Skip to main content
Log in

Parallel generation of meshes with cracks using binary spatial decomposition

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work describes a technique to generate tetrahedral meshes with cracks using parallel computers with distributed memory. This technique can be used for models without cracks as well. It employs a binary partitioning structure that uses axis-aligned planes to decompose the domain. Those decomposing planes are determined based on a refined octree that is built to estimate the amount of work necessary to generate the whole mesh, so that the amount of work in each subdomain is approximately the same. A serial advancing front technique is used in each subdomain concurrently, in such a way that the generated tetrahedra do not cross the decomposing planes. After local synchronizations, meshes are generated interfacing the subdomains. The results show that the prediction of the number of elements in each subdomain is accurate, leading to a well-balanced algorithm and to a good speed-up. Also, the meshes generated in parallel have very good quality, similar to the that of a serially generated mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Cavalcante-Neto JB, Wawrzynek PA, de Carvalho MTM, Martha LF, Ingraffea AR (2001) An algorithm for three-dimensional mesh generation for arbitrary regions with cracks. Eng Comput 17(1):75–91

    Article  MATH  Google Scholar 

  2. de Oliveira Miranda AC, Cavalcante-Neto JB, Martha LF (1999) An algorithm for two-dimensional mesh generation for arbitrary regions with cracks. In: SIBGRAPI ’99: Proceedings of the XIIBrazilian Symposium on Computer Graphics and Image Processing, pp. 29–38, IEEE Computer Society

  3. de Oliveira Miranda AC, Martha LF, Wawrzynek PA, Ingraffea AR (2009) Surface mesh regeneration considering curvatures. Eng Comput 25(2):207–219

    Article  Google Scholar 

  4. Wu P, Houstis EN (1996) Parallel adaptive mesh generation and decomposition. Eng Comput 12(3–4):155–167

    Article  Google Scholar 

  5. Lämmer L, Burghardt M (2000) Parallel generation of triangular and quadrilateral meshes. Adv Eng Softw 31(12):929–936

    Article  MATH  Google Scholar 

  6. Larwood BG, Weatherill NP, Hassan O, Morgan K (2003) Domain decomposition approach for parallel unstructured mesh generation. Int J Numer Methods Eng 58:177–188

    Article  MATH  Google Scholar 

  7. Ivanov EG, Andrä H, Kudryavtsev AN (2006) Domain decomposition approach for automatic parallel generation of tetrahedral grids. Comput Methods Appl Math 6(2):178–193

    Article  MathSciNet  MATH  Google Scholar 

  8. Głut B, Jurczyk T (2008) Domain decomposition techniques for parallel generation of tetrahedral meshes. In: Bubak M, van Albada D, Dongarra J, Sloot P (eds) Proceedings of the International Conference on Computational Science 2008. Lecture Notes in Computer Science, vol 5101, pp 641–650, Springer, Berlin, Heidelberg

  9. Yılmaz Y, Özturan C, Tosun O, Özer AH, Soner S (2010) Parallel mesh generation, migration and partitioning for the Elmer application. Tech. Rep., PREMA-Partnership for Advanced Computing in Europe

  10. Chen J, Zhao D, Huang Z, Zheng Y, Wang D (2012) Improvements in the reliability and element quality of parallel tetrahedral mesh generation. Int J Numer Methods Eng 92(8):671–693

    Article  MathSciNet  Google Scholar 

  11. Zagaris G, Pirzadeh SZ, Chrisochoides NP (2009) A framework for parallel unstructured grid generation for practical aerodynamic simulations. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting, AIAA-American Institute of Aeronautics and Astronautics

  12. Wu H, Guan X, Gong J (2011) ParaStream: a parallel streaming Delaunay triangulation algorithm for LiDAR points on multicore architectures. Comput Geosci 37(9):1355–1363

    Article  Google Scholar 

  13. Topping BHV, Khan AI (1996) Subdomain generation for non-convex parallel finite element domains. Adv Eng Softw 25(2–3):253–266

    Article  Google Scholar 

  14. Karypis G, Kumar V (1998) METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 4.0. University of Minnesota, September

  15. Karypis G, Schloegel K, Kumar V (2011) ParMETIS: Parallel Graph Partitioning and Sparse Matrix Ordering Library, Version 3.2. University of Minnesota, April

