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Abstract

We describe a family of quadrilateral meshes based on diamonds, rhombi with 60◦ and
120◦ angles, and kites with 60◦, 90◦, and 120◦ angles, that can be adapted to a local size
function by local subdivision operations. Our meshes use a number of elements that is within a
constant factor of the minimum possible for any mesh of bounded aspect ratio elements, graded
by the same local size function, and is invariant under Laplacian smoothing. The vertices of
our meshes form the centers of the circles in a pair of dual circle packings. The same vertex
placement algorithm but a different mesh topology gives a pair of dual well-centered meshes
adapted to the given size function.

1 Introduction

In unstructured mesh generation for finite element simulations, it is important for a mesh to have el-
ements that are well-shaped (as this controls the convergence of the method), small enough to fit the
features of the problem domain and its solution, and yet not so small that there are an unnecessarily
large number of elements, slowing down the time per iteration of the simulations. In this paper we
describe a recursive subdivision algorithm for generating quadrilateral meshes that are guaranteed
to have all of these properties: they have bounded aspect ratio elements, the elements are sized to
match to a given local size function, and the meshes are guaranteed to use a number of elements that
is within a constant factor of the minimum number required by that size function. The elements of
our meshes have two shapes: diamonds, rhombi with 60◦ and 120◦ angles, and kites with 60◦, 90◦,
and 120◦ angles; therefore, we call our meshes diamond-kite meshes. They may be generated in
time linear in the number of mesh elements, and adapted by local refinement and coarsening when
the size function changes.

As well as having bounded aspect ratio elements and having an approximately-minimum num-
ber of elements, diamond-kite meshes obey a number of other interesting properties:

• It is possible to place circles centered at each vertex of a diamond-kite mesh in such a way that
pairs of circles cross at right angles if they correspond to adjacent vertices in the mesh, are
tangent to each other if they correspond to nonadjacent vertices of a common quadrilateral,
and otherwise are disjoint from each other. This system of circles forms a circle packing of a
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type studied by Thurston [43]; circle packings with more irregular structures have previously
been used in meshing, but this is the first known mesh that corresponds to this type of highly
structured circle packing.

• The set of diamond-kite meshes has the structure of a distributive lattice, in which every pair
of meshes has a coarsest common refinement and a finest common coarsening.

• The faces of a diamond-kite mesh may be colored with three colors, a property that is useful
in scheduling parallel updates to the values stored at mesh elements [4, 7] and that is not true
of all quadrilateral meshes.

• Diamond-kite meshes are invariant under Laplacian smoothing, a commonly used technique
for mesh improvement in which each vertex of a mesh is moved to the centroid of its neigh-
bors. Thus, every diamond-kite mesh forms a Tutte embedding [44] of its underlying graph.

• The vertices of a diamond-kite mesh can be used to form two dual well-centered meshes
with polygonal elements that have up to six sides. In these meshes, each mesh vertex lies in
the interior of its dual face, and the primal and dual edges cross each other at right angles,
properties that are important in certain numerical methods [45]. In previous methods for well-
centered meshing, one of the two dual meshes was a triangulation and the other a Voronoi
diagram, but the two dual meshes generated from a diamond-kite mesh are both of the same
type as each other.

1.1 Related work

As a recursive subdivision scheme based on a regular tiling of the plane, our meshing method
bears a strong resemblance to meshing based on quadtrees, a recursive subdivision of squares into
smaller squares. The first triangular mesh generation algorithms to provide theoretical guarantees
on both the element aspect ratio and the total number of elements for a given local size function used
quadtrees [6] and they had long been used in meshing prior to its theoretical justification [20, 48].
However, in contrast to the subdivision we use, quadtrees are not usually used as meshes directly,
because of the potentially large number of neighbors of each cell; instead, quadtree squares are
typically further subdivided into mesh elements. For instance, in a balanced quadtree (one in which
neighboring squares differ in size by at most a factor of two) it is possible to partition each quadtree
square into a constant number of triangular elements that all have the shape of an isosceles right
triangle, giving a triangle mesh with bounded aspect ratio elements.

Other recursive subdivision schemes have also previously been used in meshing, including the
recursive subdivision of triangles into four smaller triangles used by the Sloan digital sky sur-
vey [42], and the hexagon-based meshing algorithms of Sußner, Greiner, Liang, and Zhang [29,41].
These methods, like ours, are based on a triangular or hexagonal lattice, but they scale this lattice
by factors of two at each level of subdivision whereas we use factors of

√
3. Other subdivision

schemes related to the methods described here include honeycomb refinement [14, 49] and
√

3 re-
finement [25, 49]; however, these schemes are typically applied to every element of a structured or
semistructured mesh rather than (as here) to selected elements of an unstructured mesh.

