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duced to a 2-D optimization problem. Several applications
of this method are presented.
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Simultaneous aligning
and smoothing of surface 1 Introduction
triangulations

The numerical simulation of physical problems requires the
internal boundaries and discontinuities to be properlyaep
sented. Usually, the largest errors are introduced in ahreig
borhood of such discontinuities. These errors are ofteatgre
ly reduced if the mesh is aligned with the discontinuities.
That is why it is desirable to have a procedure capable of
deforming a given triangulation to get its alignment with
Received: 27 Febrary 2009 / Accepted: date a curve. Although there are numerous works dealing with
surface mesh optimization, see for example [10,11], only a
few of them address the problem of the exact mesh align-
Abstract In this work we develop a procedure to deform ament with interior curves. In fact, the only paper that we
given surface triangulation to obtain its alignment wittein have found in the bibliography tackling this question in-sim
rior curves. These curves are defined by splines in a paramelar terms, but for quadrilateral grids is [13]. The authors
ric space and, subsequently, mapped to the surface triangeensider the problem of aligning a planar grid with multiple
lation. We have restricted our study to orthogonal mappinggmbedded curves defined by basic segments as straight lines
so we require the curves to be included in a patch of th@r arcs of circle. A different approach to the problem can be
surface that can be orthogonally projected onto a plane (odieund in [3], where the curve is approximated by a polyg-
parametric space). For example, the curves can represent @nal line included in the surface triangulation, but in this
terfaces between different materials or boundary conutio case the segments are not edges of the mesh. The paper [20]
internal boundaries or feature lines. Another setting ilcwh ~ presents a variant of Ruppert’s algorithm for producing a 2-
this procedure can be used is the adaption of a referend2 Delaunay triangulation of a domain containing arbitrary
mesh to changing curves in the course of an evolutionargurved inputs. Nevertheless, this algorithm does not adlow
process. Specifically, we propose a new method that moveétynamical adaption of the mesh without remeshing.
the nodes of the mesh, maintaining its topology, in order The work that we describe in this paper is an enhanced
to achieve two objectives simultaneously: the piecewise apversion of [7]. The procedure aligns a given surface triangu
proximation of the curves by edges of the surface triangulalation with an arbitrary curve and it is based on the surface
tion and the optimization of the resulting mesh. We will des-mesh smoothing technique proposed in [5]. An analytical
ignate this procedure @sojecting/smoothingnethod and it  representation of the curve is not usually available. bute
is based on the smoothing technique that we have introducéiis approximately known by a sequence of interpolating
for surface triangulations in previous works. The mesh-qualdata points. We have chosen a parametric cubic spline as
ity improvement is obtained by an iterative process wherénterpolating curve due it i€? continuous and it has other
eachfree nodeis moved to a new position that minimizes a interesting properties that will be used later. Obvioutig,
certain objective function. The minimization process isglo grade of approximation of the curve depends on the element
on the parametric plane attending to the surface piece-wistizes, therefore, a good strategy is to combine the project-
approximation and to an algebraic quality measumedgn  ing/smoothing technique with a local mesh refinement [12].
ratio) of the set of triangles that are connected to filee = Our procedure is specially indicated for evolutionary prob
node So, the 3-D local projecting/smoothing problem is re-lems where the boundaries change their shape or position
with time; for example, the ones related to fluid-structure
interactions involving large displacement (see, for exi@mp
J.M. Escobar R. Montenegro E. Rodriguez G. Montero [22]), or crack modeling. The projecting/smoothing tech-
Instit_ute for _Intell_igent Systems and Numerical Applicmﬁ in_ Engi- nique could be also applied to domain decomposition, defi-
P;?JIQE‘TL;HE%%S Il:zz E,zmzz 3§ grriﬂ gzﬂirr'iz” gggﬁumatm nition of mater.ial [ pterfaces, free bqundary problems, et(?
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responding modification, able to untangle and smooth plantie free node. In this context the 2-D (or 3-D) feasible re-
triangulations simultaneously. The projecting/smoagmre-  gion is the set of points where the free node could be placed
thod is initially analyzed for plane triangulations in dent  to get avalid local mesh, that is, withouihverted elements
4 and, afterward, it is extended to triangulations defined oifhe barrier has an important role because it avoids the op-
curved surfaces in section 5. Section 6 is devoted to appltimization algorithm to create a tangled mesh when it starts
cations. The paper concludes with a brief discussion of thevith a valid one. We show in [5] a procedure for smooth-
work and its possible extensions. ing surface triangulations taking into account these aspec
The basic idea lies in transforming the original problem on
2 into a two-dimensional one on a plaRe To do this, the
2 Statement of the Projecting/Smoothing Method local meshM(p), belonging tdls, is orthogonally projected
onto a planeP performing a local mesh(q), wherep is
Let C be a curve, and suppose that it is embedded in a suthe free node o andq is its orthogonal projection onto
face triangulatiorTs (see Figure 3). The basic idea of the P. The planeP is suitably chosen in terms ®(p) in order
projecting/smoothing method lies in relocating the nodes oto get a valid mesh oR (see Figure 3). Thus, the optimiza-
Ts closest taC in positions just sited in the curve. This op- tion of M(p) is got by the appropriate optimization N{q).
eration, which we will refer to as node projection onto thelt involves the construction ofleal triangles inN(q) that
curve, goes on until getting an approximate representatiobnecome near equilateral M(p).
(interpolation) ofC by linked edges ofs. A node ofTs is
consideredprojectableif we can displace it from its initial
position to any point o€ in such a way the local mesh does
not gettangled This projection implies an enforced alter-
ation of the original positions of the nodes and, in general,
has a negative effect on the quality of the triangles close to
C. To avoid this drawback, the remaining nodes are also dis-
placed to new positions following the smoothing procedure
proposed in [5].

