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Abstract The meccano method is a novel and promising

mesh generation technique for simultaneously creating ada-

ptive tetrahedral meshes and volume parameterizations of a

complex solid. The method combines several former proce-

dures: a mapping from the meccano boundary to the solid

surface, a 3-D local refinement algorithm and a simultane-

ous mesh untangling and smoothing. In this paper we present

the main advantages of our method against other standard

mesh generation techniques. We show that our method con-

structs meshes that can be locally refined by using the Kos-

saczky bisection rule and maintaining a high mesh quality.

Finally, we generate volume T-mesh for isogeometric anal-

ysis, based on the volume parameterization obtained by the

method.

Keywords Tetrahedral mesh generation · Adaptive

refinement · Nested meshes · Mesh untangling and

smoothing · Surface and volume parameterization

1 Introduction

In the last decades, tetrahedral mesh generation has been

a subject of intense research. The automatic and adaptive

mesh generation is a crucial objective in finite element ap-

plications [5, 24, 25, 39, 41, 42, 44]. The challenge is to

achieve high quality adaptive meshes of complex solids with
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minimal user intervention and low computational cost. On

the one hand, most mesh generators are based on Delau-

nay triangulation and advancing front. Althought these tech-

niques are widely extended, there is still some problem re-

lated to mesh quality and mesh conformity with the bound-

ary of complex geometries [8]. If high element quality and

mesh adaption is required, Steiner points are introduced for

boundary recovery and an appropriate definition of element

sizes is demanded. On the other hand, local adaptive refine-

ment is a fundamental tool to adapt the mesh to singularities

of numerical solution. For this purpose, the main strategies

are based on remeshing or nested refinement.

We have recently introduced the meccano technique [6,

7, 35, 36] for constructing adaptive tetrahedral meshes of

solids. The name of the method stems from the fact that the

process starts from an outline of the solid composed by con-

nected polyhedral pieces: a meccano. The main idea of the

method is to build a volume mesh of the solid as a deforma-

tion of an appropriate tetrahedral mesh of the meccano.

Our strategy uses no Delaunay triangulation, nor advan-

cing front technique, and it simplifies the geometrical dis-

cretization problem for three-dimensional complex domains,

whose surfaces can be mapped to the meccano faces. The

meccano method combines a local refinement of tetrahedral

nested meshes [28], a parameterization of surface triangula-

tions [20] and our simultaneous untangling and smoothing

procedure [11, 13].

The meccano method requires a one-to-one mapping be-

tween the meccano boundary to the solid boundary. Map-

pings between physical and parametric spaces have been an-

alyzed by several authors. Significant advances in surface

parameterization have been done in [20, 21, 18, 29, 43, 46].

In [36] we present an automatic parameterization of a genus-

zero solid surface triangulation to a cube boundary.

Although surface parameterization has been extensively

studied in the literature, there are only a few works address-

ing the volume parameterization and they have in common

the use of harmonic functions [31, 30, 33, 32, 46]. In addi-

tion, Floater et al [19] give a simple counterexample to show

that convex combination mappings over tetrahedral meshes

are not necessarily one-to-one. A crucial consequence of our

method is the volume parameterization of a solid to the mec-

cano. In [36, 15], we present an automatic procedure for

the volume parameterization of a genus-zero solid. A sim-

ilar work is proposed by Zhang in [49] and it is extended to

arbitrary genus topology in [47].

Mesh optimization is the key for keeping mesh shape

regularity and for avoiding a costly remeshing [26, 27]. In

traditional mesh optimization, mesh moving is guided by the

minimization of certain overall functions, but it is usually

done in a local fashion. In general, this procedure involves

two steps [23, 22]: the first is for mesh untangling and the

second one for mesh smoothing. Each step leads to a dif-
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ferent objective function. The meccano method uses the im-

provement proposed by [11, 13, 12, 16], where a simultane-

ous untangling and smoothing guided by the same objective

function is introduced.

In this paper we analyze three advantages of the mec-

cano method. Firstly, we compare our meccano meshes with

triangulations generated by other well-known codes: Tet-

Gen [41, 42] and NETGEN [39]. Our procedure demands

more CPU time than TetGen but it is competitive compared

with NETGEN. Moreover the meccano meshes have higher

quality than the other ones. Secondly, we solve adaptively

a heat transfer problem starting from meccano meshes. The

structure of our meshes allows us to refine and derefine lo-

cally by applying the simple and efficient Kossaczky algo-

rithm. Therefore, we reach a fast local refinement and as-

sure a high mesh quality along the whole adaptive proce-

dure. Thirdly, we construct a trivariate T-spline representa-

tion of genus-zero solids based on the volume parameter-

ization obtained by meccano method. The development of

three-dimensional spline parameterizations from surface is

an important challenge in the context of isogeometric anal-

ysis [2, 9, 3, 15].

Other advantages of the meccano method, that have been

presented in previous papers, are: solid surface triangulation

is automatically constructed, the final mesh is conforming

with the object boundary, inner surfaces are automatically

preserved (for example, interface between several materi-

als), node distribution is adapted in accordance with the ob-

ject geometry, and parallel computations can easily be de-

veloped for meshing the meccano pieces.

