Skip to main content
Log in

An object-oriented approach for mechanical components design and visualization

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, development of shape modeling tools for engineering design, analysis, simulation, and visualization is presented. The approach based on the idea of function-based shape modeling is combined with the power and versatility of the object-oriented programming (OOP). An OOP code, initially developed as a teaching and learning tool for educational use in an undergraduate Modeling and Simulation course, to generate mechanism components is presented. Different parametric, explicit, and implicit functions or their combination are used to generate mechanical components shapes. Using a blending process, sophisticated shapes have been generated on the graphical interface. However, the ideas and concept of the OOP mechanical components design presented in this paper can be applied to other application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bardis L, Patrikalakis NM (1989) Blending rational b-spline surfaces. Eurographics 89:453–462

    Google Scholar 

  2. Bloomenthal J (1988) Polygonization of implicit surfaces. Comput Aided Geom Des 5(4):341–355

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloomenthal J (eds) (1997) Introduction to implicit surfaces. Morgan Kaufmann Publishers Inc., San Francisco

    MATH  Google Scholar 

  4. Bloor MIG, Wilson MJ (1989) Generating blend surfaces using partial differential equations. Comput Aided Des 21:165–171

    Article  MATH  Google Scholar 

  5. Campbell M, Cheng HH (2007) Teaching computer-aided mechanism design and analysis using a high-level mechanism toolkit. Comput Appl Eng Educ 15:277–288

    Article  Google Scholar 

  6. Cartwright R, Adzhiev V, Pasko A, Goto Y, Kunii TL (2005) Web-based shape modeling with HyperFun. Computer graphics and applications, IEEE, pp 60–69

  7. Chaikin GM (1974) An algorithm for high speed curve generation. Comput Graphics Image Process 3:346–349

    Article  Google Scholar 

  8. Cheng HH, Trang DT (2006) Object-oriented interactive mechanism design and analysis. Eng Comput 21:237–246

    Article  Google Scholar 

  9. Cojocaru D, Karlsson AM (2008) An object-oriented approach for modeling and simulation of crack growth in cyclically loaded structures. Adv Eng Softw 39:995–1009

    Article  MATH  Google Scholar 

  10. Collins CL, McCarthy JM, Perez A, Su H (2002) The structure of an extensible Java applet for spatial linkage synthesis. J Comput Inf Sci Eng 2(45):45–50

    Article  Google Scholar 

  11. de Figueiredo LH (1996) Surface intersection using affine arithmetic. In: Proceedings of graphics interface’96, pp 168–175

  12. Dupac M (2007) Mechanism components generation and visualization using mathematical functions. In: Proceedings of the 2007 ASME early career technical conference (CD-ROM)

  13. Dupac M, Popirlan CI (2010) Web technologies for modelling and visualization. In: Shkelzen Cakaj (ed) Mechanical engineering, modeling simulation and optimization—tolerance and optimal control. ISBN: 978-953-307-056-8, InTech

  14. Dyn N, Levin D (2002) Subdivision schemes in geometric modeling. Acta Numer 11:73–144

    Article  MathSciNet  MATH  Google Scholar 

  15. Farin GE, Hoschek J, Kim M-S (2002) Handbook of computer aided geometric design. Elsevier, Amsterdam

    MATH  Google Scholar 

  16. Fayolle P-A, Schmitt B, Goto Y, Pasko A (2005) Web-based constructive shape modeling using real distance functions. IEICE Trans Inf Syst E88D(5):828–835

    Article  Google Scholar 

  17. Fougerolle Y, Gribok A, Foufou S, Truchetet F, Abidi M (2005) Boolean operations with implicit and parametric representation of primitives using R-functions. IEEE Trans Vis Comput Graphics 11(5):529–539

    Article  Google Scholar 

  18. Hartmann E (1995) Blending an implicit with a parametric surface. Comput Aided Geom Des 12:825–835

    Article  MathSciNet  MATH  Google Scholar 

  19. Hatna A, Grieve RJ, Broomhead P (2001) Surface blending for machining purposes: a brief survey and application for machining compound surfaces. J Eng Manuf 215(10):1397–1408

    Article  Google Scholar 

  20. Hoffmann CM (1990) Algebraic and numerical techniques for offsets and blends. In: Dahmrn W, Gasca M, Micchelli CA (eds). Kluwer, Dordrecht, pp 499–528

  21. Hoffmann C (1993) Implicit curves and surfaces in computer aided geometric design. IEEE Comput Graphics Appl 13(1):79–88

    Article  Google Scholar 

  22. Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. Taylor & Francis, London

    MATH  Google Scholar 

  23. Hui KC, Lai YH (2006) Smooth blending of subdivision surfaces. Comput Aided Des 38:786–799

    Article  Google Scholar 

  24. Kromera V, Dufosseb F, Gueurya M (2005) On the implementation of object-oriented philosophy for the design of a finite element code dedicated to multibody systems. Finite Elem Anal Des 41:493–520

