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Summary. This paper presents a method to compute accurate bounds on Jacobian
determinants of high-order (curvilinear) triangular finite elements. This method can
be used to guarantee that a curvilinear triangle is geometrically valid, i.e., that its
Jacobian determinant is strictly positive everywhere in its reference domain. It also
provides an efficient way to measure the quality the triangles. The key feature of the
method is to expand the Jacobian determinant using a polynomial basis, built using
Bézier functions, that has both properties of boundedness and positivity. Numerical
results show the sharpness of our estimates.
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1 Introduction

High-order finite element solvers critically depend on the availability of high-
quality curvilinear meshes. Such curvilinear meshes are usually built by curv-
ing an initial, straight sided mesh [1, 2, 3]. If we assume that the straight
sided mesh is composed of well shaped elements, curving elements introduces
a “shape distortion” that should be controlled so that the final curvilinear
mesh is also composed of well shaped elements.

In this paper we present a method to analyze the quality of curvilinear
meshes in terms of their elementary Jacobian determinants. The method does
not deal with the actual generation of the high order mesh. Instead, it provides
an efficient way to guarantee that each curvilinear element is geometrically
valid, i.e., that its Jacobian determinant is strictly positive everywhere in its
reference domain. It also provides a way to measure the distortion of the
curvilinear element. The key feature of the method is to adaptively expand
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the elementary Jacobian determinants in a polynomial basis that has both
properties of boundedness and positivity. Bézier functions are used to gener-
ate these bases in a recursive manner. Contrary to existing approaches using
Bézier functions [4, 5], which can only provably detect valid elements (the
validity of some triangles remaining uncertain), the adaptive scheme allows to
provably detect both valid and invalid elements. The proposed method can be
either used to check the validity and the distortion of an existing curvilinear
mesh, or embedded in the curvilinear mesh generation procedure to assess the
validity and the quality of the elements on the fly. The algorithm described in
this paper has been implemented in the open source mesh generator Gmsh [6],
where it is used in both ways.

2 Curvilinear Meshes, Jacobian Determinants and
Distortion

Let us consider a mesh that consists of a set of straight-sided triangles of order
p. Each triangle is defined geometrically through its nodes xi, i = 1, . . . , Np

and a set of Lagrange shape functions L(p)
i (ξ), i = 1, . . . , Np [7]. The Lagrange

shape functions (of order p) are based on the nodes xi and allow to map a
reference unit triangle onto the real one:

x(ξ) =

Np∑
i=1

L(p)
i (ξ) xi. (1)

The mapping x(ξ) should be bijective, which implies that the Jacobian deter-
minant detx,ξ (which is constant over the reference domain since the triangle
is straight-sided) has to be strictly positive. In all what follows we will always
assume that the straight-sided mesh is composed of well-shaped elements, so
that the positivity of detx,ξ is guaranteed. This standard setting is presented
on Figure 1 for the quadratic triangle.

Let us now consider a curved triangle obtained after application of the
curvilinear meshing procedure, i.e., after moving some or all of the nodes of
the straight-sided triangle. The nodes of the deformed triangle are called Xi,
i = 1 . . . Np, and we have

X(ξ) =

Np∑
i=1

L(p)
i (ξ) Xi. (2)

Again, the deformed triangle is valid if the Jacobian determinant J(ξ) :=
detX,ξ is strictly positive everywhere over the ξ reference domain. The Ja-
cobian determinant J , however, is not constant anymore over the reference
domain, and computing Jmin := minξ J(ξ) is necessary to ensure positivity.

The approach that is commonly used is to sample the Jacobian deter-
minant on a very large number of points. Such a technique is however both
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Fig. 1. Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings
x(ξ), X(ξ) and X(x).

expensive and not fully robust since we only get a necessary condition. In this
paper we follow a different approach: because the Jacobian determinant J is a
polynomial in ξ, J can be interpolated exactly as a linear combination of spe-
cific polynomial basis function over the element. We would then like to obtain
provable bounds on Jmin by using the properties of these basis functions.

In addition, we are also interested in measuring the distortion induced by
the transformation X(x) that maps straight sided elements onto curvilinear
elements. It is possible to write its determinant in terms of the ξ coordinates
as:

detX ,x =
detX ,ξ

detx,ξ
=

J(ξ)

detx,ξ
. (3)

We call the determinant of the mapping δ(ξ) := detX ,x the distortion and it
should be as close to δ = 1 as possible in order not to degrade the quality of
the straight sided element. In order to guarantee a reasonable distortion it is
thus necessary to find a reliable bound on Jmin and Jmax := maxξ J(ξ) over
the whole element.

