Skip to main content
Log in

A changing-topology moving mesh technique for large displacements

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Three-dimensional real-life simulations are generally unsteady and involve moving geometries. Industry is currently very far from performing such body-fitted simulations on a daily basis, mainly due to the robustness of the moving mesh algorithm and their extensive computational cost. The proposed approach is a way to improve these two issues. This paper introduces two new ideas. First, it demonstrates numerically that moving three-dimensional complex geometries with large displacements is feasible using only vertex displacements and mesh-connectivity changes. This is new and presents several advantages over usual techniques for which the number of vertices varies in time. Second, most of the CPU time spent to move the mesh is due to solving the mesh deformation algorithm to propagate the body displacement inside the volume. Thanks to the use of high-order vertex trajectory and advanced meshing operators to optimize the mesh, we can drastically reduce the required number of solutions and CPU time. The efficiency of this new methodology is illustrated on numerous 3D problems involving large displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Indeed, moving vertices on boundaries have to be handled with care as boundaries are generally curved and contain singularities (ridges, corners, …). It requires either the knowledge of the CAD patches defining the geometry or the ability to rebuild an accurate continuous surface model of the boundary from its discretization.

References

  1. Batina J (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J 28(8):1381–1388

    Article  Google Scholar 

  2. Lesoinne M, Farhat C (1993) Stability analysis of dynamic meshes for transient aeroelastic computations. In: 11th AIAA computational fluid dynamics conference. AIAA Paper 1993-3325, Orlando

  3. Tijdeman H, Seebass R (1980) Transonic flows past oscillating airfoils. Comput Methods Appl Mech Eng 12:181–222

    Google Scholar 

  4. Hassan O, Sørensen K, Morgan K, Weatherill NP (2007) A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing. Int J Numer Method Fluids 53(8):1243–1266

    Article  MATH  Google Scholar 

  5. Murman S, Aftosmis M, Berger M (2003) Simulation of 6-DOF motion with cartesian method. In: 41th AIAA aerospace sciences meeting and exhibit. AIAA-2003-1246, Reno

  6. Astorino M, Chouly F, Fernández M (2009) Robin-based semiimplicit coupling in fluid–structure interaction: stability analysis and numerics. SIAM J Sci Comput 31(6):4041–4065

    Article  MATH  MathSciNet  Google Scholar 

  7. Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system, vol 1. Springer—Modelling, Simulations and Applications, New York

    Book  Google Scholar 

  8. Baum J, Luo H, Löhner R, Goldberg E, Feldhun A (1997) Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from a F16 c/d In: 35th AIAA aerospace sciences meeting. AIAA Paper 1997-1885, Reno

  9. Dindar M, Shephard M, Flaherty J, Jansen K (2000) Adaptive CFD analysis for rotorcraft aerodynamics. Comput Methods Appl Mech Eng 189:1055–1076

    Article  MATH  Google Scholar 

  10. Baum J, Luo H, Löhner R, Yang C, Pelessone D, Charman C (1996) A coupled fluid/structure modeling of shock interaction with a truck. In: 34th AIAA aerospace sciences meeting. AIAA Paper 1999-0795, Reno

  11. Shyam V, Ameri A, Luk D, Chen JP (2010) Three-dimensional un-steady simulation of a modern high pressure turbine stage using phase lag periodicity: analysis of flow and heat transfer. In: Technical report, NASA Glenn Research Center, NASA/TM-2010- 216064

  12. Zhu M, Fusegi T, Tabbal A et al. (1998) A tetrahedral finite-element method for fast 3D numerical modeling and entire simulation of unsteady turbulent flow in a mixed-flow pump. In: Proceedings of the FEDSM’98, ASME fluids engineering division summer meeting FEDSM98-4879, Washington

  13. Compere G, Remacle JF, Jansson J, Hoffman J (2010) A mesh adaptation framework for dealing with large deforming meshes. Int J Numer Method Eng 82(7):843–867

    MATH  Google Scholar 

  14. Baum J, Luo H, Löhner R (1994) A new ALE adaptive unstructured methodology for the simulation of moving bodies. In: 32th AIAA aerospace sciences meeting. AIAA Paper 1994-0414, Reno

  15. Thomas P, Lombard C (1979) Geometric conservation law and its application to flow computations on moving grids. AIAA J 17(10):1030–1037

    Article  MATH  MathSciNet  Google Scholar 

  16. Benek J, Buning P, Steger J (1985) A 3D Chimera grid embedding technique. In: 7th AIAA computational fluid dynamics conference. AIAA Paper 1985-1523, Cincinnati

  17. Brezzi F, Lions J, Pironneau O (2001) Analysis of a Chimera method. C R Acad Sci Paris Ser I 332(7):655–660

    Article  MATH  MathSciNet  Google Scholar 

  18. Löhner R (2001) Applied CFD techniques. An introduction based on finite element methods, vol 1. John Wiley, New York

    Google Scholar 

  19. Löhner R, Baum J, Mestreau E, Sharov D, Charman C, Pelessone D (2004) Adaptive embedded unstructured grid methods. Int J Numer Method Eng 60:641–660