Our method is also closely related to the use of circle packings in meshing. Several unstructured
mesh generation algorithms work by packing circles into the domain to be meshed, and then using
the positions of the circles to guide the generation of a final mesh. The circle packing phases of
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Figure 1: Left: The rhombille tiling. Right: The short diagonals of the rhombille tiling form a
hexagonal tiling.

these algorithms have been based on multiple ideas, including placing circles one at a time using a
greedy algorithm [5, 8, 17, 27, 28, 30, 47], physical simulation [39], and the decimation of quadtree-
based oversampling schemes [33,34]. These algorithms have been used to find nonobtuse triangular
meshes for polygonal domains [8, 17] as well as bounded-aspect-ratio triangular meshes [28] and
quadrilateral meshes in which all elements belong to certain special types of quadrilateral [5]. The
circle packings generated by these methods can be made to have radii controlled by a local size
function [28, 47], and mesh generation techniques based on these methods can be applied in higher
dimensions as well [27,31,33,34]. However, because the circle packings generated by these methods
are irregular in structure, these methods do not use the circle centers as the only vertices of their
meshes. Instead, they add additional vertices at points such as the circumcenters of the gaps between
circles, and they typically also require additional case analysis to handle the different possible shapes
of their gaps. In contrast, we generate a circle packing from a mesh rather than generating a mesh
from a circle packing, but in so doing we obtain a more direct relationship between the mesh and
the packing: the mesh vertices are exactly the centers of the packed circles.

2 Diamond-kite meshes

Our construction begins with the rhombille tiling of Figure 1 (left), a tessellation of the plane by
rhombi with 60◦ and 120◦ angles, formed by subdividing a hexagonal tiling into three rhombi per
hexagon [12]. Each vertex of the rhombille tiling has degree (valency) either three or six: either six
rhombi meet at their acute corners, or three rhombi meet at their obtuse corners. The short diagonals
of the rhombi form another hexagonal tiling in which each hexagon surrounds a degree-six vertex
of the rhombille tiling (Figure 1, right).

Suppose that we wish to refine a rhombille tiling within a region R of the plane, forming a mesh
with smaller elements, while leaving the tiling unchanged outside R. To do so, we may approximate
R by a set of the hexagons formed by short diagonals, and perform the local replacement opera-
tion illustrated in Figure 2 within each hexagon. This operation replaces the six edges that meet in
the center of the hexagon with a network of 18 edges, shorter by a factor of 1/

√
3 from the origi-

nal edges. These new edges form the boundaries of six rhombi similar to the ones in the original
rhombille tiling but rotated from them by 30◦ angles. Each subdivided quadrilateral crossing the
boundary of the hexagon remains a quadrilateral after the replacement, so the result of the replace-
ment is a valid quadrilateral mesh with six additional quadrilaterals for every replaced hexagon.
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Figure 2: Replacement of six edges within a hexagon (left) by six rhombi with sides shorter by a
factor of 1/

√
3 than the replaced edges (right).

Figure 3: The result of performing multiple local replacements in a rhombille tiling. Within the blue
replaced region, we have another rhombille tiling, rotated from the original and with smaller tiles.

Figure 3 shows the mesh resulting from multiple local replacements in a rhombille tiling. When
one of the replaced hexagons shares an edge with a hexagon that has not been replaced, the quadri-
laterals that lie across the shared boundary of the two hexagons are kite-shaped, with vertex angles
60◦, 90◦, and 120◦. However, when two or more replaced hexagons share an edge with each other,
the quadrilaterals that lie across their shared boundary are rhombi congruent to the ones contained
within each replaced hexagon. Within any region formed by multiple replaced hexagons, the smaller
rhombi formed by this replacement process meet up with each other in the pattern of another rhom-
bille tiling, rotated from the original tiling by a 30◦ angle and with tiles that are smaller by a 1/

√
3

factor.
Once this replacement has been performed, the same replacement process can be performed

within the finer rhombille tiling formed within the replaced region. The degree-six vertices that
can be replaced within this finer tiling are either the same degree-six vertices that were replaced
previously, or the points where three replaced hexagons meet.

We call the meshes generated by any number of steps of this replacement process “diamond-kite
meshes”.
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3 Adaptation to a local size function

3.1 Prerequisite structure of replacement operations

Given an initial rhombille tiling T , we may uniquely describe each of the local replacement steps
used to form a diamond-kite mesh by a pair of parameters (p,s), where p is the center point of the
hexagon within which the replacement happens and s is its side length. A replacement step with
parameters (p,s) may be performed at most once within a sequence of replacements to a mesh, and
it may only be performed when the mesh that results from the earlier replacements in the sequence
has exactly six edges of length s meeting at point p.

This condition that the mesh is ready for replacement (p,s) to be performed can also be stated
indirectly in terms of certain prerequisite replacement steps that must be performed prior to (p,s),
instead of describing the configuration surrounding p. To determine these prerequisites, we may
analyze cases to determine the conditions under which a replacement with parameters (p,s) is pos-
sible:

• If s is the length of the sides of the original tiles of T , then replacement (p,s) may always
be performed in every diamond-kite mesh formed from T in which it has not already been
performed.

• If s is smaller than the side length in T , and (p,s
√

3) is the pair of parameters for another re-
placement step, then replacement (p,s) may be performed if and only if replacement (p,s

√
3)

has already been performed. The reason for this is that the replacement (p,s
√

3) is the only
possible way to incorporate into the tiling the six edges that will be replaced by (p,s). Again,
replacement (p,s) may always be performed in every mesh in which it has not already been
performed and in which (p,s

√
3) has been performed.