The rest of paper is organized as follow. In Section 2 we

present a brief description of the meccano method. In Sec-

tion 3 we compare the meshes produced by our method with

the ones generated by TetGen and NETGEN. We analyze in

Section 4 the behaviour of meccano meshes in an adaptive

evolution problem. In Section 5 we generate a trivariate T-

spline for solid isogeometric analysis. Finally some conclu-

sions and future research are presented in Section 6.

2 The Meccano Method

The main steps of the meccano tetrahedral mesh genera-

tion algorithm are summarized in this section. The method

has been previously introduced in [35, 36]. The input data

of the algorithm is the definition of the solid boundary (for

example a surface triangulation or CAD description) and

a given precision (corresponding to the approximation of

the solid boundary). The following algorithm describes our

mesh generation approach.

Meccano tetrahedral mesh generation algorithm
1. Meccano: Construct a meccano, M , approximation of the

solid, Ω , formed by polyhedral pieces.

2. Mapping: Define an admissible mapping, Π , between the

meccano boundary faces, ∂M , and the solid boundary,

∂ Ω , i.e. Π : ∂M → ∂ Ω .

3. Coarse Mesh: Construct a coarse tetrahedral mesh, T0(M ),
of the meccano.

4. Refined Mesh: Generate a local refined tetrahedral mesh,

T (M ), from T0(M ), such that the surface triangula-

tion, τ(Ω), obtained after Π -mapping of T (M ) bound-

ary nodes, approximates the solid boundary ∂ Ω for a given

precision, ε .

5. External Node Mapping: Move the boundary nodes of

T (M ) to the solid surface according to Π .

6. Relocation and Optimization: Relocate the inner nodes

of T (M ) and optimize the resulting tetrahedral mesh by

applying the simultaneous untangling and smoothing pro-

cedure to obtain the final tetrahedral mesh, T (Ω), that

approximates the solid.

The first step of the procedure is to construct a meccano

approximation by connecting polyhedral pieces. The mec-

cano and the solid must be equivalent from a topological

point of view, i.e., their surfaces must have the same genus.

Once the meccano is assembled, we have to define an

admissible one-to-one mapping between the boundary faces

of the meccano and the boundary of the solid. If the solid

is genus-zero and its boundary is given by a triangulation,

we propose in [36] an automatic method to construct a pa-

rameterization of the solid surface triangulation to a cube

boundary. For this purpose, we first divide the solid surface

triangulation into six patches with the same topological con-

nection as the cube faces. Then, a discrete mapping from

each surface patch to the corresponding cube face is built by

using the mean value parameterization proposed in [21].

At the moment, if the genus of the surface of the solid is

greater than zero, the meccano should be defined by the user.

An automatic construction of the meccano could be difficult

(a) (b)

(c) (d)

Fig. 1 Steps of the meccano method for a toroidal solid on the para-

metric space: (a) meccano M formed by four cuboids, (b) cube mesh,

(c) coarse tetrahedral mesh T0(M ), (d) refined mesh T (M ).
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when the topology of the solid is complex. We also remark

that a non-optimal meccano can introduce large distortion in

mesh generation. To avoid this issue an optimization of the

boundary parameterization could be included [48].

In step 3, the meccano is decomposed into a coarse tetra-

hedral mesh T0(M ) by an appropriate subdivision of its ini-

tial polyhedral pieces. Although any tetrahedralization al-

gorithm could be used, we propose a partition of meccano

compatible with the Kossaczky refinement algorithm [28].

This mesh is locally refined in step 4 to obtain an ap-

proximation of the solid boundary within a given precision.

To be more precise we have to introduce some notations.

Given a tetrahedral mesh of the meccano T (M ), we denote

as τ(M ) its boundary triangulation and τ(Ω) the surface tri-

angulation obtained after Π -mapping of τ(M ) nodes. Note

that τ0(Ω) is a coarse approximation of ∂Ω . In order to im-

prove this approximation we build a refined mesh T (M )

of T0(M ) such that the distance between τ(Ω) and ∂Ω is

less than a prescribed tolerance ε . The concept of distance

between surfaces can be defined and implemented in several

ways. In our case is as follows: Let T = 〈a,b,c〉 be a tri-

angle of τ(M ), where a, b and c are their vertices, and let

pk ∈{pi}
Nq

i=1 be a Gauss quadrature point of T . We define the

distance, d(T ), between the triangle 〈Π(a),Π(b),Π(c)〉 ∈

τ(Ω) and ∂Ω as the maximum of the volumes of the tetra-

hedra formed by Π(a), Π(b), Π(c) and Π(pk). Then, the

distance between τ(Ω) and ∂Ω , d(τ(Ω),∂Ω), is the max-

imum of all d(T ), that is

d(τ(Ω),∂Ω) = max
T∈τ(M )

d(T ) (1)

We recall that local refinement stops when d(τ(Ω),∂Ω) <

ε . Note that this is an approximation of the maximum missed

(or overestimed) volume per face of τ(Ω). A more accurate

approach of distance based on Hausdorff envelope can be

found in [4].

Then, we construct a mesh of the solid T (Ω) by map-

ping the boundary nodes of T (M ) to ∂Ω and by relocat-

ing the inner nodes at a reasonable position. After these two

steps, the resulting mesh is generally tangled. Therefore, a

simultaneous untangling and smoothing procedure [11, 13]

is applied and a valid adaptive tetrahedral mesh of the solid

is obtained. In short, this last procedure finds the new posi-

tions of the inner nodes of T (Ω) optimizing an objective

function. Such a function is based on a certain measurement

of the quality of the local submesh N(q), formed by the set

of tetrahedra connected to the free node q. In fact, we use a

suitable modification of the objective function such that it is

regular over all R3, [11].