    Article  MATH  Google Scholar 

  20. Peskin C (1972) Flow patterns around heart valves: a numerical method. J Comp Phys 10:252–271

    Article  MATH  MathSciNet  Google Scholar 

  21. George P (1999) Tet meshing: construction, optimization and adaptation. In: Proceedings of the 8th international meshing roundtable, South Lake Tao

  22. Löhner R (1996) Extensions and improvements of the advancing front grid generation technique. Commun Numer Methods Eng 12:683–702

    Article  MATH  Google Scholar 

  23. Marcum D, Weatherill N (1995) Unstructured grid generation using iterative point insertion and local reconnection. AIAA J 33(9):1619–1625

    Article  MATH  Google Scholar 

  24. Alauzet F, Belme A, Dervieux A (2011) Anisotropic goal-oriented mesh adaptation for time dependent problems. In: Proceedings of the 20th international meshing roundtable, pp 99–121. Springer, New York

  25. Alauzet F, Loseille A (2010) High order sonic boom modeling by adaptive methods. J Comp Phys 229:561–593

    Article  MATH  MathSciNet  Google Scholar 

  26. Alauzet F, Olivier G (2011) Extension of metric-based anisotropic mesh adaptation to time-dependent problems involving moving geometries. In: 49th AIAA aerospace sciences meeting. AIAA Paper 2011-0896, Orlando

  27. Hassan O, Probert EJ, Morgan K, Weatherill NP (2000) Unsteady flow simulation using unstructured meshes. Comput Methods Appl Mech Eng 189:1247–1275

    Article  MATH  Google Scholar 

  28. Jayaraman B, Marcum D (2000) A general procedure for dynamic unstructured grids. In: 7th international conference on numerical grid generation in computational field simulations, Whistler

  29. Dobrzynski C, Frey P (2008) Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th international meshing roundtable, pp 177–194. Springer, New York

  30. Brièrede l’Isle E, George P (1995) Optimization of tetrahedral meshes. IMA Vol Math Appl 75:97–128

    Article  Google Scholar 

  31. Frey P, George P (2008) Mesh generation. In: Application to finite elements, 2nd edn. ISTE Ltd and John Wiley, New York

  32. de Boer A, van der Schoot M, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85:784–795

    Article  Google Scholar 

  33. Gumorov N, Duraiswami R (2007) Fast radial basis function interpolation via preconditioned Krylov iteration. SIAM J Sci Comput 29(5):1876–1899

    Article  MathSciNet  Google Scholar 

  34. Luke E, Collins E, Blades E (2012) A fast mesh deformation method using explicit interpolation. J Comput Phys 231:586–601

    Article  MATH  MathSciNet  Google Scholar 

  35. Löhner R, Yang C (1996) Improved ALE mesh velocities for moving bodies. Commun Numer Method Eng 12(10):599–608

    Article  MATH  Google Scholar 

  36. Bottasso C, Detomi D, Serra R (2005) The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes. Comput Methods Appl Mech Eng 194:4244–4264

    Article  MATH  Google Scholar 

  37. Farhat C, Degand C, Koobus B, Lesoinne M (1998) Torsional spring for two-dimensional dynamic unstructured fluid meshes. Comput Methods Appl Mech Eng 163(1-4):231–245

    Article  MATH  Google Scholar 

  38. Baker T, Cavallo P (1999) Dynamic adaptation for deforming tetrahedral meshes. AIAA J 19:2699–3253

    Google Scholar 

  39. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  40. Yang Z, Mavriplis D (2007) Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA J 45(1):138–150

    Article  Google Scholar 

  41. Alauzet F, Mehrenberger M (2010) P1-conservative solution interpolation on unstructured triangular meshes. Int J Numer Method Eng 84(13):1552–1588

    Article  MATH  MathSciNet  Google Scholar 

  42. George P, Borouchaki H (2012) Construction of tetrahedral meshes of degree two. Int J Numer Method Eng 90:1156–1182

    Article  MATH  MathSciNet  Google Scholar 

  43. Olivier G, Alauzet F (2011) A new changing-topology ALE scheme for moving mesh unsteady simulations. In: 49th AIAA aerospace sciences meeting. AIAA Paper 2011-0474, Orlando

  44. Alauzet F, Frey P, George P, Mohammadi B (2007) 3D transient fixed point mesh adaptation for time-dependent problems: application to CFD simulations. J Comp Phys 222:592–623

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Alauzet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alauzet, F. A changing-topology moving mesh technique for large displacements. Engineering with Computers 30, 175–200 (2014). https://doi.org/10.1007/s00366-013-0340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-013-0340-z

Keywords

Navigation