3 Jacobian Determinant Bounds using Bezier Functions

Computing exact bounds on the Jacobian determinant is only possible for
simple cases. For example, the minimum Jacobian determinant of the planar
2nd order triangle is located either at its unique, easily computable stationary
point, or on the boundary of the triangle.

For arbitrarily high-order curvilinear triangles, computing exact bounds is
computationally impractical: the Jacobian determinant of a p-th order trian-



4 A. Johnen, J.-F. Remacle, and C. Geuzaine

gle is a polynomial function of order at most 2(p − 1). In order to compute
approximate bounds, we propose to expand the Jacobian determinant using a
polynomial basis that has both properties of boundedness and positivity—so
that one can verify the positivity of the Jacobian determinant by checking the
positivity of the coefficients in the expansion.

A first candidate for the expansion is the hierarchical basis [8], but quick
analysis shows that the bounds are of poor quality. A better candidate is the
Bézier basis [9]. Bézier functions are positive and also have the nice property
that they form a partition of unity. As a consequence, the minimum (resp.
maximum) of the coefficients in the expansion is always smaller (resp. greater)
than the Jacobian determinant. In order to compute these coefficients for the
high-order Lagrange triangles used in standard FEM codes [7], we must first
compute the change of basis from the Lagrange to the Bézier basis.

3.1 From a Lagrange to a Bezier Basis

The order-p Bézier functions for a triangle in terms of ξ and η are defined in
a subspace ET of R2, with ET = {(ξ, η) : ξ ≥ 0, η ≥ 0, ξ + η ≤ 1} [9]:

T (p)
i,j (ξ, η) :=

(
p

i

)(
p− i
j

)
ξi ηj (1− ξ − η)p−i−j (i+ j ≤ p), (4)

where
(
a
b

)
= a!

b!(a−b)! is the binomial coefficient. The Jacobian determinant of

triangles is a polynomial of order at most n = 2(p− 1). Given the expansion
of the Jacobian determinant J in terms of Lagrange polynomials

J(ξ, η) =
∑
i

JiL(n)
i (ξ, η),

where the Ji’s are the values of the Jacobian determinant calculated at La-
grange points, it is possible to express it as an expansion into Bézier triangular
polynomials:

J(ξ, η) =
∑
i+j≤n

bijT (n)
i,j (ξ, η), (5)

where the coefficients bij are the control values of the Bézier expansion.
Thanks to the properties of the Bézier functions, i.e. positivity and parti-

tion of unity, the control values bound the Jacobian,

min
(ξ,η)∈ET

J(ξ, η) ≥ bmin := min
i,j

bij and max
(ξ,η)∈ET

J(ξ, η) ≤ bmax := max
i,j

bij .

(6)
Moreover, there is only one non-zero function at each corner, as for example
at (0, 1) {

T (n)
0,n (0, 1) = 1

T (n)
i,j (0, 1) = 0, ∀ (i, j) 6= (0, n).
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This implies that the 3 control values b00, b0n and bn0, are values of the
interpolated function, and we have

min
(ξ,η)∈ET

J(ξ, η) ≤ min(b00, b0n, bn0) and max
(ξ,η)∈ET

J(ξ, η) ≥ max(b00, b0n, bn0).

(7)
Since Lagrangian and Bézier functions span the same function space, com-

putation of the Bézier values bi from the nodal values Ji (and conversely) is

done by a transformation matrix. The transformation matrix T
(n)
B→L, which

computes nodal values from control values, is created by evaluating Bézier
functions at sampling points:

T
(n)
B→L =


T (n)
0,0 (0, 0) . . . T (n)

n,0 (0, 0)

T (n)
0,0 (0, 1/n) . . . T (n)

n,0 (0, 1/n)
...

. . .
...