Fig. 2 The curveQ intersects the feasible regioffy (in gray) and,
therefore, the nodeis projectable, being' its optimal position on the
curve

When X is a curved surface, each triangle Mf p) is
placed on a different plane. Therefore, it is not possible to
define the feasible region associated to the free podiev-
ertheless, the feasible region associated to nasiperfectly
defined in plané and it is denoted agz3. Furthermore, its
associated objective function has a barrier at the boundary
of g (see [6]). This is a crucial reason for working &n
instead of or>.

In the present work the cun@ is defined as the image
of a curveQ sited on a plan®. Specifically, if we define a

For 2-D (or 3-D) meshes, the quality improvement canplane curve by the parametrizatiQfu) = (x(u),y(u)) and
be obtained by an iterative process where each node of thvee consider thaf (x,y) is thez coordinate of the underlay-
mesh is moved to a new position that minimizes an objecing surface (the true surface, if it is known, or the piece-
tive function derived from certaialgebraic quality measure wise linear interpolation, if it is not), then the cur@is
of the local mesh [16,9]. The objective function presents aiven byC(u) = (x(u),y(u), f (x(u),y(u))) (see Figure 3).
barrier in the boundary of thieasible regiorassociated to We note that this type of parametrization can be straight-

Fig. 1 The relocation of nodg € X is performed in the plan by
projectingg on Q and, consequentlyy onC



. . : 2
forward introduced in the nemeccananethod which has  fynction associated toth triangle is%, and the corre-

been recently developed by the authors [4]. We remark alsgpnonding objective function for the local mesh is
that, although the surface mesh smoothing process can be
carried out in different planes chosen in termavifp) [5], N 1
the particular way in whicl€ is defined in the present pa- ¥ (1Sn "
p y p p Jé(n ’n(x) - l (L) (x)] (1)

per demands a unique plane. A general parametric cur 20m
C(u) = ill b idered in fut ks. . . .
W : O(u), y(u), 2(u)) wi © considered in ILTUre works. beingn an integer number, typically=1 orn= 2.
Since the problem of getting a piecewise approximation The feasible region for the local mesh is defined as the
of C by edges ofTs is translated to the plan@, the task 9 M
to determine if a nodg can be projected ontQ and, that interior of the polygonal se#Zg = () Hm, whereHy, are
being the case, which is its optimal position, is undertake@he half-planes defined bgm (x)

b biective f ion derived f laebrai i > 0. We say that a trian-
y an objective function erivedirom algebraic ‘?“a_'ty mea gle isinvertedif o < 0. The objective function (1) presents
sures of the local mesK(q). This objective function incor-

h dificati qi i q q a barrier in the boundary of the feasible region. This bar-
porates the modifications proposed in [6] in order to eaheravoidsthe optimization method to create a tangled mesh

\('jv_'th tangéed meshes. O:V'OU,SIY' 2 controlr]of thel al_lowfethen it starts with a valid one, but, on the other hand, it pre-
istance betweell (p) andM(p') is done in the analysis o vents the algorithm to untangle it when there are inverted

the movement of node: elements. Therefore, this objective function is only appro
priate to improve the quality of a valid mesh, not to untangle
it. To construct an objective function applicable to deahwi

3 Smoothing and Untangling of Plane Triangulations tangled meshes we propose to modify it following the crite-
ria developed in [6]. This modification lies in substitutiag

Firstly, we will focus our attention on finding an objective in (1) by the positive and increasing function

function to smooth a valid plane triangulation. As it is simow

in [9], [14], and [15] we can derive optimization functions 1

from algebraic quality measures of the elements belongina(a) - §(0+ 02+46?) (2)

to alocal mesh. Let us consider a triangular mgstefined

in R? and lett be a triangle in the physical space whose

vertices are given by = (xk,yk)T € R? k=0,1,2. To start

with, we introduce an algebraic quality measuretioket

tr be the reference triangle with verticeg= (0, O)T, U =

(1,0)T, anduy = (0,1)". If we choosexp as the translation

vector, the affine map that takistot is x = Au+ Xg, where /

Alis the Jacobian matrix of the affine map referenced to node /

Xo, given byA = (X1 — Xo,X2 — Xp). We will denote this type /7

of affine maps as$r At Let nowt, be anideal triangle 7

whose vertices aney € R?, (k= 0,1,2) and letM = (w1 — 4

Wo, W2 — Wp) be the Jacobian matrix, referenced to nogde 716

of the affine mapgr W, t| ; then, we defineS= AV\(1 as ’

/
the weighted Jacobian matrix of the affine ntap% t. In 7
the particular case thtwas the equilateral triangte, the

Jacobian matrisM = We will be defined bywg = (0,07,
wi = (1,0)T andw, = (1/2,v/3/2).