We illustrate the meccano algorithm with a toroidal solid

that is generated by revolving a circle of variable radius, see

Figure 2(b). This is a genus-one solid. The first algorithm

step constructs a simple meccano composed of four cuboids

(a)

(b)

(c)

(d)

Fig. 2 Steps of the meccano method for a toroidal solid on the phys-

ical space: (a) tangled mesh after the mapping of meccano boundary

nodes to the toroid surface and (b) resulting tetrahedal mesh T (Ω) af-

ter inner node relocation and mesh optimization. Cross sections of the

toroid before (c) and after (d) the application of the mesh optimization

process.

as shown in Figure 1(a). In this case, the definition of a one-

to-one mapping between the meccano and toroid boundaries

is straightforward. In the third step of the mesh generator

procedure, the meccano is splited into a coarse and uniform
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cube mesh (i.e., a polycube), see Figure 1(b), and each cube

is divided into six tetrahedra. It results in a coarse tetrahe-

dral mesh of the meccano shown in Figure 1(c). In the fol-

lowing step, we reach the local refined mesh that is shown in

Figure 1(d). A tangled tetrahedral mesh, see Figure 2(a), is

obtained after the mapping of the meccano boundary nodes

to the toroid surface. The relocation of the meccano inner

nodes reduces the number of inverted tetrahedra, but the tan-

gling problem is not solved completely; see Figure 2(c). So,

in the final algorithm step is necessary the application of the

tetrahedral mesh optimization presented in [11, 13]. The fi-

nal mesh can be seen in Figure 2(b) and its cross section in

Figure 2(d).

We have implemented the meccano technique using sev-

eral freely-available libraries:

– The module of 3-D refinement of ALBERTA code [38].

– Our mesh optimization library: SUS Code [13].

– The parameterization toolbox of the geometry group at

SINTEF ICT, Department of Applied Mathematics.

ALBERTA is an adaptive multilevel finite element toolbox

developed in C. This software can be used for solving sev-

eral types of 1-D, 2-D or 3-D problems. ALBERTA uses the

Kossaczky refinement algorithm [28] and requires an ini-

tial mesh topology [37]. The recursive refinement algorithm

could not terminate for general meshes. However, meshes

constructed using the meccano method verify the topology

and structure restrictions imposed by ALBERTA. They can

be refined by its recursive algorithm, because they are loop-

free, and the degeneration of the resulting triangulations af-

ter successive refinements is avoided.

The mesh optimization algorithm proposed in [11], which

is a simultaneous untangling and smoothing technique, is

implemented in the SUS Code [13] using C++ programming

language.

If the solid is genus-zero and its boundary is given by a

triangulation, its parameterization can be automatically ob-

tained following the procedure presented in [36] that uses

GoTools core and parameterization modules from SINTEF

ICT, (http://www.sintef.no/math software). This code imple-

ments Floater’s parameterization in C++ [20, 21]. However,

at present, if the genus of solid is bigger than zero a one-to-

one mapping is required by the method.

3 Comparison with NETGEN and TetGen

In this section we compare the meshes generated by our

meccano code versus other standard ones: NETGEN and

TetGen.

NETGEN is an automatic mesh generation tool for two

and three dimensions that was developed by J. Schöberl [39]

in C++. Surface and volume mesh generation are based on

the advancing front method. The input of this method is a

(a)

(b)

Fig. 3 (a) Original surface triangulation of the Bust with 32002 nodes

and 64000 triangles, (b) resulting tetrahedral mesh generated by the

meccano method for ε = 0.1 (34524 nodes, 147352 tetrahedra, 16129

boundary nodes and 32254 boundary faces).

boundary mesh. Starting with the original boundary, element

by element is cut off to reduce the domain iteratively. NET-

GEN allows to combine the advancing front procedure with

a fast Delaunay algorithm. In this case, the domain is firstly

filled with tetrahedra by using the Delaunay technique and
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when it fails then the slower advancing front algorithm takes

over. NETGEN also contains modules for mesh optimiza-

tion and hierarchical mesh refinement.

TetGen is a program developed by H. Si [41, 42] in C++,

that generates tetrahedral meshes for three-dimensional do-

mains. The algorithms used are of Delaunay type. Given the

domain boundary as a surface triangulation, TetGen can pro-

duce the boundary constrained tetrahedralization (which ex-

actly preserves the input surface mesh), constrained or con-

forming Delaunay tetrahedralization (which may add some

extra points into the input surface triangulation). The quality

of the mesh can be improved by the standard Delaunay re-

finement algorithm, such as the Shewchuk’s algorithm [40].

It adds vertices to the mesh to ensure that no tetrahedron has

a radius-edge ratio greater than a given value. The default

value is 2.0, which is equivalent to bound the smallest face

angle c.a. 15 degrees. TetGen also provides options to use

other quality measures or a combination of them, such as

the smallest and the largest dihedral angle bounds.