T (n)
0,0 (1, 0) . . . T (n)

n,0 (1, 0)

 . (8)

Those sampling points are taken uniformly, i.e., at the location of the nodes

of the triangle of order n. The inverse transformation T
(n)
L→B is T

(n)
B→L

−1
and

from the interpolation of the Jacobian determinant (5), we can write

J = T
(n)
B→LB,

B = T
(n)
L→B J , (9)

where B and J are the vectors containing respectively the control values of the
Jacobian determinant bij and the Ji’s. For example, for quadratic triangles
we obtain

T
(2)
L→B =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1/2 −1/2 0 2 0 0

0 −1/2 −1/2 0 2 0
−1/2 0 −1/2 0 0 2

 . (10)

3.2 Adaptive Subdivision

Subdivision consists in interpolating the Jacobian determinant on subdomains
of the triangle. By defining 4 triangular subdomains as shown in Figure 2 (top
left) all the initial domain is recovered, and the subdivision can be carried out
in a simple, recursive manner.

Consider the one-to-one linear map from the reference space to itself that
associates a point (ξ[q], η[q]) ∈ ET

[q] of the qth subdomain to every point

(ξ, η) ∈ ET of the reference domain, where ET
[q] is the subspace of R2 that

corresponds to the qth subdomain. The new interpolation must verify
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J(ξ[q], η[q]) :=
∑
i+j≤n

T (n)
i,j (ξ[q], η[q]) bij =

∑
i+j≤n

T (n)
i,j (ξ, η) b

[q]
ij (ξ[q], η[q]) ∈ ET [q],

(11)

where the coefficients b
[q]
ij are the control values corresponding to the qth sub-

domain.
Considering the uniform sampling points (ξk, ηk) as in equation (8) and

their image (ξ
[q]
k , η

[q]
k ), the expression (11) reads

T (n)
0,0 [ξ[q](0, 0), η[q](0, 0)] . . . T (n)

n,0 [ξ[q](0, 0), η[q](0, 0)]

T (n)
0,0 [ξ[q](0, 1/n), η[q](0, 1/n)] . . . T (n)

n,0 [ξ[q](0, 1/n), η[q](0, 1/n)]
...

. . .
...

T (n)
0,0 [ξ[q](1, 0), η[q](1, 0)] . . . T (n)

n,0 [ξ[q](1, 0), η[q](1, 0)]

B
:= T

(n)
B→L

[q]
B = T

(n)
B→LB

[q], (12)

where B[q] is the vector containing the control values of the related subdo-
main. This implies that we have to compute only one matrix per subdomain:

B[q] =

[
T

(n)
L→B T

(n)
B→L

[q]
]
B = M[q]B. (13)

Each set of new control values bounds the Jacobian determinant on its own
subdomain and we have:

b′min := min
i,j,q

b
[q]
ij ≤ Jmin ≤ min

q
min(b

[q]
00 , b

[q]
0n, b

[q]
n0) (14)

and
max
q

max(b
[q]
00 , b

[q]
0n, b

[q]
n0) ≤ Jmax ≤ b′max := max

i,q
b
[q]
ij . (15)

If an estimate is not sufficiently sharp, we can thus simply subdivide the
appropriate parts of the element. This leads to a simple adaptive algorithm,
exemplified in Figure 2. In this particular case the original estimate (6)-(7) is
not sharp enough. After one subdivision, the Jacobian determinant is proved
to be positive on all subdomains. In practice, as will be seen in Section 4, a
few levels of refinement lead to the desired accuracy. The convergence of the
subdivision can be proven to be quadratic [10, 11].

3.3 Implementation

As mentioned in Section 2, the Jacobian determinant bounds can be used
to either make the distinction between valid and invalid elements with re-
spect to a condition on Jmin, or to measure the quality of the elements by
systematically computing Jmin and Jmax with a prescribed accuracy.

In both cases the same operations are executed on each element. First,
the Jacobian determinant is sampled on a determined number of points Ns =
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Fig. 2. Top left: 4 subdomains of the triangle. Top right: third-order planar tri-
angle. Bottom left: exact Jacobian determinant and control values (dots) on the
original control points (before subdivision); the validity of the element cannot be
asserted. Bottom right: exact Jacobian determinant and control values (dots) after
one subdivision; the element is provably correct.

(n+1)(n+2)
2 , equal to the dimension of the Jacobian determinant space, and so

to the number of Bézier functions. Second, Bézier values are computed. Then
adaptive subdivision is executed if necessary. Algorithm 1 shows in pseudo-
code the algorithm used to determine whether the Jacobian determinant of
the element is everywhere positive or not. The algorithm assumes that the
corner points of the triangle are ordered at the 3 first indices.