We can use matrix norms, determinant or trace ¢d The behavior oh(0o) in function of & parameter is such
construct algebraic quality measurest oFor example, the  that, limh(o) = o, vo > 0 and limh(0) = 0,0 < 0. Thus,
Frobenius norm of5, defined by|S = \/tr (S'S), is spe-  if int .7 + 0, thenvx € int. /% we havegy (x) > 0, form=
cially indicated because it is easily computable. Thuss iti1 2 ... M and, as smaller values fare choserh (ap,) be-
shown in [16] thatq, = ‘23;‘2 is an algebraic quality mea- haves very much agm, so that, the original objective func-
sure oft, whereo = det(S). We use this quality measure to tion and its corresponding modified version are very close
construct an objective function. Let= (x,y)" be the posi- in the feasible region.
tion vector of the free nodg, and letS;, be the weighted In this way, the barrier associated with the singularities
Jacobian matrix of then-th triangle of a valid local mesh of |K;| (x) will be eliminated and the modified objective
N(q) composed oM triangles, see Figure 2. The objective function will be smooth all oveR?

m=1

where the parametér= h(0) is an appropriate small value.

Fig. 3 Representation of functiom(cg).



In many situations of practical interest we do not have
" N 1 an analytical representation &, but Q is approximately
\K’ | (x) = [Z < |Sm ) ( )] 3) known _by a sequence qf mterpol_atlng data points. Among
Min &\ 2h(om) the options to define an interpolating curve, we have chosen
a parametric cubic spline as it has many desired propeitties:
This new objective function strongly penalizes the neg4s ac? continuous function, it has a very simple local form,
ative values ofo, so that the minimization process of (3) small oscillations, etc. Moreover, each segment of thaepli
leads to the construction of a local mesty’) without in- 5 a degree 3 Bézier curve that lies within the convex hull
verted triangles, provided it is possible. Note that theimin of its four defining control points (see, for example [1]). We

mum of original and modified functions are nearly identicalyj|| use this property in order to know if a given node is
when 7y # 0 andd tends to zero. With this approach, we ¢jpse to some segment Qf

can use any standard and efficient unconstrained optimiza- | et {R,,Py,..., Ry} C R? be a set of interpolating points
function, see for example [2].

Q(u) = (x(u),y(u)), whereu € [uo, U] ()

is an interpolating curve that satisfi€{u;) = R for i =

Node movement provides the mesh with the ability to align0,...,m and two additional constraints in order to be fully
with an arbitrary curve. Suppose tl@ats a curve defined on defined. Usually, these constraints are imposed at the ends
a 2-D triangulationTp, our objective is to move some nodes of the curve. For example, it is well known that the condi-
of Tp, projecting them ont®, to get an interpolation o  tionsQ’(up) = 0 andQ’(uy) = 0 define a spline known as
by linked edges ofp. To achieve this objective we have to natural
decide which nodes dfp can be projected ontQ without Every segment of the spline delimited by two consec-
inverting any triangle of its local mesh. More accuratelg, w utive interpolating points is a degree 3 polynomial. Sup-
say that the free node is projectable ontd if there are  pose thatQi(t) = a + b't + ¢'t? + d't3, with a, b', ¢ and
points of this curve belonging to the feasible regi# (see d' in R2, is the polynomial associated to the segmént
Figure 2). (i=0,1,...,m—1) that runs fronB to P 1, beingt € [0, 1]

In general, ifq is projectable, its possible placement onthe local parameter, see Figure 4. This one is related wéth th
Q s not unique. The projecting/smoothing method must deparameter of the entire curve by= (u—u;) / (Ui11 — Uj).
termine ifg can be projected ont@ and, if so, which is its
optimal position. The last question can be answered by using
the objective function (3) subject to the constraied Q. 4.2 Node Projection onto the Curve

Thus, the problem of finding the optimal position to project ) _ )
the free node onto the curve is The Q; segment also is a degree 3 Bézier curve, given by

Q(t) = y3_uiB} (t) with t € [0,1], whereB} (t) are the

Berstein polynomials arldj € R? are the control points. The
minimize|Kp | (x), subject toc € Q (4)  relation between the polynomial coefficients and the céntro
points are given by

4 Alignment of Plane Triangulations

If X is the position vector of the minimizing point of
(4) ando (x) > 0 for all triangle ofN(q'), we conclude that
a

g is projectable ont® andx is its optimal position. Other- uiO 3 0 0 O

wise, we say that nodgis not projectable. uy _ 13 1 0 O b_' ©6)
us 313 2 1 0 c
u 3 3 3 3/\d

