Skip to main content
Log in

Parallel mesh adaptation for high-order finite element methods with curved element geometry

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents a parallel adaptive mesh control procedure designed to operate with high-order finite element analysis packages to enable large-scale automated simulations on massively parallel computers. The curved mesh adaptation procedure uses curved entity mesh modification operations that explicitly consider the influence of the curved mesh entities on element shape. Applications of the curved mesh adaptation procedure have been developed to support the parallel automated adaptive accelerator simulations at SLAC National Accelerator Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Note that this criterion is different from the one being discussed in Sect. 3.3 and can be used only in such particular cases that the element is in fact valid since it could eventually stop. In other cases, the incremental criterion should be used.

Abbreviations

\(\Upomega_\upsilon\) :

Domain of interest, υ = GM, where G denotes the geometric model and M denotes the mesh model

\(\partial \Upomega_\upsilon\) :

Boundary of the domain \(\Upomega_\upsilon\)

G d i :

ith geometric model entity of dimension d.

M d i :

ith mesh entity of dimension d. d = 0, 1, 2, 3 and represents mesh vertex, edge, face and region, respectively.

\(\sqsubset\) :

Classification symbol used to indicate the association of one or more entities from the mesh model M with the geometric model G.

M d :

Unordered group of mesh topological entities of dimension d.

\(M_i^{d_i}\{M_j^{d_j}\}\) :

First-order adjacency sets of individual mesh entity \(M_i^{d_i}\) defined as the set of mesh entities of dimension d j adjacent to mesh entity \(M_i^{d_i}\).

P (n) i (M d j ):

the ith control point of a nth order Bézier polynomial associated with the mesh entity M d j .

X (n)(M 3 j ):

the nth order Bézier polynomial representation of a general tetrahedron.

References

  1. Alauzet F, Li X, Seol ES, Shephard MS (2006) Parallel anisotropic 3d mesh adaptation by mesh modification. Eng Comput 21:247–258

    Article  Google Scholar 

  2. Beall MW, Shephard MS (1999) An object-oriented framework for reliable numerical simulations. Eng Comput 15(1):61–72

    Article  Google Scholar 

  3. Ciarlet PG (2002) The Finite Element Method for Elliptic Problems. SIAM, Bahrain

    Book  Google Scholar 

  4. de Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of tetrahedral meshes. Int J Numer Methods Eng 46(7):1101–1125

    Article  MATH  Google Scholar 

  5. de Cougny HL, Shephard MS, Georges MK (1990) Explicit node point mesh smoothing within the octree mesh generator. Tech. rep., Scientfic Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY

  6. Dey S, O’Bara RM, Shephard MS (2001) Curvilinear mesh generation in 3d. Comput Aided Des 33:199–209

    Article  Google Scholar 

  7. Farin GE (1992) Curves and surfaces for computer aided geometric design, a practical guide. 3rd edn. Academic Press, Waltham

  8. Freitag LA, Knupp PM (1999) Tetrahedral element shape optimization via the jacobian determinant and condition number. In: Proceedings of the 8th international meshing roundtable. South Lake Tahoe, CA, pp 247–258

  9. Ge L, Lee LQ, Li Z, Ng C, Ko K, Luo Y, Shephard MS (2004) Adaptive mesh refinement for high accuracy wall loss determination in accelerating cavity design. Tech. rep., SLAC National Accelerator Laboratory. Menlo Park, CA

  10. George PL, Borouchaki H (2012) Construction of tetrahedral meshes of degree two. Int J Numer Methods Eng 90:1156–1182

    Article  MATH  MathSciNet  Google Scholar 

  11. Johnen A, Remacle JF, Geuzaine C (2011) Geometrical validity of curvilinear finite elements. In: Proceedings of the 20th International Meshing Roundtable. Paris, France

  12. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23(1):193–218

    Article  MATH  MathSciNet  Google Scholar 

  13. Knupp PM (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem Anal Des 39:217–241

    Article  MATH  Google Scholar 

  14. Knupp PM (2007) Remarks on mesh quality. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV

  15. Knupp PM (2010) Introducing the target-matrix paradigm for mesh optimization via node-movement. In: Proceedings of the 19th International Meshing Roundtable. Chattanooga, TN., pp 67–84