In order to compare the meshes, we have to introduce

some quality metric. In the following we have considered

three quality metrics: mean ratio (q1), condition number (q2),

and the minimal dihedral angle (q3). The first two are alge-

braic shape quality metrics [26, 27], and for a valid tetrahe-

dron T are given by

q1(T ) =
3σ

2
3

|S|2
, q2(T ) =

3

|S||S−1|
,

being |S| =
√

tr(ST S) the Frobenius norm of the weighted

Jacobian matrix S that is associated to the affine map from

the ideal tetrahedron (usually equilateral one) to the physical

one T , and σ = det(S).

To compare our method with the other ones, we take the

same surface triangulation of the Bust, Figure 3(a), as input

data for the three methods. It has been obtained from the

AIM@SHAPE Shape Repository. The surface triangulation

has 32002 nodes and 64000 triangles, and its bounding box

is defined by the points (x,y,z)min = (−120,−30.5,−44)

and (x,y,z)max = (106,60,46). As meccano we consider a

cube with an edge length equal to 20. Its center is placed

inside the solid at the point (5,−3.4). The automatic param-

eterization of the solid surface is done with the procedure

that was introduced in [36]. This procedure is based on the

construction of a compatible decomposition of the surface

triangulation of Figure 3(a) into six patches and then it uses

the Floater’s parameterization [21] on each patch. A detailed

description of the application of the meccano method to the

Bust test example is presented in [7].

We report in Tables 1, 2, 3 and 4 some features of the

meshes generated by Meccano, NETGEN, TetGen v.1.4.3

and TetGen v.1.5.0, respectively. The CPU time has been

measured on a Dell precision 690, 2 Dual Core Xeon proces-

sor and 8 Gb RAM memory and using standard optimization

in all cases.

Table 1 contains information about three meshes con-

structed by the meccano method for several values of the ap-

proximation parameter ε . We recall that the meccano method

does not maintain the input data. It creates its own boundary

triangulation that approximates the original one. Note that

the meccano technique generates a high quality tetrahedral

meshes.

Table 2 shows information about two meshes generated

by NETGEN. The first mesh is generated combining an ad-

vancing front method and a Delaunay algorithm. The second

mesh is produced using only an advancing front technique.

Both meshes have been optimized by making five iterations

of the optimization module that is included in NETGEN.

Table 3 reports information about six meshes generated

by TetGen v.1.4.3. We use this code to produce boundary

constrained and conforming Delaunay tetrahedralizations,

imposing several restrictions about quality. In fact, we em-

ploy the -Y switch to suppress the creation on Steiner points

on the boundary (constrained tetrahedralization), and the -

q switch to ensure that no tetrahedra have radius-edge ratio

greater than a prescribed value.

Table 4 contains information about six meshes generated

by TetGen v.1.5.0. We build again boundary constrained and

conforming Delaunay tetrahedralizations. As quality param-

eter we now use -qq to set a minimum dihedral angle bound,

and -qo to fix a maximum dihedral angle bound. Note that

this new TetGen version includes a new algorithm for bound-

ary recovery that generates a “strictly” constrained tetrahe-

dralization, i.e. no Steiner points are included into the input

surface mesh. However a great number of Steiner points are

introduced in the conforming Delaunay mesh.

The minimal values of the quality metrics are shown in

Fig. 4. In addition, we present in Fig. 5 the ’cumulative fre-

quency polygon’ of the generated meshes; for a given value

of x ∈ (0.1,1) each line represents the percentage of ele-

ments that have a quality less than x. We note that the se-

lected criterion to compare the quality is not relevant from a

qualitative point of view.

The following comments summarize the comparison be-

tween the methods:

– NETGEN and TetGen v.1.5.0 (constrained strategy) ma-

intain the input surface triangulation, i.e. they do not in-

troduce any Steiner point. TetGen v.1.4.3 (constrained

strategy) introduces only a few boundary nodes to con-

struct the Delaunay tetrahedralization, but it does not

modify the original surface. However, Meccano gener-

ates a new boundary triangulation that is an approxima-

tion of the original one. This is an important handicap

for the two fist methods that could have an effect in term

of quality.
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Table 1 Meccano: Features of meccano meshes produced for values of ε : 0.05, 0.01, and 0.005. The quality is measured with the shape mean

metric (q1), with the metric based on the condition number of the weighted Jacobian matrix (q2), and with the minimal dihedral angle (q3) in

grades.

Strategy Nodes Tetrahedra Boundary Nodes Boundary Faces CPU time

ε = 0.05 49427 211662 22954 45904 45.0 s

ε = 0.01 109878 471728 50579 101154 81.3 s

ε = 0.005 152229 656064 69337 138670 114.1 s

Strategy minqi(T ) mean qi(T ) #{T : qi(T )< 0.1} #{T : qi(T )< 0.2} #{T : qi(T )< 0.3}
ε = 0.05 q1 0.16 0.74 0 (0.000%) 12 (0.005%) 369 (0.17%)

q2 0.09 0.73 1 (0.000%) 63 (0.030%) 437 (0.20%)

q3 3.98 41.88 – – –

ε = 0.01 q1 0.14 0.75 0 (0.000%) 35 (0.007%) 722 (0.15%)

q2 0.07 0.74 8 (0.002%) 106 (0.022%) 780 (0.16%)

q3 3.13 42.37 – – –

ε = 0.005 q1 0.13 0.75 0 (0.000%) 40 (0.006%) 889 (0.13%)

q2 0.06 0.75 12 (0.002%) 138 (0.021%) 919 (0.14%)

q3 2.75 42.59 – – –

Table 2 NETGEN: Features of two meshes generated by NETGEN. The first one is produced combining advancing front method and Delaunay

algorithm. The second is generated using only advancing front technique. The quality is measured with the mean ratio metric (q1), with the metric

based on the condition number of the weighted Jacobian matrix (q2), and with the minimal dihedral angle (q3) in grades.