Algorithm 2 could be further improved by optimizing the loop on line
5, by first selecting q for which we have the best chance to have a negative
Jacobian determinant (line 4, algo 2). In practice, this improvement is not
significant since the only case for which we can save calculation is for invalid
elements—and the proportion of them that require subdivision in order to be
detected is usually small. Note that we may also want to find, for example, all
the elements for which the Jacobian determinant is somewhere smaller than
20% of its average. We then just have to compute this average and replace
the related lines (4 and 7 for algorithm 1).

Another possible improvement is to relax the condition of rejection. We
could accept elements for which all control values are positive but reject an
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Algorithm 1: Check if a triangle is valid or invalid

Input: a pointer to a triangle.
Output: true if the triangle is valid, false if the element is invalid

1 set sampling points Pi, i = 1, . . . , Ns;
2 compute Jacobian determinants Ji at points Pi;
3 for i = 1 to Ns do
4 if Ji <= 0 then return false;

5 compute Bézier coefficients bi, i = 1, . . . , Ns using (9);
6 i = 1;
7 while i ≤ Ns and bi ≥ 0 do
8 i = i+ 1;

9 if i > Ns then return true;

10 call algorithm 2 with bi as arguments and return its output;

Algorithm 2: Compute the control values of the subdivisions

Input: Bézier coefficients bi, i = 1, . . . , Ns

Output: true if the Jacobian determinant on the domain is everywhere
positive, false if not

1 compute new Bézier coefficients b
[q]
i , q = 1, . . . , 4 as in equation (13);

2 for q = 1 to 4 do
3 for i = 1 to 3 do

4 if b
[q]
i <= 0 then return false;

5 for q = 1 to 4 do
6 i = 1;

7 while i ≤ Ns and b
[q]
i ≥ 0 do

8 i = i+ 1;

9 if i ≤ Ns then

10 call algorithm 2 with b
[q]
i as arguments and store output;

11 if output = false then return false;

12 return true;

element as soon as we find a Jacobian determinant value smaller than a defined
percent of the average Jacobian determinant. The computational gain can be
significant, since elements that were classified as good and that needed a lot of
subdivisions (and have a Jacobian determinant close to zero) will be instead
rapidly be detected as invalid.

More interestingly, the computation of sampled Jacobian determinants and
the computation of Bézier control values in algorithm 1 can easily be executed
for a whole groups of elements at the same time. This allows to use efficient
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BLAS 3 (matrix-matrix product) functions, which significantly speeds up the
computations.

The algorithm used for all the tests in the next section is implemented in
the open source mesh generator Gmsh [6] as the AnalyseCurvedMesh plugin.

4 Numerical Results

We start by comparing the new adaptive computation of Jacobian determinant
bounds with the brute-force sampling of the Jacobian determinant for the
detection of invalid high-order triangles.

The points at which we sample the Jacobian determinant for the brute-
force method are taken as the nodes of an element of order k. We started the
test for k= 1 and we incremented k until the brute-force approach detected
all the invalid elements. We still executed the algorithm 10 times (while incre-
menting k) so as to plot the change in the number of invalid element detected.
In order to make the comparison as fair as possible, we have implemented the
brute-force computation as efficiently as possible, i.e., for k (> n) sufficiently
large we sample the Jacobian determinant on the points computed for an el-
ement at order n (the order of the Jacobian determinant) and then compute
the desired Jacobian determinant values by a matrix-vector product, just like
in our own adaptive method.

1

Fig. 1. Two-dimensional mesh with sixth order triangles; 23.6% of the elements
are curved. The straight elements are in blue and the invalid are in dark red. The
other are colored in function of the minimum of their distortion. They are green
if they are nearly straight (Jmin/Jmax � 1) and rather light red if really distorted
(Jmin/Jmax � 0).

Fig. 3. Two-dimensional mesh with sixth order triangles; 23.6% of the elements
are curved. The straight elements are in blue and the invalid are in dark red. The
other are colored in function of the minimum of their distortion. They are green
if they are nearly straight (Jmin/Jmax ' 1) and rather light red if really distorted
(Jmin/Jmax ' 0).

We consider the two-dimensional microstructure with circular holes de-
picted in Figure 3, meshed with 331,050 sixth-order triangles. In this mesh
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78,180 triangles are curved, and 45,275 are invalid. The new algorithm success-
fully detects all the 45,275 invalid elements in 6.194s. Some elements needed
as much as 8 levels of subdivisions in order to be classified: see Table 1. The
brute-force approach required 666 sample points per triangle in order to detect
all the invalid elements, and took 4 times longer. But far worse, increasing
the number of sampling points beyond 666 can actually lead to a decreased
accuracy of the prediction, as shown in Figure 4.