• In the remaining case, there are three points p0, p1, and p2 equally spaced around p at distance
s
√

3 from it, such that each point pi gives the parameterization of a replacement step (pi,s
√

3)
and such that replacement (p,s) may be performed if and only if all three of (pi,s

√
3) have

already been performed. Each of the three replacements (pi,s
√

3) is the only possible way
of incorporating into the tiling two of the six edges that will be replaced by (p,s). As before,
once it becomes possible to perform (p,s), it remains possible to perform it until it actually is
performed.

This prerequisite structure may be described by an infinite directed acyclic graph GT which
has a vertex for each pair (p,s) that defines a valid replacement step, and an edge from (p,s) to
each of the prerequisite replacement operations described in the case analysis above. That is, for
every (p,s), if (p,s

√
3) defines a valid replacement step then graph GT has an edge from (p,s) to

(p,s
√

3). In the case where there are three prerequisites (pi,s
√

3), graph GT will instead have three
edges going out of (p,s), one to each of these three prerequisites.

This graph may be used to define an infinite partially ordered set PT that has an element for
each pair (p,s), and in which two elements x and y are ordered x ≤ y whenever there is a directed
path from x to y in GT . In this partially ordered set, the set of all replacement steps that must be
performed prior to step (p,s) is the set {(p′,s′) | (p′,s′)< (p,s)}; it includes not just the immediate
prerequisites to (p,s), but also the prerequisites of the prerequisites, and so on.
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Figure 4: Cases for refine(p). From left to right: (a) p has degree six, and is ready for immediate
replacement; (b) p has degree three, and does not meet the preconditions of refine; (c) p has degree
five, and a replacement at the 60◦ kite vertex must be performed prior to a replacement at p; and (d)
p has degree four, and two 60◦ kite vertices must be replaced prior to a replacement at p.

3.2 The lattice of mesh refinements

If T ′ is a diamond-kite mesh formed by refining the initial mesh T , then (by the analysis above) the
set of replacement steps that were used to generate T ′ from T must be a finite lower set in partial
order PT , that is, a set L of elements with the property that, for every element y ∈ L and for every
element x with x≤ y, x is also in L. Conversely, every finite lower set L uniquely defines a diamond-
kite mesh TL as a refinement of T , because the replacement operations in L may be performed in any
order that is consistent with the case analysis above; different orderings of the same operations will
always lead to the same results. The orderings in which a given lower set L of replacement steps
may be performed are exactly the linear extensions of the partial order induced by the elements of
L in PT , and a valid ordering for a given lower set L may be calculated by applying a topological
sorting algorithm to the directed acyclic graph induced as a subgraph of GT by the elements of L.

Theorem 3.1. The set of diamond-kite meshes formed from a given initial mesh has the structure of
a distributive lattice, in which every two meshes T1 and T2 have a unique finest common coarsening
T1∧T2 and a unique coarsest common refinement T1∨T2.

Proof. Let T1 and T2 be any two diamond-kite meshes formed by refining T , and described by the
respective finite lower sets L1 and L2 in PT . Then the sets L1∩L2 and L1∪L2 are also finite lower
sets, describing respectively the finest mesh T1 ∧T2 from which both T1 and T2 can be formed by
refinement, and the coarsest mesh T1∨T2 that can be formed by refining both T1 and T2. In this way,
as with the lower sets of every partially ordered set [9], the family of diamond-kite meshes can be
given the structure of a distributive lattice.

We remark that the same ideas of constructing an infinite graph describing the prerequisite
relation between potential replacement steps, deriving an infinite partial order from the graph, and
describing each possible mesh as a lower set of this partial order, can be applied equally well to
describe the set of possible balanced quadtrees derived from an initial square. Thus, the set of
balanced quadtrees can also be given the structure of a distributive lattice.

3.3 Local replacement at mesh vertices

We now define a recursive subdivision algorithm, which we refer to by the subroutine name refine(p),
that performs a single local replacement step at a vertex p of a diamond-kite mesh, after perform-
ing all prerequisite replacements. We require, as a precondition for this algorithm, that p be a 60◦
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vertex of at least one mesh element; the replacement performed by this subroutine will be the one
parametrized by (p,s), where s is the length of the mesh edges on either side of the 60◦ angle.

More specifically, refine(p) performs the following two steps:

1. For each kite that has a 90◦ angle at p, let q be the 60◦ angle angle of the kite, and call
refine(q) recursively.

2. Perform a replacement step at p.

Theorem 3.2. A call to refine(p) performs the replacement step (p,s) (where s is as defined above)
and all its prerequisites, but no other replacements. The time for the procedure is proportional to
the number of new elements added by these replacement steps.

Proof. To verify that these steps perform the prerequisites of replacement step (p,s), and step (p,s)
itself, but do not perform any other replacement steps, we go through a case analysis that examines
the possible local configurations near p.

