Skip to main content
Log in

Form-finding of tensegrity structures using double singular value decomposition

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A numerical form-finding procedure of tensegrity structures is developed. The only required information is the topology and the types of members. The singular value decompositions of the force density and equilibrium matrices are performed iteratively to find the feasible sets of nodal coordinates and force densities which satisfy the minimum required deficiencies of these two matrices, respectively. An approach of defining a unique configuration of tensegrity structure by specifying an independent set of nodal coordinates is provided. An explanation is given for the preservation in self-equilibrium status of the tensegrity structures under affine transformation. Two- and three-dimensional examples are illustrated to demonstrate the efficiency and robustness of the proposed method in searching stable self-equilibrium configurations of tensegrity structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Fuller RB (1975) Synergetics-explorations in the geometry of thinking. Macmillan Publishing, London

    Google Scholar 

  2. Tibert AG, Pellegrino S (2002) Deployable tensegrity reflectors for small satellites. J Spacecraft Rockets 39:701–709

    Article  Google Scholar 

  3. Fu F (2005) Structural behavior and design methods of tensegrity domes. J Constr Steel Res 61:23–35

    Article  Google Scholar 

  4. Tran HC, Lee J (2010) Initial self-stress design of tensegrity grid structures. Comput Struct 88:558–566

    Article  Google Scholar 

  5. Kebiche K, Kazi-Aoual MN, Motro R (1999) Geometrical non-linear analysis of tensegrity systems. Eng Struct 21:864–876

    Article  Google Scholar 

  6. Rhode-Barbarigos L, Ali NBH, Motro R, Smith IFC (2010) Designing tensegrity modules for pedestrian bridges. Eng Struct 32:1158–1167

    Article  Google Scholar 

  7. Tran HC, Lee J (2010) Self-stress design of tensegrity grid structures with exostresses. Int J Solids Struct 47:2660–2671

    Article  MATH  Google Scholar 

  8. Rhode-Barbarigos L, Jain H, Kripakaran P, Smith IFC (2010) Design of tensegrity structures using parametric analysis and stochastic search. Eng Comput 26:193–203

    Article  Google Scholar 

  9. Nuhoglu A, Korkmaz KA (2010) A practical approach for nonlinear analysis of tensegrity systems. Eng Comput (available online)

  10. Ingber DE (1998) The architecture of life. Sci Am 278:48–57

    Article  Google Scholar 

  11. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  Google Scholar 

  12. Stamenovic D (2005) Effects of cytoskeletal prestress on cell rheological behavior. Acta Biomater 1:255–262

    Article  Google Scholar 

  13. Pirentis AP, Lazopoulos KA (2006) On the elastica solution of a T3 tensegrity structure. Arch Appl Mech 76:481–496

    Article  MATH  Google Scholar 

  14. Lazopoulos KA, Lazopoulou NK (2006) Stability of a tensegrity structure: application to cell mechanics. Arch Appl Mech 75:289–301

    Article  MATH  Google Scholar 

  15. Connelly R, Whiteley W (1996) Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J Discrete Math 9:453–491

    Article  MathSciNet  MATH  Google Scholar 

  16. Jórdan T, Recski A, Szabadka Z (2009) Rigid tensegrity labelings of graphs. Eur J Combin 30:1887–1895

    Article  MATH  Google Scholar 

  17. Paul C, Lipson H, Valero-Cuevas F (2006) Design and control of tensegrity robots for locomotion. IEEE T Robot 22:944–957

    Article  Google Scholar 

  18. Rovira AG, Tur JMM (2009) Control and simulation of a tensegrity-based mobile robot. Robot Auton Syst 57:526–535

    Article  Google Scholar 

  19. Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3:115–134

    Article  MathSciNet  Google Scholar 

  20. Motro R, Najari S, Jouanna P (1986) Static and dynamic analysis of tensegrity systems. In: Proceedings of the international symposium on shell and spatial structures IASS, computational aspects. Springer, Berlin, pp 270–279

  21. Barnes MR (1999) Form finding and analysis of tension structures by dynamic relaxation. Int J Space Struct 14:89–104

    Article  Google Scholar 

  22. Vassart N, Motro R (1999) Multiparametered form finding method: application to tensegrity systems. Int J Space Struct 14:147–154

    Article  Google Scholar 

  23. Nishimura Y, Murakami H (2001) Initial shape finding and modal analysis of cyclic frustum tensegrity modules. Comput Methods Appl Mech Eng 190:5795–5818

