108 5 70.66 427.90 16.59 515.15 2.32 16.59 81.27 37.69 16.33 154.20 29.93

tool2-bc 232,111 30,087–30,095 10 70.84 801.57 16.76 889.17 2.36 16.81 81.12 73.78 16.01 190.08 21.37

tool3 51,818 10,248–10,272 5 12.31 178.98 2.53 193.81 1.77 8.62 17.88 52.57 3.03 83.86 43.26

tool3 51,580 10,194–10,218 10 12.40 315.54 2.46 330.39 1.79 8.56 18.12 113.31 2.95 144.72 43.80

tool3 101,220 20,480–20,504 5 27.70 499.90 4.99 532.60 1.76 16.67 37.34 101.07 5.87 162.72 30.55

tool3 101,216 20,420–20,444 10 28.28 951.69 4.94 984.91 1.76 16.84 37.26 210.09 5.82 271.79 27.59

#samples: number of boundary samples, #nodes: number of nodes in the mesh for the modified model after meshing and after remeshing

respectively, #iter: number of iterations of the optimisation loop. All times are in seconds. Columns t1 - total1 correspond to the regular meshing

procedure, t4 - total2 to the remeshing. t1 and t6: setup, t2 and t7: optimisation loop, t3 and t8: mesh extraction and other post-processing, t4: setup

and construction of feature difference, t5: construction of combined model, copying and creation of nodes, and analysis indicating free/fixed

nodes. total1 = t1 ? t2 ? t3, total2 = t4 ? t5 ? t6 ? t7 ? t8, % time = 100.0 total2/total1
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simple example that serves as a reference. The second (b)

case demonstrates a change where only reparameterised

features are involved. The third case (c) involves the cre-

ation of new holes and filling the remaining voids. The

fourth case (d) demonstrates the addition of a new feature

and its interaction with existing features. The fifth case (e)

deals with changes in feature interaction and topology.

Finally, case (f) demonstrates the capability of the

approach to even handle changes in the shape of the base

feature. We do not consider this last case to be typical for

the application of remeshing.

The first aspect we consider is runtime. The results are

shown in Table 3. We compare the time that it takes to

completely mesh the modified model, with the time needed

for the remeshing procedure. Because the final number of

nodes of a remeshed model is hard to control, we first per-

formed the remeshing in our experiments. After this, the

regular meshing procedure was performed, aiming for the

same number of nodes. Since occasionally nodes can be

removed or added during the algorithm, this match is not

perfect. The column #nodes first lists the number of nodes in

the final mesh for the regular meshing procedure and then the

number of nodes in the remesing result. We have roughly

aimed at 15,000 or 30,000 nodes. The number of boundary

samples is, by means of a heuristic formula, roughly aimed to

be eight times the number of nodes that ends up on the

boundary. This is a reasonable lower bound for this ratio,

since in most cases one would prefer to use more boundary

samples per boundary node. The ACIS faceter component is

used to generate the samples. Each experiment is performed

with either five or ten iterations. The final column list the

runtime of the remeshing procedure as a percentage of the

runtime of the regular meshing procedure.

We observe that in general:

• By remeshing, the runtime is brought down to between

10 and 45% of the time for the regular meshing

procedure.

• For a larger number of nodes, the efficiency gain is

higher. In such cases, the percentage of internal nodes is

higher, and since the optimisation of the internal nodes

takes the bulk of the cpu-time, the realised savings by

remeshing are higher. A secondary factor is that for a

higher number of nodes, the expansion of the free node

set by two layers affects a smaller percentage of the

nodes.

• The optimisation loop scales roughly with the number

of iterations.

• The time spent analysing the models and copying the

nodes (t4 and t5) is smaller than the setup time of the

standard meshing procedure (t1).

Fig. 18 Quality comparisons between result of regular meshing

(darker, blue) and remeshing (lighter, yellow). The histograms

overlap almost completely; the small differences are visible on the

top of the bars. a tool1-ac, 10 iterations with *15,000 nodes; b tool3,

10 iterations with *15,000 nodes; c tool2-ab, 5 iterations with

*30,000 nodes

c

(c)

(b)

(a)
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We measure the quality of the meshes by calculating

the volume-length ratio of each tetrahedron, and display

these values in a histogram. The measure is defined as

V/lrms
3 , with V the volume of the tetrahedron and lrms the

root mean square of the edge lengths [4, 20]. The value

1 corresponds to a perfectly regular tetrahedron. The

mesh quality of the regular and the remeshing results is

very similar. The most salient differences are shown in

Fig. 18. Here Fig. 18a and b show that the quality of the

regular meshing is slightly better than the remeshing

results, as the blue bars stick out on the highest end of

the quality spectrum and the yellow bars at the left of

that. Figure 18c shows an example of the opposite case,

where the remeshing result is slightly better. The dif-

ference in quality for all the other test cases is either

similar or less pronounced.

The thin ‘tails’ of lowest quality elements in the vol-

ume-length histograms, can often be further improved

without much effort. By application of simple operations,

such as flipping, most, if not all, of the remaining low-

quality tetrahedrons can be eliminated.

Figure 19 shows the result of remeshing for model

tool2, including a close-up and a cut of the close-up,

showing part of the interior of the mesh. There are virtually

no visible signs that the stiffener in the middle was added

later by means of remeshing.

Fig. 19 Remesh result for

tool2-ab. a Full view of tool2-

ab, b close-up, c close-up with

interior exposed by slice
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10 Conclusions

We have presented a viable technique for tetrahedral

remeshing of feature models for finite element analysis.

The approach is based on the feature difference, and

approaches the issue from the point of view of individual

features. This is sensible since incremental changes to

feature models are made in terms of addition, removal, or

reparameterisation of features.

A reduction of meshing time between 55 and 90% is

achieved for our test models. The efficiency gain depends

on several factors. Models that have a large volume relative

to the surface area, generally result in the most substantial

improvements. They have relatively many internal nodes,

which are more costly to optimise than boundary nodes,

and hence yield considerable gains because generally these

internal nodes can largely be kept fixed. Similarly, for a

particular model, a larger node set tends to show bigger

gains in efficiency, as the percentage of internal nodes is

higher. The time to construct the combined model can

increase quickly when many features are overlapping or

interacting. In most feature models, however, we expect the

number of simultaneous interactions to be low, as many

overlapping features are an indication of a bad feature

model. Furthermore, for the analysis of the difference

between the original and the modified models, resulting in

the output of the free and fixed nodes set, we have

implemented one particular approach. We feel that this

approach is a good compromise between complexity and

efficiency. Other approaches might improve the efficiency

of this step, but this would have to be researched.

The quality of the remeshing result is consistently on par

with the high-quality of the normal meshing approach. A

key factor in upholding the quality is the expansion of the

free node set, which moves fixed nodes from the immediate

neighbourhood of the areas where the attention is directed

to, into the set that is actively optimised. The optimisation

procedure can achieve a higher-quality result when it can

move more nodes. Not expanding the node set leads to a

visible disparity between the fixed and free nodes in the

final result, and it might even result in failure to properly

represent the boundary.

The node density is currently assumed to be uniform

over the model. Using graded meshes would require the

calculation of a new or adjusted sizing field. The sizing

field could possibly be adjusted incrementally. How this

impacts the efficiency gain of remeshing, is open for

investigation.
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