4.1 Curve Definition

As we said, an interesting property of the Bézier curves
The previous criterion allows us to determine whethés  establishes that thg; segment lies within the convex hull of
projectable ontdQ or not, but it involves a high computa- its control points. If CH denotes the convex hull of a set of
tional cost because it needs to solve the constrained mimpoints, we hav€); C CH (uio,...,ug). Note that a necessary
imization problem (4). Nevertheless, it is clear that most(but not sufficient) condition for the nodgo be projectable
nodes ofTp are not projectable because they are very faonto Q is that its feasible regiory intersects the convex
from any point of the curve. Therefore, it is convenient tohull of some segment of the curve. In other words, it must
have an efficient method to select those nodes, close to soregist a segmer®; such that’zgNCH (ub, ..., u}) # 0. This
segment of), expected to be projectable. property allows us to know beforehand which nodes are not



projectable, because they yield an empty intersectionlfor amainder nodes, following the procedure described in sectio
segments of the curve. Nevertheless, calculating the#get 3, it is better to tighten the conditiony, (%) > 0 enforcing
and, moreover, its intersection with a convex set, is not @, (%) > &, with € > 0 a prescribed tolerance. Neverthe-
trivial problem, so it is more advisable to deal with a simpli less, this more restrictive condition makes it difficult foe
fied version. nodes to be projected onto the curve and it could produce
Let Rq andRq, be the minimal rectangles, with sides par- situations where some sections of the curve are not interpo-
allel to the axes, enclosing the sbt&)) and CH(uio,...,uis), lated by edges ofp. This drawback will be studied in the
respectively. Then, due t&¢g C Ry, it is clear thaig is pro-  next subsection but, for that purpose, it needs furtheifilar
jectable ontoQ; only if RyN Ry # 0 (see Figure 4). The cation.
computation of this intersection allows us to take a quick  Up to now, we have accepted that parametpertains
decision about if a node is candidate to be projected ontto the closed intervdD, 1] and, in consequence, the problem
the curve. (7) admits a global minimum. But, with this consideration,
the ends of the consecutive segments are shared and, there-
fore, a projected point can belong to two segments at the
same time. In order to avoid this ambiguity, we will assume
that each segme (t) is defined fort € [0,1), except the
last one, that it is fot € [0,1] if the curve is open. In this
way, each point of the curve belongs to a unique segment.

4.3 Discontinuities of the Mesh Alignment with the Curve

It can happen that, after repositioning all the nodes of the
mesh, the piecewise approximation@fby edges oflp is

not continuous. We can detect this discontinuity if we take

into account that the projected nodes are arranged in the
curve. Thus, a section of the interpolated curve among two
consecutive projected nodes is discontinuous if they are no
connected by an edge ®f.

Fig. 4 The figure shows the situation in whiély N"Rg, # 0, but node
g is not projectable because the optimal position for the frede,q,
is outside the feasible region

The algorithm to determine if| is projectable ontd
and, if it is so, which is its optimal position, can be sum-

marized as follows. For each segment of the curve analyze 4
RqNRg and, if this set is not empty, solve the minimization ()
problem

minimize|Ky | (Qi(t)), fort € [0,1] 7)

Lett be the global minimum of (7) and = Q (t) the
corresponding position of the free noglen the segmen®;.
We say thab is anadmissibleoptimal position for the free
node ifom (%) > 0 form=1,...,M. In order to determine
the optimal position of the free node @) we take Xt as
the best admissible position for all segme@tsObviously,
if no admissible position exists, the conclusion of pregiou
algorithm is that nodq is not projectable ont@.

Note that an admissible projection of a free nodeQn Fig. 5 The dashed line is non-recoverable without tangling thehmes
can give rise to a local mesh with very poor quality. Al- (a). The free nodgis enforced to be projected (b). The tangled triangle
though this effect is partly palliated after smoothing the r abgis untangled and the nodsis also projected (c)




As the parameter € [0,1) induces an order relation in 5.1 Similarity Transformation for Surface and Parametric
each segment of the curve and, in turn, each segment is offriangulations
dered by its subindex, we can say that the npdeQ; pre-
cedesp’ € Qjif i < j or, in case of = |, if the correspond-
ing parameters satisfigg < ty. A possibility to correct a
detected discontinuity in the piecewise approximatio®of
is to relax the conditiown, (%) > €, by decreasing the value
of €. However, there are situations in which, even taking
equal to zero, there are discontinuities impossible todavoi
without removing some of the projected nodes. The Figure
5(a) shows a scheme of this problem. It can be seen that itis
impossible to project the nodg(neitherr) without tangling
the mesh. We propose a solution to this conflict by enforc-
ing the free node to be projected, even if a tangled mesh
is created. The Figure 5(b) shows how the movemernmt of
produces the tangled triangibg

Afterward, the position ofy is fixed for subsequent it-
erations of the projecting/smoothing algorithm, but the su
rounding nodes are free to move in search of their optimal
positions that untangle the mesh and complete the interpola
tion of the curve (see 5(c)). So, the algorithm extracts sode
from the curve if their current positions are not admissibleFig. 6 Local surface mestM(p), and its projectionN(g), on planeP
(see the new position of no@en figure 5(c)).

