Skip to main content
Log in

Anisotropic adaptive nearly body-fitted meshes for CFD

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents an anisotropic adaptive strategy for CFD that combines a nearly body-fitted mesh strategy with an iterative anisotropic adaptation to the flow solution. The nearly body-fitted mesh method consists in modelling embedded interfaces by a level-set representation in combination with local anisotropic mesh refinement and mesh adaptation (Quan et al. in Comput Methods Appl Mech Eng 268:65–81, 2014). The generated nearly body-fitted meshes are used to perform CFD simulations. Besides, anisotropic mesh adaptation based on the Hessian of the flow solution is used to improve the accuracy of the solution. We show that the method is beneficial in challenging CFD simulations involving complex geometries and time dependent flow, as it suppresses the need for the tedious process of body-fitted mesh generation, without altering the finite element formulation nor the prescription of boundary conditions. The methodology yields accurate flow solutions for a reasonable computational cost, despite very limited user interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Alauzet F (2010) Size gradation control of anisotropic meshes. Finite Elem Anal Des 46(1–2):181–202

    Article  MathSciNet  Google Scholar 

  2. Balay S, Brown J, Buschelman K, Gropp WD, Kaushik D, Knepley MG, Curfman McInnes L, Smith BF, Zhang H (2013) PETSc Web page. http://www.mcs.anl.gov/petsc

  3. Barbosa HJC, Thomas JRH (1991) The finite element method with Lagrange multipliers on the boundary: circumventing the Babuska-Brezzi condition. Comput Methods Appl Mech Eng 85(1):109–128

    Article  MATH  Google Scholar 

  4. Beran P (1991) Steady and unsteady solutions of the Navier-Stokes equations for flows about airfoils at low speeds. AIAA Paper 91–1733

  5. Borouchaki H, Georges PL, Hecht F, Laug P, Saltel P (1997) Delaunay mesh generation governed by metric specifications. part I. algorithms. Finite Elem Anal Des 25(61–83):85–109

    Article  MathSciNet  MATH  Google Scholar 

  6. Burleson AC, Turitto VT (1996) Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. Thromb Haemost 76:118–123

    Google Scholar 

  7. Calhoun D (2002) A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. J Comput Phys 176:231–275

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi JI, Oberoi RC, Eewards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224:757–784

    Article  MathSciNet  MATH  Google Scholar 

  9. Cignoni P, Rocchini C, Scopigno R (1998) Metro: measuring error on simplified surfaces. Comput Graph Forum 17(2):167–174

    Article  Google Scholar 

  10. Claisse A, Ducrot V, Frey P (2009) Levelsets and anisotropic mesh adaptation. Discret Contin Dyn Syst 23(1–2):165–183

    MathSciNet  MATH  Google Scholar 

  11. Coutanceau M, Bouard R (1977) Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part 1, steady flow. J Fluid Mech 79(2):231–256

    Article  Google Scholar 

  12. Dennis SCR, Chang G-Z (1970) Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100. J Fluid Mech 42:471–489

    Article  MATH  Google Scholar 

  13. Dobrzynski C, Frey P (2008) Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th international meshing roundtable, pp 177–194

  14. Dolbow JE, Franca LP (2008) Residual-free bubbles for embedded Dirichlet problems. Comput Methods Appl Mech Eng 197:3751–3759

    Article  MathSciNet  MATH  Google Scholar 

  15. Dolbow JE, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78(2):229–252

    Article  MathSciNet  MATH  Google Scholar 

  16. Fornberg B (1980) A numerical study of steady viscous flow past a circular cylinder. J Fluid Mech 98(4):819–855

    Article  MATH  Google Scholar 

  17. Frey P, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comput Methods Appl Mech Eng 194(48–49):5068–5082

    Article  MathSciNet  MATH  Google Scholar 

  18. Geller S, Krafczyk M, Tolke J, Turek S, Hron J (2005) Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput Fluids 35:888–897

    Article  Google Scholar 

  19. Geuzaine C, Remacle JF (2009) Gmsh: a three dimensional finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79:1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  20. Hachem E, Kloczko T, Digonnet H, Coupez T (2012) Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method. Int J Numer Methods Fluids 68(1):99–121