• If p has degree six, then the most recent replacement step that affected the edges incident to
p must either have replaced a hexagon with p at its center, or have been the third of three
replacements of hexagons meeting at p. In this case, p is already surrounded by diamonds
and/or kites having 60◦ angles at p, as shown in Figure 4(a). In this case, it is possible to
perform a local replacement step at p without performing any other replacements. Since
there are no 90◦ angles at p, the first step of refine makes no local calls, and refine correctly
makes only the replacement step (p,s) itself.

• If p has degree three, then it must be the case that the most recent replacement step at p
replaced a hexagon for which p was interior but not central. Then p is a 120◦ vertex of three
elements, either two diamonds and one larger kite (as in Figure 4(b)) or three diamonds. In
this case, it is not possible for the precondition of the refine algorithm to be met, because there
is no 60◦ angle at p. Thus, in this case it does not matter what might happen when refine(p)
is called.

• If p has degree five, then it must be the case that the most recent replacement to affect the
neighborhood of p was the replacement of a hexagon having p as a vertex, and additionally
this must have been the second replacement of the three hexagons of that size meeting at p.
Then the neighborhood of p consists of three elements with 60◦ angles (diamonds or kites
within the two replaced hexagons) and two elements with 90◦ angles (necessarily kites in the
third hexagon); see Figure 4(c). Let q be the shared 60◦ vertex of these two kites. When
refine(p) is called, it will recursively call refine(q), performing the prerequisite replacement
step, after which we may perform a replacement step at p.

• If p has degree four, then p was a vertex of the hexagon for the most recent replacement at
p, and this was the first replacement of the three hexagons of that size meeting at p. In this
case p has a neighorhood with one 60◦ angle (a diamond or kite in the replaced hexagon),
two 90◦ angles (kites in the two unreplaced hexagons), and one 120◦ angle (a rhomb or kite
overlapping the two unreplaced hexagons), as is depicted in Figure 4(d). The call to refine(p)
will recursively call refine for each of the two 60◦ vertices of the kites with incident 90◦

angles, which will perform the two prerequisite replacement steps to (p,s).
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The recursion in step 1 of refine necessarily terminates, because each recursive call leads to
a replacement step on a larger hexagon. Each recursive call adds elements to the mesh for the
replacement step it performs, so the total time for this recursive procedure is linear in the total
change to the number of elements in the mesh. The case analysis above shows that this recursion
performs exactly the replacement steps that are predecessors of (p,s) in the partial order PS and that
had not already been performed at the start of the recursion.

3.4 Local size functions

We define a local size function to be a function σ that maps each point p of the plane (or of a subset of
the plane to be meshed) to a positive real number σ(p), specifying the largest allowable side length
of a mesh element containing p.1 We assume that access to σ is via a subroutine oversized(Q) that
takes as argument a quadrilateral Q and returns a Boolean value, true if Q contains a point p for
which σ(p) is less than the side length of Q and false otherwise. Our task is to find a mesh that is as
coarse as possible subject to the constraint that oversized returns false for all mesh elements.

To do so, we perform the following steps:

1. Construct an initial coarse mesh.

2. Initialize a queue Q of unprocessed quadrilaterals, containing all quadrilaterals in the initial
mesh.

3. Repeat until Q is empty:

(a) Find and remove a quadrilateral q from Q.

(b) If q is a kite and oversized(q) returns true, let p be the 60◦ vertex of q and call refine(p).

(c) If q is a diamond, let q1 and q2 be the two kites contained within q that have the same
maximum side length as q, and let p1 and p2 be their two 60◦ vertices. For each i in the
set {1,2}, if oversized(qi) returns true, call refine(pi).

Theorem 3.3. The mesh refinement procedure described above finds the coarsest mesh consistent
with the given size function, and takes time proportional to the size of that mesh.

Proof. Note that, in the diamond case,

oversized(q) = oversized(q1)∨oversized(q2),

because the two kites have the whole diamond as their union. Therefore, if oversized(q) is true then
one or both kites will also be oversized, and processing q will cause it to become subdivided. It
follows that the algorithm can only terminate when there are no more oversized quadrilaterals in the
refined mesh that it has produced.

Whenever this adaption procedure makes a call to refine(p), leading (after some recursive calls)
to a replacement step at vertex p, the same replacement step must be performed in every diamond-
kite mesh that is a refinement of the same initial mesh and obeys the size function σ, because

1It would be equivalent to within constant factors to specify the maximum allowable area, perimeter, diameter, or
circumradius of the element, but side length turns out to be more convenient for our purposes, because it leads to fewer
ambiguities about which replacement steps are necessary.
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otherwise the kite associated with p would remain in the mesh and would have too large a side
length. Therefore, the result of the refinement procedure described above is the coarsest diamond-
kite mesh consistent with the size function. Each step either removes a quadrilateral from the queue
without adding any others, or it takes time linear in the number of elements added, so the total time
for this adaption procedure is linear in the size of the final mesh it produces.