Strategy Nodes Tetrahedra Boundary Nodes Boundary Faces CPU time

With Delaunay 57965 242875 32002 64000 80.0 s

Without Delaunay 130210 683534 32002 64000 602.1 s

Strategy min q(T) mean q(T) #{T : q(T )< 0.1} #{T : q(T )< 0.2} #{T : q(T )< 0.3}
With Delaunay q1 0.04 0.81 6 (0.002%) 27 (0.011%) 71 (0.029%)

q2 0.01 0.80 24 (0.010%) 62 (0.026%) 265 (0.110%)

q3 0.55 45.07 – – –

Without Delaunay q1 0.04 0.71 8 (0.001%) 231 (0.033%) 2321 (0.340%)

q2 0.01 0.70 141 (0.021%) 1365 (0.200%) 9038 (1.322%)

q3 0.50 38.87 – – –

– Meccano meshes have better quality than meshes gener-

ated by TetGen and NETGEN.

– Meccano meshes have good structures because they are

constructed by simple nested refinements. Moreover, they

can be easily refined by using the Kossaczky algorithm.

TetGen and NETGEN produce meshes without this type

of structure. Therefore, they require more complex re-

finement algorithms.

– TetGen is the fastest code. Meccano is competitive ver-

sus NETGEN from a computational cost point of view.

We now study if the quality of NETGEN and TetGen

meshes can be improved by using the SUS Code. We have

applied an improved version of SUS Code to the meshes

generated by NETGEN and TetGen v.1.5.0. The results are

presented in Tables 5 and 6, respectively. Note that, the ap-

plication of five smoothing iterations of SUS Code on NET-

GEN meshes does not produce a significant improvement in

the mesh quality. However, the quality of TetGen meshes is

significantly improved after five iterations of SUS Code.

As we have commented above, NETGEN and TetGen

maintain the input surface triangulation, and therefore the

quality of the final tetrahedral meshes depends on the qual-

ity of the data. In order to eliminate the effect of the initial

boundary triangulation in the comparison of the codes, we

finally use the boundary mesh produced by the Meccano as

input data for the other codes. Table 7 summarizes the in-

formation of the resulting meshes. Note that NETGEN pro-

duces a mesh of extraordinary quality, and Meccano meshes

are generally better than TetGen ones. We remark that the

quality of the Meccano meshes is linked to the structure im-

posed by the Kossaczky refinement.

4 Adaptive Local Refinement of the Meccano Meshes

Our volume meshes can be utilized in adaptive finite ele-

ment applications by using the Kossaczky’s algorithm. The

local refinement steps are very fast because the sequence of

solid nested meshes is defined from the coarse mesh of the

meccano, i.e., the dividing edge for tetrahedron bisection is

known straightforward. In addition, we note that the mini-

mum mesh quality is bounded during all the mesh adapta-

tion process, because similar elements appear in the mec-

cano mesh after three consecutive bisections. The minimum

quality of refined meshes is function of the initial mesh qual-

ity [34, 45].

In order to assess the quality of meccano meshes within

an adaptive procedure we propose the following example. In

this Section we have used the mean ratio quality metric (q1).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7

Table 3 TetGen v.1.4.3: Features of meshes generated by TetGen. The -Y switch suppresses the creations of Steiner points on the boundary. The

-q switch ensures that no tetrahedra have radius-edge greater than a prescribed value. The quality is measured with the mean ratio metric (q1), with

the metric based on the condition number of the weighted Jacobian matrix (q2), and with the minimal dihedral angle (q3) in grades.

Strategy Nodes Tetrahedra Boundary Nodes Boundary Faces CPU time

Constrained

-Yq2 45021 179056 32005 64006 9.4 s

-Yq1.5 53918 237736 32005 64006 11.5 s

-Yq1.1 95512 504069 32005 64006 21.2 s

Conforming

-q2 68242 271188 48059 96112 11.4 s

-q1.5 79096 341901 48233 96462 15.0 s

-q1 278904 1596154 48863 97722 50.2 s

Strategy min q(T) mean q(T) #{T : q(T )< 0.1} #{T : q(T )< 0.2} #{T : q(T )< 0.3}
Constrained

-Yq2 q1 0.04 0.67 43 (0.02%) 517 (0.29%) 3028 (1.70%)

q2 0.01 0.65 221 (0.12%) 2583 (1.14%) 8289 (4.62%)

q3 0.48 35.49 – – –

-Yq1.5 q1 0.04 0.71 44 (0.02%) 440 (0.18%) 2437 (1.00%)

q2 0.01 0.70 200 (0.08%) 2119 (0.89%) 7975 (3.35%)

q3 0.48 37.92 – – –

-Yq1.1 q1 0.03 0.78 76 (0.02%) 451 (0.09%) 2459 (0.49%)

q2 0.01 0.76 208 (0.04%) 2218 (0.44%) 10476 (2.07%)

q3 0.48 42.77 – – –

Conforming

-q2 q1 0.03 0.67 36 (0.01%) 415 (0.15%) 3599 (1.30%)

q2 0.02 0.65 215 (0.08%) 3039 (1.12%) 11206 (4.13%)

q3 0.79 35.38 – – –

-q1.5 q1 0.03 0.71 34 (0.01%) 372 (0.11%) 2906 (0.85%)

q2 0.02 0.70 204 (0.06%) 2652 (0.78%) 10422 (3.05%)

q3 0.79 37.92 – – –

-q1 q1 0.03 0.81 34 (0.00%) 421 (0.03%) 3114 (0.19%)

q2 0.02 0.80 224(0.01%) 3365 (0.21%) 21737 (1.36%)

q3 0.79 45.59 – – –

Let us consider the linear heat evolution equation with null

initial and Dirichlet boundary conditions:

