Skip to main content
Log in

Smooth anisotropic sources with application to three-dimensional surface mesh generation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Isotropic sources are extended to take anisotropy into account in order to obtain a smooth anisotropic sizing field for anisotropic mesh generation. Different types of anisotropic sources are described to represent boundary layers on surfaces and in volume that guarantee a smooth anisotropic field. This allows to us resolve multiple boundary layer intersections properly and naturally provides a smooth transition between the anisotropic boundary layer sizing and the isotropic region. Furthermore, the interaction between a smooth anisotropic sizing field and curvature is studied, and estimates of the tangential size spacing are provided for first and second order approximation of the geometry to ensure smoothness of the sizing field. It is also shown that, in order to get a smooth size variation, volumetric and surface meshing can not be decoupled. The filtering of the sources in order to obtain a computationally efficient method is described. Numerical examples demonstrate our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Aftosmis M, Berger M, Melton J (1997) Robust and efficient cartesian mesh generation for component-based geometry. In: 35th AIAA Aerospace Sciences Meeting. Reno

  2. Alauzet F (2010) Size gradation control of anisotropic meshes. Finite Elem Anal Des 46:181–202

    Article  MathSciNet  Google Scholar 

  3. Alauzet F, Loseille A (2010) High-order sonic boom modeling based on adaptive methods. J Comput Phys 229(3):561–593

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubry R, Houzeaux G, Vázquez M (2011) A surface remeshing approach. Int J Num Meth Eng 85(12):1475–1498

    Article  MATH  Google Scholar 

  5. Aubry R, Karamete K, Mestreau E, Dey S (2013a) A three dimensional parametric mesher. J Comp Phys 270:161–181

    Article  Google Scholar 

  6. Aubry R, Karamete K, Mestreau E, Dey S, Löhner R (2013b) Linear sources for mesh generation. SIAM J Sci Comput 35(2):886–907

    Article  MathSciNet  MATH  Google Scholar 

  7. Aubry R, Karamete K, Mestreau E, Dey S, Gayman D (2015) A robust conforming NURBS tessellation for industrial applications based on a mesh generation approach. Comput Aid Des 63:26–38

    Article  MATH  Google Scholar 

  8. Borouchaki H, Hecht F, Frey P (1998) Mesh gradation control. Int J Numer Meth Eng 43:131–141

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro-Diaz M, Hecht F, Mohammadi B, Pironneau O (1997) Anisotropic unstructured mesh adaptation for flow simulations. Int J Numer Meth Fluids 25:475–491

    Article  MathSciNet  MATH  Google Scholar 

  10. Demmel J, Kahan W (1990) Accurate singular values of bidiagonal matrices. SIAM J Sci Stat Comput 11(5):873–912

    Article  MathSciNet  MATH  Google Scholar 

  11. Demmel J, Veselic K (1992) Jacobi’s method is more accurate than QR. SIAM J Matrix Anal Appl 13:1204–1245

    Article  MathSciNet  MATH  Google Scholar 

  12. Eberly D (1998) Eigensystems for \(3\times 3\) symmetric matrices (revisited). Geometric Tools, LLC

  13. Frey P (2000) About surface remeshing. In: 9th international meshing roundtable, Sandia National Laboratories, New Orleans, Louisiana, USA, pp 123–136

  14. Frey P, George P (1999) Maillages, applications aux éléments finis. Hermes, Paris

  15. Hirsch C (1995) Numerical computation of internal and external flows, volume I & II. In: Numerical methods in engineering. Wiley, New York

  16. Kopp J (2008) Efficient numerical diagonalization of Hermitian \(3 \times 3\) matrices. Int J Mod Phys C 19:523–536

    Article  MathSciNet  MATH  Google Scholar 

  17. Laug P, Borouchaki H (2015) Metric tensor recovery for adaptive meshing. Math Comp Sim. doi:10.1016/j.matcom.2015.02.004

    MATH  Google Scholar 

  18. Löhner R (2008) Applied computational fluid dynamics techniques: an introduction based on finite element methods, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  19. Loseille A, Löhner R (2009) On 3D anisotropic local remeshing for surface, volume, and boundary layers. In: Proc. in 18th international meshing roundtable, pp 611–630

  20. Lynch EC, Crowell AR, Lee J (2015) Static and dynamic cfd analysis of a generic swept wing UCAV. In: 53rd AIAA Aerospace Sciences Meeting. Kissimmee

  21. Marcum D, Alauzet F (2014) Aligned metric-based anisotropic solution adaptive mesh generation. Proced Eng 82:428–444

    Article  Google Scholar 

  22. Mavriplis D (2003) Revisiting the least square procedure for gradient reconstruction on unstructures meshes. In: NIA report NASA/CR-2003-212683

  23. McKenzie S, Dompierre J, Turcotte A, Meng E (2009) On metric tensor representation, intersection, and union. In: 11th ISGG conference on numerical grid generation

  24. Najafiyazdi M, Habashi WG, Fossati M (2011) Improved transient-fixed-point mesh adaptation using orthogonality-preserving metric intersection. In: 20th AIAA computational fluid dynamics conference, Honolulu, 27–30 June 2011

  25. Parlett B (1998) The symmetric eigenvalue problem. In: Classics in applied mathematics. SIAM, Philadelphia

  26. Peraire J, Peiro J, Morgan K (1992) Adaptive remeshing for three-dimensional compressible flow computations. J Comput Phys 103:269–285

    Article  MATH  Google Scholar 

  27. Phong B (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317

    Article  Google Scholar 

  28. Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Pirzadeh SZ (2010) Advanced unstructured grid generation for complex aerodynamic applications. AIAA J 48(5):904–915

    Article  Google Scholar 

  30. Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics. In: Computer vision and material science. Cambridge University Press, Cambridge

  31. Sharir M (1994) Almost tight upper bounds for lower envelopes in higher dimensions. Discrete Comput Geom 12:327–345

    Article  MathSciNet  MATH  Google Scholar 

  32. Sharov D, Luo H, Baum J, Löhner R (2003) Unstructured Navier-Stokes grid generation at corners and ridges. Int J Numer Meth Fluids 43(6–7):717–728

    Article  MathSciNet  MATH  Google Scholar 

  33. Tchon K, Khachan M, Guibault F, Camarero R (2003) Constructing anisotropic geometric metrics using octrees and skeletons. In: IMR, pp 195–204

  34. Weickert J, Hagen H (2006) Visualization and processing of tensor fields. Springer, Berlin

    Book  MATH  Google Scholar 

  35. Wild J (2012) 3D anisotropic Delaunay meshing for ideal interfacing to block-unstructured mixed meshes using sparse ochre for metric size propagation. In: ECCOMAS, pp 195–204

  36. Wilkinson J (1988) The algebraic eigenvalue problem. Oxford University Press, New York

    MATH  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the DoD HPCMP CREATE Program. The authors would like to thank the reviewers for substantially improving the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Aubry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubry, R., Dey, S., Karamete, K. et al. Smooth anisotropic sources with application to three-dimensional surface mesh generation. Engineering with Computers 32, 313–330 (2016). https://doi.org/10.1007/s00366-015-0420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-015-0420-3

Keywords

Navigation