Sometimes the curve represented by splines has sharp
features that we want to preserve in the piecewise interpola  SUPPOSe that for each local mebf(p) placed on the
tion. To reach this objective we select, from the interotpt  SuUrfaceZ, that is, with all its nodes oa, it is possible to
points, a set oprescribedpoints sited in strategic locations. INd @ planeP such that the orthogonal projection i p)
Once the projecting/smoothing process has finished, the AnPisa V?‘I'd mestN(q). In present work we assume that.
gorithm searches among the nodes projecte@omhich the _plane is t_he same for all the local meshes mvplved in
one is the optimal candidate, sayto be relocated in the the m_terpolatlon ofC. Suppose, as WeII,.thz_;\t we .deflne the
position of each prescribed nodeXifres is the position of =~ 3X€S 1N -su/ch a way that they-plane coincide withP. If,
certain prescribed point, the nodgis chosen, among the at least wy%_, it is possible to define the su.rfa(z'eby .the
nodes projected 0@ and close t&pres as the one that max- parametrizatios(x,y) = (x.y; f(x,y)), wheref is a continu-
imizes the quality oN (g) wheng is enforced to take the ©US function, then, we can optimix(p) by an appropriate
positionXpres Obviously, ifN (q) is not valid after the re- OPtimization ofN(q). We will refer toN(q) as theparamet-
location ofg, a new iteration of the projecting/smoothing ric mesh The basic idea consists of finding the position of

procedure must be done, keeping fixed the positioq iof q i_n g that mgkewl(p) be an optimum local mesh. T_O do
this, we searclideal elements irN(q) that become equilat-

X
pres eral inM(p).
_ Let T € M(p) be a triangular element ab whose ver-
5 Extension to Curved Surfaces tices are given by, = (Xk,Yk,Zk)T, (k= 0,1,2) andtg be

) ) ) o ) the reference triangle iR (see Fig. 6). If we choosg, as
We are interested in extending the projecting/smoothing M, o translation vector. the affine mad™ Tisy — A Ut
thod to curved surfaces. As we pointed in section 2, the ' i Y =Anll Yo,

original problem onZ is transformed into another one on Y]V;cec:t?i:rllsrr:g(teri;ecﬁscrar?fb; gsn(enc_pomt df ar)1dAn IS its
the planeP, where the projecting/smoothing process is per- L 9 N _yl Yo.y2—Yo). L
Now, consider that € N(q) is the orthogonal projection

formed. The more significant difference with respect to the X T
former method lies in searchirdeal triangles inN(q) that of TonP. Then, the vertlcesgfarexk = Myic= (¥
become equilateral i (p). This question was studied in [5] k=0, :,L7’ 2) Wherm =(e1,€) is2x3 .matrlx O.f the affine
with regard to smoothing of surface triangular meshes.4n ofmapT — t, being{e;, &, e3} the canonical basis iR> (the
der to be auto-consistent, we have considered appropuiate @sociated projector frof® to P, considered as a subspace
present in subsection 5.1 the main results of this work. 1t§f B>, is M7 17). Takingxo as translation vector, the affine
connection with the problem of mesh aligning with curvesmaptg A—P>t is X = Apu -+ Xo, whereAp = M Ay is its Jacobian

will be introduced in subsection 5.2. matrix Ap = (X1 — X0, X2 — X0)-



Therefore, the X 2 matrix of the affine mapL Tis

T = AsAst (8)

Let V; be the subspace spanned by the column vecto

of Ay and letrr be the plane defined By and the poin.
Our goal is to find thédeal trianglet; P, movingq onP,
such that, is mapped byl into an equilateral onag C 1.
In general, the strict fulfillment of this requirement is pnl
possible ifN(q) is formed by a unique triangle.

Due torank(A;) = rank(Ap) = 2, it exists a unique fac-
torizationA,; = QR whereQ s an orthogonal matrixg' Q =
I) andRis an upper triangular one witlR]; > 0 (i = 1,2).
The columns of the & 2 matrix Q define an orthonormal
basis{qgi,q,} that span¥/z, so we can se® as the matrix

of the affine mapgr L Tr andR as the 2 2 Jacobian matrix
of the affine mapr Ry (see Fig. 6). ASRV\—/E> te andQis

S = AW ISWAL! = SS§ 1 (14)
whereSe = ApWg lis theequilateral-weightedacobian ma-
trix of the affine mape -3 Finally, from (3), we obtain the

Is

next similarity transformation.

S=§'ss (15)

Therefore, it can be said that the matricand S are
similar.

5.2 Projecting and Smoothing on the Parametric Space

Matrix S, as it is defined in (15), might be used to construct
the objective function associated k(p) and, then, solve
the optimization problem. Nevertheless, this proceduse ha

an orthogonal matrix that keeps the angles and norms of trg'Portant disadvantages. First, the optimizationM(p),

vectors, therg L Te and, therefore

QWe = AR Wk ©)

is the 3x 2 Jacobian matrix of affine mdp e Te. On the
other hand, we define on the plare