  16. Lee LQ, Li Z, Ng C, Ko K (2009) Omega3p: A parallel finite-element eigenmode analysis code for accelerator cavities. slac-pub-13529. Tech. rep., SLAC National Accelerator Laboratory. Menlo Park, CA

  17. Li X (2003) Mesh modification procedures for general 3d non-manifold domains. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY

  18. Li X, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Methods Eng 58(2):247–276

    Article  MATH  Google Scholar 

  19. Li X, Shephard MS, Beall MW (2005) 3d anisotropic mesh adaptation by mesh modification. Comput Methods Appl Mech Eng 194:4915–4950

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu A, Joe B (1994) Relationship between tetrahedron shape measures. BIT Numer Math 34(2):268–287

    Article  MATH  MathSciNet  Google Scholar 

  21. Lu Q (2011) Developments of parallel curved meshing for high-order finite element simulations. Master’s thesis, Rensselaer Polytechnic Institute., Troy, NY

  22. Luo X (2005) An automatic adaptive directional variable p-version method in 3d curved domains. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY

  23. lUO X, Shephard MS, Lee LQ, Ge L, Ng C (2010) Moving curved mesh adaptation for higher-order finite element simulations. Eng Comput 27(1):41–50

    Article  MATH  Google Scholar 

  24. Luo X, Shephard MS, Yin LZ, O’Bara RM, Nastasi R, Beall MW (2010) Construction of near optimal meshes for 3d curved domains with thin sections and singularities for p-version method. Eng Comput 22(1):41–50

    Google Scholar 

  25. Morin G, Goldman R (2001) On the smooth convergence of subdivision and degree elevation for bezier curves. Comput Aided Geom Des 18:657–666

    Article  MATH  MathSciNet  Google Scholar 

  26. Mubarak M, Seol S, Lu Q, Shephard MS (2012) A parallel ghosting algorithm for the flexible distributed mesh database. Submitted to Scientific Programming

  27. Ng C, Akcelik V, Candel A, Chen S, Folwell N, Ge L, Guetz A, Jiang H, Kabel A, Lee LQ, Li Z, Prudencio E, Schussman G, Uplenchwar R, Xiao L, Ko K (2006) State of the art in em field computation. slac-pub-12020. Tech. rep., SLAC National Accelerator Laboratory. Menlo Park, CA

  28. Persson PO, Peraire J (2009) Curved mesh generation and mesh refinement using lagrangian solid mechanics. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibit

  29. Prautzsch H, Kobbelt L (1994) Convergence of subdivision and degree elevation. Adv Comput Math 2:143–154

    Article  MATH  MathSciNet  Google Scholar 

  30. Sederberg TW (2011) Computer aided geometric design http://tom.cs.byu.edu/557/text/cagd.pdf; Accessed May 31, 2012

  31. Seol ES, Shephard MS (2006) Efficient distributed mesh data structure for parallel automated adaptive analysis. Eng Comput 22(3):197–213

    Article  Google Scholar 

  32. Shewchuk J (2002) What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures. Preprint

  33. Szabo BA, Babuska I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  34. Wan J (2006) An automatic adaptive procedure for 3d metal forming simulations. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY

  35. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. part 1. the recovery technique. Int J Numer Methods Eng 33:1331–1361

    Article  MATH  MathSciNet  Google Scholar 

  36. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. part 2. error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the US Department of Energy. The RPI portions of the work are supported by the SciDAC Grant No. DE-FC02-06ER25769 and a DOE SBIR Grant No. BEE101/DE-SC0002089. The Simmetrix portions of the work are supported by the SBIR grant. The authors would like to thank Dr Lixin Ge, Dr Cho-Kuen Ng and Dr Kwok Ko at SLAC National Accelerator Laboratory for providing the accelerator models and access to the ACE3P solvers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiukai Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q., Shephard, M.S., Tendulkar, S. et al. Parallel mesh adaptation for high-order finite element methods with curved element geometry. Engineering with Computers 30, 271–286 (2014). https://doi.org/10.1007/s00366-013-0329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-013-0329-7

Keywords

Navigation