    Article  MathSciNet  MATH  Google Scholar 

  21. Hautefeuille M, Annavarapu C, Dolbow JE (2011) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90(1):40–64

    Article  MathSciNet  Google Scholar 

  22. Hecht F (2006) Bamg: Bidimensional anisotropic mesh generator. http://www.freefem.org/ff++

  23. Ilinca F, Hétu J-F (2011) A finite element immersed boundary method for fluid flow around rigid objects. Int J Numer Methods Fluids 65:856–875

    Article  MATH  Google Scholar 

  24. Krams R, Wentzel JJ, Oomen JAF, Vinke R, Schuurbiers JCH, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Arterioscl Thromb Vasc Biol 17:2061–2065

    Article  Google Scholar 

  25. Le D-V, Khoo B-C, Lim K-M (2008) An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains. J Comput Methods Appl Mech Eng 197:2119–2130

    Article  MathSciNet  MATH  Google Scholar 

  26. Lima ALF, Silva E, Silveira-Neto A, Damasceno JJR (2003) Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J Comput Phys 189:351–370

    Article  MATH  Google Scholar 

  27. Marchandise E, Crosetto P, Geuzaine C, Remacle J-F, Sauvage E (2011) Quality open source mesh generation for cardiovascular flow simulations. In: Volume accepted of springer series on modeling, simulation and applications, chapter of modelling physiological flows. Springer, Berlin.

  28. Marchandise E, Remacle J-F (2006) A stabilized finite element method using a discontinous level set approach for solving two phase incompressible flows. J Comput Phys 219(2):780–800

    Article  MathSciNet  MATH  Google Scholar 

  29. Mavriplis D, Jameson A (1987) Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes. AIAA paper 87–0353

  30. Pagnutti D, Ollivier-Gooch C (2010) Delaunay-based anisotropic mesh adaptation. Eng Comput 26:407–4185

    Article  Google Scholar 

  31. Park J, Kwon K, Choi H (1998) Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int J 12(6):1200–1205

    Google Scholar 

  32. Pulliam TH (1985) Efficient solution methods for the Navier-Stokes equations. Lecture Notes for the von Kármán Institute For Fluid Dynamics Lecture Series: Numerical Techniques for Viscous Flow Computation In Turbomachinery Bladings, von Kármán Institute, Rhode-St-Geness, Belgium

  33. Quan D-L, Toulorge T, Marchandise E, Remacle J-F, Bricteux G (2014) Anisotropic mesh adaptation with optimal convergence for finite elements using embedded geometries. Comput Methods Appl Mech Eng 268:65–81

    Article  MathSciNet  Google Scholar 

  34. Radespiel R (1987) A cell-vertex multigrid method for the Navier-Stokes equations. NASA TM-101557

  35. Remacle J-F, Li X, Chevaugeon N, Shephard MS (2002) Transient mesh adaptation using conforming and non conforming mesh modifications. In: Sandia National Laboratories (ed) Proceedings of the 11th international meshing roundtable, Sept 15–18

  36. Russell D, Wang Z-J (2003) A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. J Comput Phys 191:177–205

    Article  MathSciNet  MATH  Google Scholar 

  37. Sauvage E (2014) Patient-specific blood flow modelling. Ph. D. Thesis, Université catholique de Louvain

  38. Schlichting H (1960) Boundary layer theory. McGraw-Hill Book Company Inc, New York

    MATH  Google Scholar 

  39. Shaaban AM, Duerinckx AJ (2000) Wall shear stress and early atherosclerosis. Am J Roentgenol 174:1657–1665

    Article  Google Scholar 

  40. Sucker D, Brauer H (1975) Fluiddynamik bei querangeströmten Zylindern. Wärme- und Stoffübertragung 8:149–158

    Article  Google Scholar 

  41. Tritton D-J (1959) Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 6(4):547–567

    Article  MATH  Google Scholar 

  42. Turkel E, Radespiel R, Kroll N (1997) Assessment of preconditioning methods for multidimensional aerodynamics. Comput Fluids 26(6):613–634

    Article  MATH  Google Scholar 

  43. Wieselsberger C (1922) New data on the laws of fluid resistance. NACA TN 84

  44. Ye T (1999) An accurate Cartesian grid method for viscous incomressible flows with complex immersed boundary. J Comput Phys 156:209–240

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieu-Linh Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, DL., Toulorge, T., Bricteux, G. et al. Anisotropic adaptive nearly body-fitted meshes for CFD. Engineering with Computers 30, 517–533 (2014). https://doi.org/10.1007/s00366-014-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0360-3

Keywords

Navigation