S=Rw? (10)

working on the true surface, would require the imposition
of the constrainp € . It would complicate the resolution

of the problem because, in many casess not defined by

a smooth function. Moreover, when the local meédkp)

is on a curved surface, each triangle is sited on a different
plane and the objective function, constructed frEplacks
barriers. It is impossible to define a feasible region in the
same way as it was done at section 3. Indeed, all the posi-
tions of the free node, except those that makéSjet O for

any triangle, produce correct triangulationshdfp). How-
ever, for many purposes as, for example, to construct a 3-D

as the 2< 2 weighted Jacobian matrix of the affine map thatmesh from the surface triangulation, there are unacceptabl

transforms the equilateral triangle into the physical dnat
is, Tg S

We have chosen as ideal trianglerithe equilateral one
(1) = 1£), then, the Jacobian matri¥ of the affine map

tr W, t) is calculated by imposing the conditidiyf = QWg,
becauser ™ T andtg QUe Te. Taking into account (9), it
yields

TW = AR W (11)

and, from (8), we obtain

W = ApR W (12)

so we define o theideal-weightedlacobian matrix of the
affine map, it as§ = ApV\/,*1. From (12) it results

S = ApW IRASE (13)

and, from (10)

positions of the free node.

To overcome these difficulties we propose to carry out
the optimization ofM(p) in an indirect way, working on
N(q). With this approach the movement of the free node will
be restricted ta/7g, which avoids unacceptable surface tri-
angulations to be formed.

Let us consider that = (x,y)" is the position vector of
the free nodey, sited on the plan®. If we suppose that
2 is parametrized bg(x,y) = (x,y, f(x,y)), then, the po-
sition of the free node on the surface is given by =
(XY, f(va))T = (x, f(x))T

Note thatS: = Apr1 only depends or becaus®\k is
constant andyp is a function ofx. Besides§ = ApV\/l’1 de-
pends ory, due tof = ApR~ W, andRiis a function ofy.
Thus, we havéx (x) andS (y). We shall optimize the local
meshM(p) by an iterative procedure maintaining constant
W (y) in each step. To do this, at the first step, weViiXy)
to its initial value, W =W (y°), wherey® is given by the
initial position of p. So, if we defines” (x) = Ap (x) (W) 1,
we approximate the similarity transformation (15) as

LX) =SS XS (x) (16)



Now, the construction of the objective function is carried
out in a standard way following equation (1), but usify

1
instead ofS. So, the objective function for a given triangle M |§r)n‘2 " "

Nk . K| 0= |3 (5zar ] (22)
T C 1S ‘5o, whereo® (x) = det( S (x)). n =1 (Om)

With this approach the optimization of the local mesh o ) )
M(p) is transformed into a two-dimensional problem with- We have transformed the original smoothing problem in

out constraints, defined oN(q), and, therefore, it can be & two-dimensiorlal approach CFh due to (21) i? a function
solved with low computational cost. Furthermore, if we writ Of X @ndy coordinates, exclusively. The algorithm to deter-
VV|0 asAg(RO)*lva, whereAg —Ap (XO) andR® — R(yO)’ mine thg opumal projection of a frge no_qhee > pnto the
it is straightforward to show th& can be simplified as curveC is similar to the one described in section 4.2, but
using ‘Kg‘n given in (21) as objective function of the min-
1 imization problem (7). If the optimal projection of the free
§(X) =R (Ag) S (%) (17) nodeq onto Q is %pt, then, the corresponding position on
and our objective function for the local mesh is the surface is given b¥ept = (Sopt, f (Spt)) ", wheref (x)
is thez coordinate of the underlaying surface. If this one is
. not known analytically, we take the initial triangulatios a
o M ‘Scr)n‘Z " n reference surface. The algorithm follows the usual smooth-
‘Kn |n(x) = z (x) (18) ing procedure when the free node is not projectabl€on
1 The discontinuities of the mesh alignment with the curve
Let now analyze the behavior of the objective functionare solved by using the same idea of section 4.3.
when the free node crosses the boundary of the feasible re- Suppose thak! = X° is the minimizing point. As the
gion. Denotingrp = det(Ap), ad = det(A3), p° = det(R%),  objective function has been constructed by keeyiry its
we = det(We) and taking into account (17), we can write  initial position, y°, thenx? is only the first approximation
to our problem. This result is improved updating the ob-
I jective function aty! = (x%, f(x1))T and, then, computing
0 =p°%(aR) “apag? (19 the new minimizing poéitiorbg2 :))Yl. This local optimiza-
Note thato®, a and e are constants different of zero tion process is repeated, obtaining a sequeixt¢ of opti-
when the initial mesh is valid, so the singularities of (18)Mal points, until a convergence criteria is verified. We have
happens wheap = 0, that is, wherm is placed on the bound- €xperimentally verified in numerous tests, involving conti
ary of .. This singularity determines a barrier in the ob-U0US functions to define the surfae that this algorithm
jective function that prevents the optimization algoriton ~ CONverges [5].
take the free node outside this region. Remark that this bar- In order to prevent a loss of the details of the original
rier does not appear if we use the exact weighted Jacobigieometry when we are smoothing the mesh, our algorithm
matrix S, given in (15), due to déR) = Ry1Ry2 > 0. evaluates the difference of heighfd#]) between the cen-
We can reason as in section 3 to justify that objectivdroid of the triangles ofM(p) and the reference surface,
function (18) is appropriate for smoothing but not for untan €very time a new positior is calculated. If this distance
gling. The goal is to regularize the objective functiondeih ~ €xceeds a threshold)(p), the movement of the node is
ing a similar procedure as described in section 3. Note thaPorted and the previous position is stored. This threshold
when the mesh is tangled, they can appear degenerated trightP) is established attending to the size of the elements of
gles witha8 = 0 and, therefore, the matr® becomes sin- M(p). That is, the algorithm evaluates the average distance
gular. This singularity can be avoided by using the functiorPetween the free node and the nodes connected to it, and
h(o), see equation (2), and taking into account w)fl f[akeslA(p) as percentage of this distance. Other possibility
can be written az\S/aS, whereAS is the adjoint matrix of IS to fix A(p) as a constant for all local meshes. In the par-