∂tu−∆u = f in Ω × (0,T),

u = 0 on ∂Ω × (0,T ),

u = 0 on Ω ×{0},

where the solid domain Ω is the Stanford Bunny (see Figure

11), t ∈ [0,4] and f (x, t) is a space-time depending function.

In this application we have considered as f (x, t) a gaussian-

type function in space, that is moving in time around a circle

inside the domain. Our space-time discretization consists of

piecewise linear element and backward Euler method with

variable time step. The adaptive algorithm is driven by the

residual estimator proposed in [10]. We use the implicit ada-

ptive strategy of type A described in [1], that means, for

each time step we start from the previous step mesh and

repeat the process: SOLVE → ESTIMATE → MARK →

REFINE/DEREFINE, until the estimated error is below the

fixed tolerance.

The initial tetrahedral mesh is generated applying the

meccano method to a surface triangulation that has been

obtained from the Stanford Computer Graphics Laboratory.

The resulting mesh has 13105 nodes and 54906 tetrahedra;

its minimum quality is 0.106 and the mean quality 0.677.

Figure 11(a) and Figure 6(c) show the initial mesh and a

cross section, respectively.

In Figure 6(a) and (b) the initial null solution and the

mesh element quality curve are shown. The quality curve is

obtained by sorting the mesh elements in increasing order of

quality. We consider again the mean ratio as quality metric.

In Figure 7 we present several solutions and the corre-

sponding adaptive meshes at times 0.5, 1 and 1.5. Note that

the adaptive algorithm captures the solutions and refines ac-

cordingly.

The evolution of the minimum and mean mesh quality in

the course of the evolution process are shown in Figure 8(a).

The minimum mesh quality is bounded during all adaptive

procedure. In fact, the worst tetrahedron quality is 0.066.

The mean quality is always bigger than 0.5. Moreover, the

percentage of elements with quality less than 0.1 is negli-

gible (less than 0.14%). Meanwhile, the percentage of ele-

ments with quality less than 0.2 and 0.3 is around 5% and

15%, respectively (see Figure8(b)).

Finally, we show in Figure 9 the quality curves at several

times. In conclusion, the mesh generated by our method has

good quality even after being locally refined.
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Table 4 TetGen v.1.5.0: Features of meshes generated by TetGen. The -Y switch suppresses the creations of Steiner points on the boundary. The

-qq parameter sets a minimum dihedral angle bound, and -qo parameter sets a maximum dihedral angle bound. The quality is measured with the

mean ratio metric (q1), with the metric based on the condition number of the weighted Jacobian matrix (q2), and with the minimal dihedral angle

(q3) in grades.

Strategy Nodes Tetrahedra Boundary Nodes Boundary Faces CPU time

Constrained

-Yqq15 61957 284858 32002 64000 10.4 s

-Yqo165 44692 177043 32002 64000 7.9 s

-Yqq15o165 61957 284858 32002 64000 10.4 s

Conforming

-qq15 279279 1061273 200021 400038 46.3 s

-qo165 250753 880106 199962 399920 40.1 s

-qq15o165 279279 1061237 200021 400038 46.3 s

Strategy min q(T) mean q(T) #{T : q(T ) < 0.1} #{T : q(T )< 0.2} #{T : q(T )< 0.3}
Constrained

-Yqq15 q1 0.04 0.74 28 (0.01%) 260 (0.09%) 1383 (0.49%)

q2 0.01 0.72 113 (0.04%) 1127 (0.40%) 3875 (1.36%)

q3 0.48 40.04 – – –

-Yqo165 q1 0.04 0.67 40 (0.02%) 333 (0.18%) 2676 (1.51%)

q2 0.01 0.65 141 (0.08%) 2283 (1.29%) 7895 (4.46%)

q3 0.48 35.33 – – –

-Yqq15o165 q1 0.04 0.74 28 (0.01%) 260 (0.09%) 1383 (0.49%)

q2 0.01 0.72 113 (0.04%) 1127 (0.40%) 3875 (1.36%)

q3 0.48 40.04 – – –

Conforming

-qq15 q1 0.01 0.63 2988 (0.28%) 22299 (2.10%) 72291 (6.80%)

q2 0.02 0.62 3498 (0.33%) 30025 (2.83%) 91878 (8.66%)

q3 0.52 36.31 – – –

-qo165 q1 0.01 0.59 2950 (0.33%) 22540 (2.56%) 73755 ( 8.38%)

q2 0.003 0.57 3527 (0.40%) 31222 (3.55%) 97561 (11.09%)

q3 0.26 34.04 – – –

-q15o165 q1 0.01 0.63 2989 (0.28%) 22317 (2.10%) 72331 (6.81%)

q2 0.02 0.62 3498 (0.33%) 30025 (2.83%) 91878 (8.66%)

q3 0.52 36.31 – – –

Table 5 NETGEN + SUS: Mean ratio quality of resulting meshes after five smoothing iterations of SUS Code on NETGEN meshes.