3.5 Dynamic adaptation

For a simulation in which the size function changes over time, it may be desirable to adapt the mesh
to the new size function after each time step. To do so, we may first refine the mesh as described
above (using the mesh from the previous time step as the initial mesh in the refinement algorithm),
adding new smaller elements in places where the size function has diminished, and then coarsen it
using a similar algorithm, removing elements in places where the size function has increased.

Coarsening (the reverse of refinement) may be performed at any vertex v of the mesh that is
surrounded by six diamonds, such that the none of the six kites surrounding v of the next larger size
than the diamonds is oversized. In this case we say that v is coarsenable; the coarsening step at
v consists of removing the edges of the surrounding six diamonds and replacing them by the long
diagonals of the diamonds, reversing the arrow in the transformation depicted in Figure 2.

The overall coarsening algorithm performs the following steps:

1. Test for each vertex v in the initial mesh whether v is coarsenable, and initialize a queue Q of
coarsenable vertices.

2. Repeat until Q is empty:

(a) Find and remove a vertex v from Q.
(b) Perform a coarsening step at v.
(c) For each neighbor u of v in the coarsened grid, test whether u is now coarsenable, and if

it is then add u to Q.

Theorem 3.4. The mesh resulting from this adaptation procedure is the coarsest mesh consistent
with the new size function, and the time for the procedure is proportional to the sum of the sizes of
the old and new meshes.

Proof. The mesh resulting from this adaptation procedure corresponds to a lower set L in the par-
tially ordered set PT , such that L contains only those refinement operations that are either directly
necessary to eliminate an oversized quadrilateral, or that are prerequisites of these necessary re-
finements. Therefore, the mesh resulting from this adaptation process is the unique coarsest mesh
that conforms to the local size function, the same mesh that would be generated by applying size
refinement to a fixed initial mesh.

The time for adapting a mesh to the changed local size function is proportional to the size
of the old mesh (to determine the initial queue for the refinement and unrefinement algorithms)
plus the number of refinement and unrefinement steps by which the old and new meshes differ.
Each refinement step increases the size of the mesh, so the total spent in the refinement phase is
proportional to the number of elements that belong to the new mesh and not the old one. By a
similar (but time-reversed) argument, the time spent in the unrefinement phase is proportional to
the number of elements that belong to the old mesh and not the new one. Thus, the total time is as
stated.
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Figure 5: The result of applying the refinement algorithm to a size function that measures the
distance to a circle.

3.6 Implementation

As a proof of concept, we implemented the refinement algorithm described in Section 3.4, using
a hardcoded local size function that measures the distance of its argument to a circle. Because
of the simple form of this size function, we used a simplified variant of the adaptation algorithm
that measures the size function only at vertices of the mesh when deciding whether to call refine,
rather than measuring the minimum value of the size function within quadrilaterals of the mesh.
Our implementation uses approximately 15 lines of Python code to set up the initial mesh and
queue, four lines for the size function, 22 lines for the refine subroutine, five lines for the refinement
algorithm that adapts the mesh to the local size function, and eight lines to output the mesh to the
SVG graphics format. The result, a mesh that is coarse far from the circle and fine near the circle,
is depicted in Figure 5.

4 Properties

4.1 Size and length optimality

Following Ruppert [38], we may use local feature size to prove that the methods for fitting a
diamond-kite mesh to a local size function discussed in the previous section produce meshes that
(compared to any other mesh with quadrilaterals or triangles of bounded aspect ratio obeying the
constraints of the local size function) are within a constant factor of optimal with respect both
to their number of elements and to their total edge length, matching known results for quadtree
meshes [6, 16] and for meshes formed by Delaunay refinement [38].

We assume that the size function σ(p) is defined in such a way as to lead to a finite mesh, and
we define the local feature size to be a function σ̂(p) that maps a point p to the number

σ̂(p) = inf
{

distance(p,q)+σ(q)
}
.

The point q in the minimization ranges over the rest of the plane, but its minimum will necessarily
occur within a disk of radius σ(p) centered at p, because all other points lead to larger values than
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the value σ(p) achieved at q = p. The following two observations are central to our analysis:

• In all meshes with bounded-aspect-ratio elements, the size of the element containing a given
point p is Ω(σ̂(p)). To see this, let q be a point achieving (or approximately achieving) the
minimum value in the definition of σ̂(p). The element containing q must have size at most
σ̂(p), and the sequence of elements crossed by the line segment from q to p cannot increase
in size from that value by more than a constant factor before they reach p.

• In the diamond-kite mesh defined from the size function σ, the size of the element contain-
ing p is O(σ̂(p)). This follows from the fact that, if q is any point in the plane, the size
of the smallest element of the partial order PT that is forced by the value of σ(q) to be in-
cluded in the mesh and that corresponds to a local replacement for a hexagon containing p is
O(distance(p,q)+σ(q).

Theorem 4.1. The diamond-kite mesh for a given size function has a number of elements within
a constant factor of the minimum possible for any bounded-aspect-ratio mesh for the same size
function.

Proof. Given a bounded-aspect-ratio mesh M, let α(p) denote the area of the element containing p.
Then, for all elements E of M, we have the identity∫

E

1
α(p)

d p = 1.