AQ. Therefore, attending to (17) and (19), we can write thdicular case in which we have an explicit representation of
terms of (18) as the surface by a functiofi(x,y), A(p) can be established as

a percentage of the maximum difference of heights between
the original surface and the initial mesh.

0
204

[P _ |Ragse”  |RApsef”

20°  2(aQ)?0° 20 aRapak

(20)

6 Applications
Finally, if we write§® = RPASS: andd® = padapag?,
the regularized objective function able to untangle thehmesWe present two examples that show the behavior of the pro-
is jecting/smoothing technique. We have applied this tealniq



to Igea (see Figure 7), http://www.cyberware.com/, and to @ondition number proposed in [9]) increases fromdt to

humerus, http://www.ulb.ac.be/project/vakhum/ (seaifFdg 0.913. A more significant data is that average quality of the

10). The surface triangulation of Igea contains 67170 trianworst 100 triangles increases fron8@9 to 0575. We have

gles and 33587 nodes and the humerus has 70000 and 3500&dA (p) as 10% of average distance between the free node

nodes. and the nodes connected to it. More details about this appli-
cation can be seen in [18].

In order to reduce the computational cost of the align-
ment step, the projecting/smoothing process is carried out
on the surface patches associated to the mask and to the star.
: For this purpose we select the set of triangles whose cen-
UL troids are included in the reference windows of the mask
and of the star. Both windows are marked with dashing lines
in Figure 8. Then, we apply the projecting/smoothing pro-
cedure to these two sets separately. Note that, in the last
process, the boundary of each patch triangulation is fixed,
S0 we obtain an appropriate connection between the modi-
fied local meshes and the rest of the surface triangulation.
These ideas could be used for a parallel implementation of
7 the simultaneous aligning and smoothing local technique.
1\@;‘*?%?:«; i In Figure 10 it is presented a general view of the sur-

S face triangulation of Igea after applying 12 iterationskud t
aligning and smoothing procedure. The approximation of
the contours by edges of the resulting triangulation is medrk
After the application of our algorithm the values of mini-
mum and average qualities becom&@ (same value than
in previous meshes) and911, respectively. The average

Fig. 7 Original mesh of Igea (http://www.cyberware.com/)

Our goal is to obtain a new triangulation (maintaining
the initial topology) after applying the projecting/smbioig
procedure to reach the alignment of the new mesh with th
contours. As a first example we have chosen a mask and
star drawn on Igea’s face. The second application is a plati
similar to the one used in traumatology, placed close to th
humerus head. The contour of these objects is defined
splines which interpolate a few points placed in the para
metric plane.

In Figure 8 we show the polylines that connect the inter-
polating points of the mask and the star. In order to keep th
sharp angles, we have defined the star by using 10 splint
linking the 10 interpolating points. Moreover, these psint
are enforced to be presentin the final triangulation foltayvi
the procedure pointed at the end of section 4.3. We propos
the following strategy to get our objective.

Initially, we apply the smoothing technique [5] to the
whole triangulation. In this case, the projection planéig-c
sen in terms of the local mesh to be optimized. The result
ing mesh, after 4 iterations of our optimization procedure,
is shown in Figure 9. The value of the average mesh quakig. 8 Point input data for the definition of the curves, approxiorat
ity (measured with the algebraic quality metric based on thef the splines as polylines and reference windows
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Two details of the initial and final meshes (Figures 9 and
10) are shown in Figures 11(a) and (b), respectively. We rep-
resent the same marked edges before and after the local pro-
jecting/smoothing process. We note that it is very difficult
to determinea priori which are the best edges for a suit-
o N able approximation of the contours of the mask and the star.
However, the algorithm finds appropriate nodes (and conse-
quently edges) automatically.