Strategy + SUS min q1(T ) mean q1(T ) #{T : q1(T )< 0.1} #{T : q1(T )< 0.2} #{T : q1(T )< 0.3}
With Delaunay 0.04 0.81 6 (0.003%) 27 (0.011%) 71 (0.029%)

Without Delaunay 0.04 0.71 7 (0.001%) 245 (0.035%) 2362 (0.340%)

Table 6 TetGen v.1.5.0 + SUS: Mean ratio quality of resulting meshes after five smoothing iterations of SUS Code on TetGen v.1.5.0 meshes.

Strategy + SUS min q1(T ) mean q1(T ) #{T : q1(T ) < 0.1} #{T : q1(T )< 0.2} #{T : q1(T )< 0.3}
Constrained

-Yqq15 0.035 0.77 17 (0.006%) 223 (0.08%) 932 (0.33%)

-Yqo165 0.035 0.70 31 (0.002%) 281 (0.16%) 1346 (0.76%)

-Yqq15o165 0.035 0.77 17 (0.006%) 223 (0.08%) 932 (0.33%)

Conforming

-qq15 0.015 0.68 197 (0.019%) 3417 (0.32%) 21364 (2.01%)

-qo165 0.009 0.63 202 (0.023%) 3831 (0.43%) 24716 (2.81%)

-qq15o165 0.015 0.68 197 (0.019%) 3417 (0.32%) 21364 (2.01%)

5 Application of Volume Parameterization in

Isogeometric Analysis

One of the most important contributions of the meccano

method is the resulting volume parameterization of the solid.

It can have interesting applications in solid modeling and nu-

merical simulation. Particularly, the construction of volume

T-mesh for isogeometric analysis [2, 9, 3] can be easier.

The key lies in using the mapping, provided by the vol-

ume parameterization, to transform a T-mesh defined on the

parametric domain (meccano) into the physical domain. The

T-mesh of the parametric domain is the parametric space

where the set of T-splines are defined [3].

In order to make the construction of the T-mesh easier,

we apply an octree subdivision of a cube enclosing the initial

polycube decomposition of the meccano. The dimension of
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Table 7 Features of meshes generated by Meccano, TetGen and NETGEN, when the input surface triangulation is the output one constructed by

Meccano. The quality is measured with the mean ratio metric (q1), with the metric based on the condition number of the weighted Jacobian matrix

(q2), and with the minimal dihedral angle (q3) in grades.

Strategy Nodes Tetrahedra Boundary Nodes Boundary Faces CPU time

Meccano: ε = 0.05 49427 211662 22954 45904 45.0 s

TetGen 1.4.3: -Yq1.1 56039 278970 22954 45904 8.6 s

TetGen 1.4.3: -q1 102861 562376 26307 52610 15.0 s

TetGen 1.5.0: -Yqq15 39706 172632 22954 45904 5.9 s

TetGen 1.5.0: -qq15 164712 588907 127108 254212 25.0 s

NETGEN: (Delaunay) 37777 149230 22954 45904 41.0 s

Strategy min q(T) mean q(T) #{T : q(T )< 0.1} #{T : q(T )< 0.2} #{T : q(T )< 0.3}
Meccano: ε = 0.05 q1 0.16 0.74 0 (0.00%) 12 (0.005%) 369 (0.17%)

q2 0.09 0.73 1 (0.00%) 63 (0.030%) 437 (0.20%)

q3 3.98 41.88 – – –

TetGen 1.4.3: -Yq1.1 q1 0.09 0.79 3 (0.00%) 20 (0.007%) 377 (0.13%)

q2 0.05 0.78 8 (0.00%) 468 (0.168%) 4279 (1.53%)

q3 2.44 43.84 – – –

TetGen 1.4.3: -q1 q1 0.22 0.81 0 (0.00%) 0 (0.000%) 446 (0.08%)

q2 0.14 0.80 0 (0.00%) 692 (0.123%) 6913 (1.23%)

q3 5.95 45.90 – – –

TetGen 1.5.0: -Yqq15 q1 0.02 0.74 1 (0.00%) 24 (0.014%) 143 (0.08%)

q2 0.004 0.73 19 (0.01%) 177 (0.102%) 1450 (0.84%)

q3 0.21 40.90 – – –

TetGen 1.5.0: -qq15 q1 0.02 0.59 1848 (0.31%) 18761 (3.186%) 62612 (10.63%)

q2 0.02 0.58 1233 (0.21%) 20399 (3.464%) 73011 (12.40%)

q3 0.80 35.50 – – –

NETGEN:(Delaunay) q1 0.36 0.81 0 (0.00%) 0 (0.000%) 0 (0.00%)

q2 0.31 0.81 0 (0.00%) 0 (0.000%) 0 (0.00%)

q3 12.62 46.18 – – –
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Fig. 4 Minimal values of quality metrics for meshes generated by Meccano (blue), NETGEN (green), TetGen v.1.4.3 (red) and TetGen v.1.5.0

(black). Meshes have been ordered by appearance in Tables 1,2,3 and 4.

the cube must satisfy a certain restriction so that this poly-

cube is nested inside the octree. Each leaf of the octree is

divided in eight children (eight cubes). The division con-

tinues until each terminal cube of the octree does not con-

tain a node of the Kossaczky’s meccano mesh in its inner.