    Article  Google Scholar 

  25. Larson J, Cheng HH (2000) Object-oriented cam design through the internet. J Intell Manuf 11(6):515–534

    Article  Google Scholar 

  26. Lee T, Bedi S, Dubey RN (1993) A parametric surface blending method for complex engineering objects. In: Proceedings on the 2nd ACM symposium on solid modeling and applications, SMA ’93. ACM, New York, pp 179–188

  27. Levinski K, Sourin A (2007) Interactive function-based shape modelling. Comput Graphics 31:66–76

    Article  Google Scholar 

  28. Liu Q, Sourin A (2006) Function-based shape modelling extension of the Virtual Reality Modelling Language. Comput Graphics 30(4):629–645

    Article  Google Scholar 

  29. Liu Z, Wang Z, Tan J, Fu Y, Wan C (2006) A virtual environment simulator for mechanical system dynamics with online interactive control. Adv Eng Softw 37(10):631–642

    Article  Google Scholar 

  30. Mackie RI (2004) Extensibility of finite element class systems—a case study. Comput Struct 82(23–26):2241–2249

    Article  Google Scholar 

  31. Metaxas D (1996) Physics-based deformable models. Kluwer, Dordrecht

    Google Scholar 

  32. Motza DS, Haghighi K (1991) A knowledge-based design model for mechanical components. Eng Appl Artif Intell 4(5):351–358

    Article  Google Scholar 

  33. Pantale O, Caperaa S, Rakotomalala R (2004) Development of an object-oriented finite element program: application to metal-forming and impact simulations. J Comput Appl Math 168:341–351

    Article  MATH  Google Scholar 

  34. Pasko G, Pasko A, Kunii T (2005) Bounded blending for function-based shape modeling. IEEE Comput Graph Appl 25(2):36–45

    Article  Google Scholar 

  35. Popirlan C, Dupac M (2008) A web-based approach for 3D mechanism components modeling and visualization. In: Proceedings of the 17th IASTED international conference on applied simulation and modelling, paper no. 609-080, pp 123–129

  36. Pratt MJ, Geisow AD (1986) Surface/surface intersection problems. In: Gregory JA (eds) The mathematics of surfaces, vol 16. Clarendon Press, Oxford, pp 117–142

  37. Qiao H (2006) Object-oriented programming for the boundary element method in two-dimensional heat transfer analysis. Adv Eng Softw 37:248–259

    Article  Google Scholar 

  38. Santos C (1994) Design and implementation of an object-oriented view mechanism. GOODSTEP ESPRIT–III No. 6115, GOODSTEP Technical Report No. 7, pp 1–22

  39. Sederberg T (1983) Implicit and parametric curves and surface for computer-aided geometric design. PhD dissertation, Purdue University

  40. Seth A, Su H-J, Vance JM (2006) SHARP: a system for haptic assembly and realistic prototyping. In: Proceedings of the DETC’06/CIE-99476, pp 1–9

  41. Siemers A, Fritzson D (2009) Visualisation and data representation for large scale multibody simulations with detailed contact analysis: a case study. Simul Model Pract Theory 17:1130–1142

    Article  Google Scholar 

  42. Su H, Collins C, McCarthy JM (2002) An extensible Java applet for spatial linkage synthesis. In: Proceedings of DETC2002/MECH-34371, pp 1–8

  43. Terzopoulos D, Metaxas D (1991) Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Trans Pattern Anal Mach Intell 13:703–714

    Article  Google Scholar 

  44. Ullman DG (1997) The mechanical design process, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  45. Ünsalan C, Erçil A (2001) Conversions between parametric and implicit forms using polar/spherical coordinate representations. Comput Vis Image Underst 81(1):1–25

    Article  MATH  Google Scholar 

  46. Woodwark JR (1987) Blends in geometric modeling. In: Martin RR (ed) The mathematics of surfaces. Oxford University Press, Oxford, pp 255–297

    Google Scholar 

  47. Woonga M, Chaa J-H, Parka J-H, Kangb M (1999) Development of an intelligent design system for embodiment design of machine tools. CIRP Ann Manuf Technol 48(1):329–332

    Article  Google Scholar 

  48. Xue D, Yang H (2004) A concurrent engineering-oriented design database representation model. Comput Aided Des 36:947–965

    Article  Google Scholar 

  49. Yan Y, Tan ST (2004) Adding draft angles on mechanical components containing constant radius blending surfaces. Comput Aided Des 36:565–580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dupac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupac, M. An object-oriented approach for mechanical components design and visualization. Engineering with Computers 28, 95–107 (2012). https://doi.org/10.1007/s00366-011-0220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0220-3

Keywords

Navigation