Therefore, the number of elements in the mesh can be counted by∫
M

1
α(p)

d p.

However, 1/α(p) is lower-bounded by Ω((σ̂(p))−2) for all bounded-aspect-ratio meshes, and upper-
bounded by O((σ̂(p))−2) for diamond-kite meshes; therefore, the number of elements in the diamond-
kite mesh determined by size function σ is within a constant factor of optimal.

Theorem 4.2. The diamond-kite mesh for a given size function has total edge length within a con-
stant factor of the minimum possible for any bounded-aspect-ratio mesh for the same size function.

Proof. Given a bounded-aspect-ratio mesh M, let π(p) denote the perimeter of the element contain-
ing p. Then, for all elements E of M, we have the identity∫

E

π(p)
α(p)

d p = perimeter(p).

Therefore, the total perimeter of all the elements in the mesh is∫
M

π(p)
α(p)

d p.

However, π(p)/α(p) is lower-bounded by Ω(1/σ̂(p)) for all bounded-aspect-ratio meshes, and
upper-bounded by O(1/σ̂(p)) for diamond-kite meshes; therefore, the total perimeter of the ele-
ments in the diamond-kite mesh determined by size function σ is within a constant factor of opti-
mal.
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Figure 6: A diamond-kite mesh, 3-colored according to the orientation of the diagonals in each
quadrilateral.

4.2 Coloring

Graph colorings of meshes may be used to schedule batches of parallel updates to the values stored
at mesh elements, in order to ensure that each two values that are updated in the same batch are
independent from each other [4, 7]. As with all planar graphs in which every face has an even
number of sides, the vertices of a diamond-kite mesh may be colored with two colors, but in this
context it is more relevant to color the faces of the mesh so that no two faces that share an edge have
the same color.

Theorem 4.3. The faces of every diamond-kite mesh may be colored with three colors.

Proof. We may find such a coloring by the following simple strategy: define an equivalence relation
on the quadrilaterals of the mesh, according to which two quadrilaterals are equivalent when their
diagonals are parallel, and assign one color to each equivalence class. There are only three equiv-
alence classes: quadrilaterals in two different equivalence classes will have their diagonals rotated
by 30◦ from each other, and after three such rotations we return to the starting equivalence class.
No two adjacent quadrilaterals in a diamond-kite mesh may have parallel diagonals, so adjacent
quadrilaterals are always assigned distinct colors. Therefore, the result is a proper 3-coloring, as
depicted in Figure 6.

In contrast, other kinds of quadrilateral mesh may sometimes require four colors; for example,
this is true of the quadrilateral mesh depicted in Figure 7. In the figure, the red quadrilateral at
the upper left shares two neighbors with the yellow quadrilateral in the right corner of the figure;
these shared neighbors are also adjacent to each other. If the mesh could be 3-colored, these two
neighbors would force the red and yellow quadrilaterals to have the same color as each other. But
by a symmetric argument, if the mesh could be 3-colored, the blue quadrilateral in the lower left
and the yellow quadrilateral in the right corner would also have to have the same color as each
other. Therefore the two leftmost quadrilaterals would have to be colored the same as each other,
not possible in a 3-coloring as they share an edge. Therefore, at least four colors are necessary for
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Figure 7: A quadrilateral mesh that cannot be colored with fewer than four colors.

this mesh, but as shown in the figure four colors are also sufficient. More generally, all quadrilateral
meshes require at most four colors, a fact that follows either from the four-color theorem for planar
graphs or from Brooks’ theorem on coloring regular graphs.

4.3 Orthogonal circle packing

A famous and deep theorem of Koebe, Andreev, and Thurston [2, 3, 26, 43] asserts that the vertices
of every planar graph may be represented by a circle packing, a system of circles with disjoint
interiors, such that two vertices are adjacent in the graph if and only if the corresponding two circles
are tangent. This representation is not unique without additional constraints (for instance, a 4-cycle
has infinitely many distinct representations as a set of four tangent circles) but it can be made unique,
up to Möbius transformations, in one of two different ways:

• Let G be constrained to be a maximal planar graph; that is, every face of G, including the
outer face, must be a triangle. Then its representation as a circle packing exists and is unique
up to Möbius transformations (Thurston, Corollary 13.6.2). We call this a maximal circle
packing. An example is shown in Figure 8, left.

• Alternatively, let G be a 3-vertex-connected planar graph. It has a unique planar embedding;
let G′ be the dual graph of this embedding. Then it is possible to represent both G and
G′ by simultaneous circle packings with the property that, for every edge e of G and its
corresponding dual edge e′, the two circles representing the endpoints of e have the same
point of tangency as the two circles representing the endpoints of e′ and, moreover, the circles
for e cross the circles for e′ at right angles at this point. Again, this representation is unique
up to Möbius transformations [11], and we call it an orthogonal circle packing. An example
is shown in Figure 8, right.