This subdivision produces vertices both inside and outside

the meccano, but only the inner vertices must be considered

as anchors. The external vertices can be used to complete

the unclamped knot vectors.

Thus, the image of a point (u,v,w) in the parametric do-

main is given by

S(u,v,w) = ∑
α∈A

Pα Rα(u,v,w)

where Rα(u,v,w) =
Bα (u,v,w)

∑β∈A Bβ (u,v,w)
is the T-spline blending

function and Bα the corresponding B-spline associated to

the sα anchor. The index set A runs over all the anchors of

the T-mesh. The control points Pα are calculated by impos-

ing the conditions S(sβ ) = ∑α∈A Pα Rα(sβ ) for all the an-

chors of the T-mesh. Here, we have also used the anchors as

interpolation points. The image of each interpolation point

sβ in the physical space, S(sβ ), is determined by the volume

parameterization.

A complete description of the procedure for genus-zero

solids can be found at [15]. An introduction to solids with

surface of genus greater than zero is presented in [14].

In [17] we present some results of the application of iso-

geometric analysis with T-splines to the resolution of Pois-
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Fig. 5 ’Cummulative frequency polygon’ for meshes generated by Meccano (blue), NETGEN (red), TetGen v.1.4.3 (black) and TetGen v.1.5.0
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Fig. 6 Solution of the linear heat evolution problem at time t = 0 (a), quality curve (b) and cross section of the initial tetrahedral mesh.

son equation in a three-dimensional solid that is parameter-

ized with this technique.

We summarize here an application of our method to the

Stanford bunny. The original surface triangulation has been

obtained from the Stanford Computer Graphics Laboratory,

http://graphics.stanford.edu/data/3Dscanrep/.

Figure 10(a) shows the cube tetrahedral mesh obtained

by the meccano method. Figure 10(b) shows the paramet-

ric T-mesh. Figure 11(a) shows the tetrahedral mesh of the

bunny constructed by the meccano method. Figure 11(b)

shows the T-mesh of the Standford bunny generated by the

application of the mapping S(u,v,w) to the parametric T-

mesh.
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(a) (b) (c)
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Fig. 7 Solutions of the linear heat evolution problem at time t = 0.5 (a), t = 1.0 (b) and t = 1.5 (c). Cross sections of the corresponding tetrahedral

meshes, (d), (e) and (f), respectively.
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Fig. 8 Minimum and mean quality versus time (a) and percentage of elements with poor quality versus time (b).

The combination of the surface parameterizations (quasi-

conforming [21]), the adaptive strategy and the mesh opti-

mization generally entails low distortion and values of map-

ping scaled Jacobian close to one. Nevertheless, in some

regions of the surface, especially those close to the patch

boundaries, the distortion can become high. In order to im-

prove the mapping quality, we propose in [15] an iterative

procedure that combines the refinement of the T-mesh cells

with negative scaled Jacobian and the mesh optimization

procedure. In this case, after four iterations we obtain a T-

mesh whose all cells have positive scaled Jacobian at their

center and only the 6% of cells have a scaled Jacobian less

than 0.5. See [15] for more details.

6 Conclusions and Future Research

In this paper, we have shown important performance advan-

tages of the meccano method. The mesh generation tech-

nique is an efficient mesh generator for creating adaptive

tetrahedral meshes.

We highlight the fact that the method requires minimum

user intervention and has a low computational cost to mesh
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Fig. 9 Evolution of the mesh quality curves for several times.

(a) (b)

Fig. 10 Meccano tetrahedral mesh (a) and corresponding parametric

T-mesh (b).

(a) (b)

Fig. 11 Tetrahedral mesh of the Stanford bunny (a) and corresponding

physical T-mesh (b).

solids whose boundary is a surface of genus 0. In this case,

the procedure is fully automatic and it is only defined by

a surface triangulation of the solid, a cube and a tolerance

that fixes the desired approximation of the solid surface.

We have presented a comparison between the tetrahedral

meshes generated by the meccano method and other stan-

dard techniques. Particularly, a detailed comparison have

been done with NETGEN and TetGen meshes. Our mesh

generation strategy automatically achieves a good mesh adap-

tion to the geometrical characteristics of the domain and the

quality of the resulting meshes is high.

We have shown that the meccano meshes can be locally

refined by using the Kossaczky’s algorithm. Specifically, we

have applied this technique in a heat evolution problem. We

have noted that the local refinement/derefinement steps are

very fast and the minimum mesh quality is bounded in ada-

ptive finite element applications.

We also remark that the method simultaneously cons-

tructs a volume parameterization of complex solids. On this

direction, we have introduced an application of the meccano

method for the construction of volume T-mesh for isogeo-

metric analysis.

In future works, the meccano technique can be extended

to automatically mesh a complex solid whose boundary is

a surface of genus greater than zero. In this case, the mec-

cano can be a polycube or can be built by polyhedral pieces

with compatible connections. At present, the user has to de-

fine the meccano associated to the solid, but we have im-

plemented a special CAD package for more general input

solid.
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