Skip to main content
Log in

A mesh optimization algorithm to decrease the maximum interpolation error of linear triangular finite elements

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present a mesh optimization algorithm for adaptively improving the finite element interpolation of a function of interest. The algorithm minimizes an objective function by swapping edges and moving nodes. Numerical experiments are performed on model problems. The results illustrate that the mesh optimization algorithm can reduce the W 1,∞ semi-norm of the interpolation error. For these examples, the L 2, L , and H 1 norms decreased also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. In the numerical experiments, this search is implemented with a simple loop through the elements of the background mesh.

References

  1. Agouzal A, Lipnikov K, Vassilevski Y (1999) Adaptive generation of quasi-optimal tetrahedral meshes. East West J Numer Math 7(4):223–244

    MathSciNet  MATH  Google Scholar 

  2. Alauzet F, Frey P (2003) Estimation d’erreur géométrique et métriques anisotropes pour l’adaptation de maillage. Partie II: exemples d’applications. Technical Report 4789, INRIA

  3. Apel T, Berzins M, Jimack P, Kunert G, Plaks A, Tsukerman I, Walkley M (2000) Mesh shape and anisotropic elements: Theory and practice. In: The mathematics of finite elements and applications, vol 10. Elsevier, Amsterdam, pp 367–376

  4. Babuška I, Aziz AK (1976) On the angle condition in the finite element method. SIAM J Numer Anal 13:214–226

    Article  MathSciNet  MATH  Google Scholar 

  5. BAMG, Bidimensional anisotropic mesh generator. http://pauillac.inria.fr/cdrom/www/bamg/eng.htm

  6. Bank R, Smith R (1997) Mesh smoothing using a posteriori error estimates. SIAM J Numer Anal 34:979–997

    Article  MathSciNet  MATH  Google Scholar 

  7. Bank R, Xu J (2003) Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J Numer Anal 41:2313–2332

    Article  MathSciNet  MATH  Google Scholar 

  8. Buscaglia G, Dari E (1997) Anisotropic mesh optimization and its application in adaptivity. Int J Numer Meth Eng 40:4119–4136

    Article  MATH  Google Scholar 

  9. Cao W (2005) On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle. SIAM J Numer Anal 43:19–40

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen L (2004) Mesh smoothing schemes based on optimal Delaunay triangulations. In: Proceedings of 13th international meshing roundtable

  11. Chen L, Sun P, Xu J (2007) Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Math Comp 76:179–204

    Article  MathSciNet  MATH  Google Scholar 

  12. Courty F, Leservoisier D, George PL, Dervieux A (2006) Continuous metric and mesh adaptation. Appl Numer Math 56:117–145

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Azevedo E, Simpson R (1989) On optimal interpolation triangle incidences. SIAM J Sci Comput 10:1063–1075

    Article  MathSciNet  MATH  Google Scholar 

  14. Dompierre J, Vallet MG, Bourgault Y, Fortin M, Habashi W (2002) Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver independent CFD. Part III: unstructured meshes. Int J Numer Meth Fluids 39:675–702

    Article  MathSciNet  MATH  Google Scholar 

  15. Felippa C (1976) Optimization of finite element grids by direct energy search. Appl Math Model 1:93–96

    Article  MATH  Google Scholar 

  16. Field D (2000) Qualitative measures for initial meshes. Int J Numer Meth Eng 47:887–906

    Article  MATH  Google Scholar 

  17. Fletcher R (1987) Practical methods of optimization. Wiley, New York

  18. Frey P, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comput Methods Appl Mech Eng 194:5068–5082

    Article  MathSciNet  MATH  Google Scholar 

  19. Hager W, Zhang H (2006) Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans Math Softw 32:113–137

    Article  MathSciNet  Google Scholar 

  20. Hetmaniuk U, Knupp P (2008) Mesh optimization algorithms to decrease the linear interpolation error. SAND Report

  21. Huang W (2006) Mathematical principles of anisotropic mesh adaptation. Commun Comput Phys 1:276–310

    Google Scholar 

  22. Jimack P, Mahmood R, Walkley M, Berzins M (2002) A multilevel approach for obtaining locally optimal finite element meshes. Adv Eng Softw 33:403–415

    Article  MATH  Google Scholar 

  23. Lagüe JF (2006) Optimisation de maillage basée sur une erreur locale d’interpolation. PhD thesis, Université de Paris VI

  24. Mesquite, Mesh quality improvement toolkit. See http://www.cs.sandia.gov/optimization/knupp/Mesquite.html

  25. Remacle JF, Li X, Shephard M, Flaherty J (2005) Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int J Numer Meth Eng 62:899–923

    Article  MathSciNet  MATH  Google Scholar 

  26. Rippa S (1992) Long and thin triangles can be good for linear interpolation. SIAM J Numer Anal 29:257–270

    Article  MathSciNet  MATH  Google Scholar 

  27. Roe P, Nishikawa H (2002) Adaptive grid generation by minimizing residuals. Int J Numer Meth Fluids 40:121–136

    Article  MathSciNet  MATH  Google Scholar 

  28. Tourigny Y, Hülsemann F (1998) A new moving mesh algorithm for the finite element solution of variational problems. SIAM J Numer Anal 35:1416–1438

    Article  MathSciNet  MATH  Google Scholar 

  29. Tourigny Y (2005) The optimisation of the mesh in first-order systems least-squares methods. J Sci Comput 24:219–245

    Article  MathSciNet  MATH  Google Scholar 

  30. Vallet MG, Manole C, Dompierre J, Dufour S, Guibault F (2007) Numerical comparison of some Hessian recovery techniques. Int J Numer Meth Eng 72:987–1007

    Article  MathSciNet  MATH  Google Scholar 

  31. Walkley M, Jimack P, Berzins M (2002) Anisotropic adaptivity for the finite element solutions of three-dimensional convection-dominated problems. Int J Numer Meth Fluids 40:551–559

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Hetmaniuk.

Additional information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetmaniuk, U., Knupp, P. A mesh optimization algorithm to decrease the maximum interpolation error of linear triangular finite elements. Engineering with Computers 27, 3–15 (2011). https://doi.org/10.1007/s00366-010-0176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-010-0176-8

Keywords

Navigation