Circle packings of these types have been applied in the field of graph drawing, to find drawings
of planar graphs with right angle crossings [11], high angular resolution [15,32], and small numbers
of distinct slopes [24]. They have also been used for mesh partitioning [19,35,36], for visualization
of brain structures [23], for analyzing the structure of soap bubbles [18], for solving differential
equations [21], for constructing Riemann surfaces from combinatorial data [10], and for finding
approximations to conformal mappings between different simply connected domains, which can be
used as an important step in structured mesh generation [37, 40].
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Figure 8: A maximal circle packing (left) and an orthogonal circle packing (right).

Figure 9: Changes to the system of circular arcs within each quadrilateral caused by a single local
replacement step.

The two constrained forms of circle packing guaranteed to exist by the circle packing theorem
would seem to be also a natural fit for unstructured mesh generation: in a maximal circle packing,
the graph of adjacencies between tangent circles (with its vertices placed at the triangle centers)
forms an unstructured triangle mesh, and in an orthogonal circle packing, the graph of adjacencies
between orthogonal circles forms an unstructured quadrilateral mesh. Additionally, if the degree of
a graph is bounded, then the circle packings generated from it are naturally graded in size: adjacent
circles have radii whose ratio is bounded, and the triangular or quadrilateral elements derived from
the packing have bounded aspect ratio. However, despite their obvious appeal, these types of circle
packing have not been used in mesh generation, because the geometry of a circle packing is dif-
ficult to control: circle packings are generated from combinatorial data (a graph) rather than from
geometric data (the shape of a domain to be meshed) and in general, a small localized change to the
graph from which the circle packing is generated can lead to large and non-localized changes to the
packing.

Using diamond-kite meshes we show for the first time that it is possible to construct orthogonal
circle packings, one of the two types of circle packing guaranteed to exist by the Koebe–Andreev–
Thurston theorem, with geometric rather than graph-theoretic control of the position and size of the
circles.

Theorem 4.4. The vertices of every diamond-kite mesh form the centers of the circles in an orthog-
onal circle packing.

Proof. In each quadrilateral of a diamond-kite mesh, place arcs of four circles, centered at the
quadrilateral’s four vertices and meeting at the center of the quadrilateral. Then, the circular arcs
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Figure 10: A diamond-kite mesh with quadrilaterals of many different scales and its circle packing.

for the quadrilaterals meeting at a vertex will necessarily link up to form a single circle. In the
unsubdivided rhombille tiling, this is true because the quadrilaterals sharing a vertex are all rotated
images of each other, and it remains true in each of the local replacement steps by which the sub-
divided tiling is formed. As shown in Figure 9, the circular arcs surrounding each vertex of the
replaced hexagon (shown as green in the figure) retain their previous radius, and the circular arcs
surrounding the center vertex and each newly added vertex (shown as violet) meet up to form a
circle that lies entirely within the replacement region.

The circles formed in this way meet in tangent pairs at the points within each quadrilateral where
the diagonals cross, and (because the rhombs and kites of the mesh are both orthodiagonal) the two
pairs of tangent circles meeting at each crossing point are orthogonal to each other. Thus, the result
is an orthogonal circle packing.

In this packing, every two orthogonal circles have radii differing by a factor of exactly
√

3, and
every two tangent circles have radii differing by a factor of at most three. Figure 10 shows a larger
example.

4.4 Laplacian smoothing

Mesh smoothing is a mesh improvement method in which mesh vertices are moved, without chang-
ing the mesh topology, in order to improve the shapes of the mesh elements. In Laplacian smooth-
ing [22], each mesh vertex is moved to the centroid of its neighbors. It dates back to the work of
Tutte [44], who showed that for two-dimensional convex domains with boundary vertices fixed in
place, this method converges to a unique optimal mesh in which every element is convex. The mesh
to which this process converges is called a Tutte embedding; it has the property that, if Laplacian
smoothing is applied to it, every vertex remains in the same position. Although other methods in-
cluding centroidal Voronoi tessellation [13] and optimization-based mesh smoothing [1] have been
applied to triangle meshes, and non-linear quasi-Newton smoothing has been shown to be more
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effective at removing concavities from quadrilateral meshes [46], Laplacian smoothing remains a
popular choice for quadrilateral mesh smoothing.

As we now argue, diamond-kite meshes already form Tutte embeddings: each vertex lies at the
exact centroid of its neighbors, so Laplacian smoothing can make no change to the mesh. In other
words, from the point of view of Laplacian smoothing, diamond-kite meshes are already optimally
smooth.

Theorem 4.5. In a diamond-kite mesh, every vertex lies at the centroid of its neighbors.

Proof. It is straightforward to verify that in the rhombille tiling used as the starting point for a
diamond-kite mesh, each vertex lies at its neighbors’ centroid: each vertex v has either three or
six equally distant neighbors, and the edges to those neighbors are equally spaced around v, so the
vectors representing the differences in position between v and its neighbors sum to zero. When we
perform the replacement step depicted in Figure 2, this property is preserved for every vertex v, as
can be seen by a simple case analysis:

• If v is the central vertex of a replacement step, it is surrounded after the replacement by six
equally spaced and equal length edges, so just as in the initial mesh the vectors representing
the differences in position between v and its neighbors sum to zero.