N
N

i
Ve,

_
Q)

>t

Vo

%

VAN,

)

S
S

5%

X

AP

A
A&

NAVAS
A
ROy

2
V0

R
S

AL

s
X
A

=X

&S

DRSS
IO

‘
S
5

<

AL
DR
o

]

21

")
S, XN
0K P
il g SRR
s At
o ISKRTRR
K Savav A
PR
USR]
KA
(Wit
O
SO SRR \VAVZ AV4 ERE
5 NS ‘“*'ﬁi%ﬁ@i‘%ﬁ%‘%%?{"qm Wide
RN RO BIIBAAKIKTS Vi >, W
RANCKIART K IAAROKIN VANE}VE’{) AR R
R RN AR OB AR KL S TR ‘\0’“"5"‘"‘“‘“’"‘"‘
R NN KR RS K N A KA
3 KRR S RAR SO AR AR AR NI
KRRk I SIS SR PO K K AN
Oy VAN O SRR RO P
3 AT VAN A Yy v Ve iUy K
AP A s SNy SN elb g s e A i)
X NSt R WS AW 7 W s vt s )
o4 YRR ORRR AR : eSS )
A U RSO RAR e 2% R o
R PV QS ANV S b S B
SRR o AN N Al
5 i KA 2 AYAN ) %
(RIS O I KA TS R LR
R W DR A AR NP RN O
N MUATRERSIA AN NIAASA S MSEAANRI AN
X RO K SRS
R o i e PN AN N P RN
RE BRSSO AN S AN KR AATRREER
B ORI N AN SRR
: R ST i e LAV
A e e
i NN SO CRREREOA
MRS DRSS CORERL
g 4y KR
AN AT g <\IX R
i\ VA AR 41'w PRARKKNI
e ava S PR
LSRRI s e
Sy KKK
W
)

Fig. 9 Optimized mesh of Igea after 4 iterations of our smoothirag pr
cedure (@

K KANIAIR AACRE KK N ki
e s (s R
e S AN b
PR NN SRR KNSR DB AR AN
NNy ISR IR s
KN N Ao SR RISARAAKT Y alsgtil
i KR X N AT
e AR i e )
e LN "V‘V""‘VVAV PR i SRR G
a5 NS MRV \/ e e
X S 41%‘14'4"\'@3:{‘ ORI ; s
o R e »3:33;%}3»“.@;,?':,
K MIHA/DOES SXENY s s R o
L N RS S eSS
0 DTN jililrsee
s ik WA 4‘ RIS B I DX “ SVl 755
: R L O O R Do
i i St (e ANy N sy ess
i S RO \v%‘;{?&ﬁxqmy‘,lﬂﬂmg o S e R S
i R NIRRT e A SRS
i N RGOS AR R N
i B RSN R SAVASRESS A
‘ te e S 2 e )
e SR W i
RO \ SRNRRASB S KA
R RN \ 3 R RN AR K K KRR OR
s Vi S
ROSRRRE 8 o

AN
BN

L

2D

S
DAL
KEPER

X1
A
A v

5

K
i

020
V)

=2
RN
!

KRR

<

a0
7S

5

25
VA avaY
SRR

Fig. 11 Detail of the initial mesh of Igea with marked edges before
& ) projection (a). The same edges are remarked after the igohas

OB SHINE, i i

N;%As};‘fz‘é'a X / projected them onto the contours of the mask and the star (b)

NS SRR
e

5
5
YAV
';V
N

Pook
RIS
oS

e

KRR

A

R

2k

v/
o

o 5
In Figure 12 (a) is shown the optimized mesh of the
o i humerus after 5 iterations of the smoothing procedure ap-
HE plied to the whole triangulation. The mesh aligned to the
plate, after 15 iterations of the projecting/smoothinggero
dure, is shown in Figure 12 (b). Actually, only 6 iteratioris o
the last procedure have been necessary to get a continuous
curve that interpolates the plate. The remaining iteration
quality of the worst 100 triangles is®19. Therefore, the were done in order to smooth the mesh around the curve.
mesh qualities are similar before and after the applicaifon The average quality of the worst 100 triangles before the ap-

the projecting/smoothing technique. plication of the projecting/smoothing is4B and, after, is

Fig. 10 Aligned and optimized mesh of Igea after 12 iterations of the
local projecting/smoothing procedure
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Fig. 12 Optimized mesh of the humerus after 5 iterations of the shiogtprocedure (a). The aligned mesh after 15 iterationhi@fproject-

ing/smoothing procedure (b)

0.47, so this procedure has not a significant negative effecurface. Our method for aligning and smoothing of surface

on the mesh quality.

triangulations could be generalized by using a global para-
metric space (in similar terms as it is proposed in [8,21])
which makes the projection on a plane unnecessary. Gen-

eral parametric curves embedded on the surface will be con-

7 Concluding Remarks and Future Research

sidered. Another more ambitious generalization lies in ex-

In this paper we have introduced the projecting/smoothingending the present method to align a tetrahedral mesh with

technique which is able to align a surface triangulatiomwit interior surfaces. This is an open problem. It is clear that

arbitrary curves without producing

a significa the mesh alignment problem is not always possible to solve.

in general,

decrease in the minimum quality of the mesh

Indeed, th&enerally, the existence of an admissible solution can@ot b

quality and topology of

the initial mesh and regularity of the embedded curves.

average quality is increased in many cases as the remaindessured because it depends on size

part of the mesh undergoes a smoothing process.

In present work the curves have been defined by splines

whose interpolating points are fixed on a plane

Application

5

of this technique can be done in a straightforward manner.
for example, in environmental modeling [17, 19] for aliggin
topographic surface meshes to significant contours, as-coa
lines, river banks, etc. In addition, this particular cudedi-
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