    Article  MathSciNet  MATH  Google Scholar 

  24. Masic M, Skelton R, Gill P (2005) Algebraic tensegrity form-finding. Int J Solids Struct 42:4833–4858

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang JY, Ohsaki M (2006) Adaptive force density method for form-finding problem of tensegrity structures. Int J Solids Struct 43:5658–5673

    Article  MATH  Google Scholar 

  26. Estrada G, Bungartz H, Mohrdieck C (2006) Numerical form-finding of tensegrity structures. Int J Solids Struct 43:6855–6868

    Article  MATH  Google Scholar 

  27. Micheletti A, Williams WO (2007) A marching procedure for form-finding for tensegrity structures. J Mech Mater Struct 2:101–126

    Article  Google Scholar 

  28. Zhang L, Maurin B, Motro R (2006) Form-finding of nonregular tensegrity systems. J Struct Eng-ASCE 132:1435–1440

    Article  Google Scholar 

  29. Rieffel J, Valero-Cuevas F, Lipson H (2009) Automated discovery and optimization of large irregular tensegrity structures. Comput Struct 87:368–379

    Article  Google Scholar 

  30. Xu X, Luo Y (2010) Form-finding of nonregular tensegrities using a genetic algorithm. Mech Res Commun 37:85–91

    Article  Google Scholar 

  31. Pagitz M, Tur JMM (2009) Finite element based form-finding algorithm for tensegrity structures. Int J Solids Struct 46:3235–3240

    Article  MATH  Google Scholar 

  32. Tibert AG, Pellegrino S (2003) Review of form-finding methods for tensegrity structures. Int J Space Struct 18:209–223

    Article  Google Scholar 

  33. Juan SH, Tur JMM (2008) Tensegrity frameworks: static analysis review. Mech Mach Theory 43:859–881

    Article  MATH  Google Scholar 

  34. Tran HC, Lee J (2010) Advanced form-finding of tensegrity structures. Comput Struct 88:237–246

    Article  Google Scholar 

  35. Tran HC (2011) Advanced procedures for form-finding and force-finding problems of tensegrity structures. PhD thesis, Sejong University, Seoul, South Korea

  36. Motro R (2003) Tensegrity: structural systems for the future. Kogan Page Science, London

    Google Scholar 

  37. Connelly R (1982) Rigidity and energy. Invent Math 66:11–33

    Article  MathSciNet  MATH  Google Scholar 

  38. Connelly R, Terrell M (1995) Globally rigid symmetric tensegrities. Struct Topol 21:59–78

    MathSciNet  MATH  Google Scholar 

  39. Connelly R (1999) Tensegrity structures: why are they stable? In: Thorpe MF, Duxbury PM (eds) Rigidity theory and applications. Plenum Press, New York, pp 47–54

  40. Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM

  41. Calladine CR (1978) Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames. Int J Solids Struct 14:161–172

    Article  MATH  Google Scholar 

  42. Pellegrino S, Calladine CR (1986) Matrix analysis of statically and kinematically indeterminate frameworks. Int J Solids Struct 22:409–428

    Article  Google Scholar 

  43. Zhang JY, Ohsaki M (2007) Stability conditions for tensegrity structures. Int J Solids Struct 44:3875–3886

    Article  MathSciNet  MATH  Google Scholar 

  44. Ohsaki M, Zhang JY (2006) Stability conditions of prestressed pin-jointed structures. Int J Nonlinear Mech 41:1109–1117

    Article  Google Scholar 

  45. Murakami H (2001) Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. Int J Solids Struct 38:3615–3629

    Article  Google Scholar 

  46. Pellegrino S (1993) Structural computations with the singular value decomposition of the equilibrium matrix. Int J Solids Struct 30:3025–3035

    Article  MATH  Google Scholar 

  47. Weisstein EW (1999) Affine transformation. MathWorld. http://mathworld.wolfram.com/AffineTransformation.html

  48. Yang WY, Cao W, Chung TS (2005) Applied numerical methods using matlabs. Wiley InterScience, New York

    Book  Google Scholar 

  49. Back A, Connelly B (1998) Catalogue of symmetric tensegrities. http://mathlab.cit.cornell.edu/visualization/tenseg

Download references

Acknowledgments

This research was supported by Basic Research Laboratory Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology through NRF2011-0027949, and by the Ministry of Knowledge Economy (MKE), Korea, under the Convergence Information Technology Research Center (Convergence-ITRC) support program (NIPA-2011-C6150-1101-0003) supervised by the National IT Industry Promotion Agency (NIPA). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, H.C., Lee, J. Form-finding of tensegrity structures using double singular value decomposition. Engineering with Computers 29, 71–86 (2013). https://doi.org/10.1007/s00366-011-0245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-011-0245-7

Keywords

Navigation