Skip to main content
Log in

Nonlinear elasto-plastic analysis of slack and taut cable structures

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents the geometrically nonlinear analysis of the slack and taut cable structures considering the material inelasticity subjected to self-weight, pretension, and external loads. The finite element procedure is briefly summarized using the Lagrangian formulation associated with isoparametric interpolation polynomials and the Newton–Raphson iterative scheme with incremental load. The simple and efficient method to determine the initial equilibrium state of the slack cable systems under self-weight as well as support motions is presented using the penalty method. The numerical algorithm to evaluate the tangent modulus of elasticity of cable is presented based on the iterative scheme. The accuracy and reliability of the present study are verified by comparing the predictions with those generated by well-reported slack and taut cable structure problems. The effect of the yielding of cable segments on displacements and stresses of cable structures is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Irvine HM (1981) Cable structures. The MIT Press, Cambridge

    Google Scholar 

  2. Abbas S (1993) Nonlinear geometric material and time dependent analysis of segmental erected three-dimensional cable stayed bridges. PhD thesis, Dept of Civil Engineering, University of California, Berkeley

  3. O’Brien W, Francis A (1964) Cable movements under two-dimensional loads. J Struct Div ASCE 90:89–123

    Google Scholar 

  4. Jayaraman H, Knudson W (1981) A curved element for the analysis of cable structures. Comput Struct 14:325–333

    Article  Google Scholar 

  5. Yang YB, Tsay JY (2007) Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method. Int J Struct Stab Dy 7:571–588

    Article  MathSciNet  MATH  Google Scholar 

  6. Such M, Jimenez-Octavio JR, Carnicero A, Lopez-Garcia O (2009) An approach based on the catenary equation to deal with static analysis of three dimensional cable structures. Eng Struct 31:2162–2170

    Article  Google Scholar 

  7. Andreu A, Gil L, Roca P (2006) A new deformable catenary element for the analysis of cable net structures. Comput Struct 84:1882–1890

    Article  Google Scholar 

  8. Thai HT, Kim SE (2011) Nonlinear static and dynamic analysis of cable structures. Finite Elem Anal Des 47:237–246

    Article  Google Scholar 

  9. Impollonia N, Ricciardi G, Saitta F (2011) Statics of elastic cables under 3D point forces. Int J Solids Struct 48:1268–1276

    Article  MATH  Google Scholar 

  10. Vilnay O, Rogers P (1990) Statical and dynamical response of cable nets. Int J Solids Struct 26:299–312

    Article  Google Scholar 

  11. Pellegrino S (1993) Structural computations with the singular value decomposition of the equilibrium matrix. Int J Solids Struct 30:3025–3035

    Article  MATH  Google Scholar 

  12. Kwan ASK (1998) A new approach to geometric nonlinearity of cable structures. Comput Struct 67:243–252

    Article  MATH  Google Scholar 

  13. Mitsugi J (1994) Static analysis of cable networks and their supporting structures. Comput Struct 51:47–56

    Article  MATH  Google Scholar 

  14. Barnes MR (1988) Form-fining and analysis of pre-stressed nets and membranes. Comput Struct 30:685–695

    Article  Google Scholar 

  15. Stefanou SD, Moossavi E, Bishop S, Kaliopoulos P (1993) Conjugate gradients method for calculating the response of large cable nets to static loads. Comput Struct 49:843–848

    Article  MATH  Google Scholar 

  16. Leonard JW (1988) Tension structures. McGraw-Hill, New York

    Google Scholar 

  17. Ernst HJ (1965) Der E-modul von seilen unter beruecksichtigung des durchhanges. Der Bauingenieur 40:52–55

    Google Scholar 

  18. Coyette JP, Guisset P (1988) Cable network analysis by a nonlinear programming technique. Eng Struct 10:41–46

    Article  Google Scholar 

  19. Ali H, Abdel-Ghaffar A (1995) Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings. Comput Struct 54:461–492

    Article  MATH  Google Scholar 

  20. Chen ZH, Wu YJ, Yin Y, Shan C (2010) Formulation and application of multi-node sliding cable element for the analysis of suspen-dome structures. Finite Elem Anal Des 46:743–750

    Article  MathSciNet  Google Scholar 

  21. Schek HJ (1974) The force density method for form finding and computation of general networks. Comput Methods Appl Mech Eng 3:115–134

    Article  MathSciNet  Google Scholar 

  22. Bletzinger KU, Ramm E (1999) A general finite element approach to the form finding of tensile structures by the updated reference strategy. Int J Space Struct 14:131–146

    Article  Google Scholar 

  23. Pauletti R, Pimenta P (2008) The natural force density method for the shape finding of taut structures. Comput Methods Appl Mech Eng 197:4419–4428

    Article  MATH  Google Scholar 

  24. Deng H, Jiang QF, Kwan ASK (2005) Shape finding of incomplete cable-strut assemblies containing slack and prestressed elements. Comput Struct 82:1767–1779

    Article  Google Scholar 

  25. Guomo M, Greco L (2012) On the force density method for slack cable nets. Int J Solids Struct 49:1526–1540

    Article  Google Scholar 

  26. Greco L, Impollonia N, Guomo M (2014) A procedure for the static analysis of cable structures following elastic catenary theory. Int J Solids Struct 51:1521–1533

    Article  Google Scholar 

  27. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  28. Motro R (1983) Formes et forces dans les systèmes constructifs-Casdes systèmes réticulés autocontraints. Thèse d’Etat, Montpellier, Université des Sciences et Techniques du Languedoc

  29. Michalos J, Birnstiel C (1962) Movements of a cable due to changes in loading. J Struct Div ASCE 127:267–303

    Google Scholar 

  30. Salehi Ahmad Abad M, Shooshtari A, Esmaeili V, Naghavi Riabi A (2013) Nonlinear analysis of cable structures under general loadings. Finite Elem Anal Des 73:11–19

    Article  Google Scholar 

  31. Tibert G (1998) Numerical analyses of cable roof structures: Royal Institute of Technology, Dept. of Structural Engineering

  32. Kanzaki K (1973) On methods of calculations about the three support cable crane supposing static balanced state. J Jpn For Soc 55:173–178

    Google Scholar 

  33. Lewis W, Jones M, Rushton K (1984) Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs. Comput Struct 18:989–997

    Article  MATH  Google Scholar 

  34. Desai YM, Popplewell N, Shah AH, Buragohain DN (1988) Geometric nonlinear static analysis of cable supported structures. Comput Struct 29:1001–1009

    Article  MATH  Google Scholar 

  35. West HH, Kar AK (1973) Discretized initial-value analysis of cable nets. Int J Solids Struct 9:1403–1420

    Article  MATH  Google Scholar 

  36. Sufian F, Templeman A (1992) On the non-linear analysis of pre-tensioned cable net structures. Struct Eng 4:147–158

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant (NRF-2015R1A2A1A01007535) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A4A01016377). The supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NI., Thai, S. & Lee, J. Nonlinear elasto-plastic analysis of slack and taut cable structures. Engineering with Computers 32, 615–627 (2016). https://doi.org/10.1007/s00366-016-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0440-7

Keywords

Navigation