Curved Element Classification
Valid curved elements Invalid curved elements

First stage 29303 44967

1 subdivision 2436 -

2 subdivisions 1119 299

3 subdivisions 23 -

4 subdivisions 10 4

5 subdivisions 9 2

6 subdivisions 5 -

7 subdivisions - 2

8 subdivisions - 1

Subtotal 32,905 45,275

Total 78,180

Table 1. Number of elements detected as valid or invalid at each stage of the
adaptive algorithm; 5 % of the curved elements had to be subdivided adaptively.
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Fig. 4. Number of undetected invalid elements using brute-force sampling of the
Jacobian determinant. The three data points not displayed correspond to the correct
result, i.e., when no invalid triangle is left undetected.
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Let us now examine the use of the adaptive Jacobian determinant bounds
in the curvilinear meshing algorithms as implemented in Gmsh. We consider
the mesh of a rather coarse version of the world ocean. In our CAD model,
shorelines are described using cubic B-splines: for example, Europe and Asia
are discretized by only one B-spline with about 3,500 control points. The de-
scription of this kind of meshing procedure is described in [12]. The quadratic
triangular mesh is generated as follows. We first generate a straight sided
mesh (see Figure 5/(a)). Then, every mesh edge that is classified on a model
edge is curved by snapping its center vertex on the model edge. High order
nodes are then inserted in the middle of every edge that is classified on a
model face (see Figure 5/(b)). This simple procedure does not guarantee that
the final mesh is valid. In our case, 175 elements are invalid. Then, a global
elasticity analogy is applied to the quadratic mesh that enables to reduce the
number of invalid elements to 70 (see Figure 5/(c)). Then local optimizations
are performed to remove all invalid elements (see Figure 5/(d)). The final
curvilinear mesh contains about 30% of curved elements. During the meshing
process, the adaptive Jacobian determinant bound computation allowed to
detected all invalid elements. After optimization, the final mesh is composed
of elements that have a distortion > 0.1.

(a) Straight sided mesh (b) Raw curvilinear mesh

(c) After elastic analogy (d) Final mesh without invalid elements

Fig. 5. The four stages of the curvilinear mesh procedure for the world ocean,
meshed with second order triangles.
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The validity check presented in this article applies directly to triangles
in the plane as shown in the previous examples. When meshing 3D (curved)
surfaces, an additional mapping between the parametric plane where the mesh
generation is performed [6] and the surface has to be taken into account.
This mapping depends on the underlying geometrical representation of the
surface: B-Spline or NURBS-based for CAD models, piece-wise polynomial
for reparametrized STL models [13, 14], ...

In Figure 6 we used the adaptive bounds in the parametric plane for gen-
erating a fourth-order mesh of the STEP model of a rotor. After generating
a first order mesh (Figure 6(a)) and snapping the high-order vertices on the
geometrical model (Figure 6(b)), the adaptive Jacobian determinant bound
computation allowed to pinpoint invalid elements. The final, locally optimized
mesh is displayed in Figure 6(c).

This procedure however does not guarantee the general validity of the 3D
mesh. Indeed, a valid element in the parametric plane can be made invalid
after mapping to the curved surface since only the nodes of the triangle are
mapped (and problems can arise between these nodes depending on the actual
mapping). The converse is also true: an invalid element in the parametric plane
can become valid after mapping. This is the subject of ongoing research, as is
the optimization of the quality of general curvilinear finite elements.

5 Conclusion

In this paper we presented a way to compute accurate bounds on Jacobian
determinants of high-order triangular finite elements, based on the efficient
expansion of these Jacobian determinants in terms of Bézier functions. The
proposed algorithm can either be used to determine the validity or invalidity
of curved elements, or provide an efficient way to measure their distortion.

Numerical tests show that the method is robust, and a user-defined error
tolerance permits to adjust the accuracy vs. computational time ratio. The
extension to all classical finite element shapes (quadrangles, tetrahedra, prisms
and hexahedra) is currently underway in the open source finite element mesh
generator Gmsh.
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(a) Straight sided mesh

(b) Raw curvilinear mesh

(c) After elastic analogy

Fig. 6. Curvilinear mesh of a rotor using fourth-order curved triangles.
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