• If v is one of the six newly added neighbors of the central vertex, it is surrounded after the
replacement by three equally spaced and equal length edges, and the same argument applies.

• If v is one of the six vertices of the hexagon within which the replacement happens, its neigh-
borhood is changed by the removal of an edge e1 and the addition of two edges e2 and e3,
with length 1/

√
3 times that of e1 and forming angles of ±30◦ with e1. The two new edges

e2 and e3 form two consecutive sides of a rhombus, and e1 is the diagonal of the rhombus that
lies between them. As with any rhombus (or more generally any parallelogram) the vectors
from v to the endpoints of e2 and e3 sum to give the vector from v to the endpoint of e1, so the
refinement step does not change the sum of the vectors from v to its neighbors, which remains
zero.

• In all other cases, the neighbors of v are not changed by the refinement step.

Because the initial coarse mesh used as the starting point for producing a diamond-kite mesh is a
Tutte embedding, and because every refinement step preserves this property, it follows that every
diamond-kite mesh is a Tutte embedding.

5 Well-centered meshes

Vanderzee, Hirani, and Guoy [45] have studied well-centered triangle meshes, meshes in which the
circumcenter of every triangle is interior to the triangle, and their higher-dimensional generaliza-
tions. In the plane, such a mesh must be the Delaunay triangulation of its vertices, and its dual is
their Voronoi diagram. The Voronoi vertices (dual to the Delaunay triangles) each lie within the
interiors of their triangles by definition, and (as with every Voronoi diagram) the triangle vertices
lie within the interiors of their Voronoi cells. Additionally, every edge of the Delaunay triangulation
crosses the corresponding dual edge of the Voronoi diagram, and the crossing is at right angles. As
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Figure 11: Two dual well-centered meshes (the red and blue edges) generated from the diagonals of
a diamond-kite mesh (shown by the light brown shading).

Vanderzee et al. argue, this orthogonal crossing property of the primal and dual meshes is important
for certain numerical methods, including the covolume method, the discrete exterior calculus, and
space-time meshing.

Diamond-kite meshes can be used to generate a similar pair of dual meshes, with the same well-
centered properties: each primal vertex is interior to the corresponding dual face, each dual vertex is
interior to the corresponding primal face, each primal-dual pair of edges crosses orthogonally, and
there are no other crossings. To do so, observe that (because it is a planar graph with faces that have
an even number of sides) the diamond-kite vertices and edges form a bipartite graph. Each diagonal
of one of the quadrilaterals in the mesh connects two vertices of the same color. Therefore, the set
of all diagonals can be partitioned into two disjoint meshes, one of each color (Figure 11). Each
vertex of one color is surrounded by a cycle of diagonals of the other color (the diagonals that it is
not an endpoint of among the diamonds and kites that surround it), so in these two diagonal meshes,
each vertex of one mesh lies interior to a face of the other mesh. Each edge of one diagonal mesh
crosses orthogonally a single dual edge of the other diagonal mesh, the one from the same diamond
or kite. Therefore, these two diagonal meshes are well-centered in the sense of Vanderzee et al.

Like the underlying diamond-kite mesh, these two well-centered meshes have elements whose
size varies proportionally to a given local size function. Unlike the well-centered triangle meshes
(in which the Delaunay triangulation and the Voronoi diagram are meshes of two different types,
and the shapes of the triangles and dual Voronoi cells may vary continuously) these meshes both
have elements of the same four shapes: equilateral triangles, regular hexagons, isosceles trapezoids
(half-hexagons), and the pentagons formed by gluing together an equilateral triangle and a hexagon.

6 Conclusions

We have defined the family of diamond-kite meshes based on a simple local replacement step start-
ing with the rhombille tiling. In these meshes, the most acute angle is 60◦, the most obtuse angle
is 120◦, and all elements have bounded aspect ratio. The element size can be controlled by a local
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size function, and the number of elements and total edge length of the elements is within a constant
factor of optimal for the given size function. Replacement operations may be performed adaptively
to handle time-dependent size functions. Unlike adaptive quadtree meshes, this system provides a
quadrilateral mesh directly without any need for additional subdivision.

The vertices of our new meshes form the centers of an orthogonal circle packing of the type
guaranteed to exist by the Koebe–Andreev–Thurston circle packing theorem, showing for the first
time that it is possible to incorporate this type of circle packing into a meshing algorithm.

Much remains to be studied in this area. On the mathematical side, we still do not know whether
it is possible to define an analogous local replacement scheme that would allow the generation of
maximal circle packings (in which every gap between three circles has exactly three sides) with
similar properties to those of the diamond-kite mesh, and in particular with the ability to control the
size of the circles in one part of the packing without changing the geometry of the circles in distant
parts of the packing. On the more practical side, it would be of interest to develop the diamond-kite
method into a practical mesh generation system and to compare empirically the quality of meshes
generated in this way with those from other comparable systems such as quadtrees and Delaunay
refinement. One complication here is that diamond-kite meshes have edges with a small fixed set
of orientations, making it difficult for them to conform to the boundary of a domain. We leave such
developments to future research.
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