  16. Chrisochoides NP, Nave D (2000) Simultaneous mesh generation and partitioning for Delaunay meshes. Math Comput Simul 54(4–5):321–339

    Article  MathSciNet  MATH  Google Scholar 

  17. Linardakis L, Chrisochoides NP (2006) Delaunay decoupling method for parallel guaranteed quality planar mesh refinement. SIAM J Sci Comput 27(4):1394–1423

    Article  MathSciNet  MATH  Google Scholar 

  18. Rivara M-C, Calderon C, Fedorov A, Chrisochoides NP (2006) Parallel decoupled terminal-edge bisection method for 3D mesh generation. Eng Comput 22:111–119

    Article  Google Scholar 

  19. Ito Y, Shih AM, Erukala AK, Soni BK, Chernikov AN, Chrisochoides NP, Nakahashi K (2007) Parallel unstructured mesh generation by an advancing front method. Math Comput Simul 75(5–6):200–209

    Article  MathSciNet  MATH  Google Scholar 

  20. Panitanarak T, Shontz SM (2011) MDEC: MeTiS-based domain decomposition for parallel 2D mesh generation. Proc Comput Sci 4(0):302–311. Proceedings of the International Conference on Computational Science 2011

  21. Löhner R (2014) Recent advances in parallel advancing front grid generation. Arch Comput Methods Eng 21(2):127–140

    Article  MathSciNet  Google Scholar 

  22. Hodgson DC, Jimack PK (1996) Efficient parallel generation of partitioned, unstructured meshes. Adv Eng Softw 27(1–2):59–70

    Article  Google Scholar 

  23. Khan AI, Topping BHV (1991) Parallel adaptive mesh generation. Comput Syst Eng 2(1):75–101

    Article  Google Scholar 

  24. Wilson JK, Topping BHV (1998) Parallel adaptive tetrahedral mesh generation by the advancing front technique. Comput Struct 68(1–3):57–78

    Article  MATH  Google Scholar 

  25. Topping BHV, Cheng B (1999) Parallel and distributed adaptive quadrilateral mesh generation. Comput Struct 73(1–5):519–536

    Article  MATH  Google Scholar 

  26. Chrisochoides NP (2005) A survey of parallel mesh generation methods. Tech. Rep. SC-2005-09, Brown University

  27. Okusanya T, Peraire J (1996) Parallel unstructured mesh generation. In: Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, pp. 719–729, Mississippi State University

  28. Chernikov AN, Chrisochoides NP (2006) Parallel guaranteed quality Delaunay uniform mesh refinement. SIAM J Sci Comput 28(5):1907–1926

    Article  MathSciNet  MATH  Google Scholar 

  29. Lo SH (2012) Parallel Delaunay triangulation—Application to two dimensions. Finite Elem Anal Des 62:37–48

    Article  MathSciNet  Google Scholar 

  30. Lo SH (2012) Parallel Delaunay triangulation in three dimensions. Comput Methods Appl Mech Eng 237240:88–106

    Article  MathSciNet  MATH  Google Scholar 

  31. Chernikov AN, Chrisochoides NP (2005) Parallel 2D graded guaranteed quality Delaunay mesh refinement. In: Proceedings of the 14thInternational Meshing Roundtable, (San Diego, United States), Sandia National Laboratory

  32. De Cougny HL, Shephard MS (1999) Parallel volume meshing using face removals and hierarchical repartitioning. Comput Methods Appl Mech Eng 174(3–4):275–298

    Article  MATH  Google Scholar 

  33. Löhner R (2001) A parallel advancing front grid generation scheme. Int J Numer Methods Eng 51(6):663–678

    Article  MATH  Google Scholar 

  34. Freitas MO, Wawrzynek PA, Cavalcante-Neto JB, Vidal CA, Martha LF, Ingraffea AR (2013) A distributed-memory parallel technique for two-dimensional mesh generation for arbitrary domains. Adv Eng Softw 59:38–52

    Article  Google Scholar 

  35. Batista VHF, Millman DL, Pion S, Singler J (2010) Parallel geometric algorithms for multi-core computers. Comput Geom Theory Appl 43(8):663–677

    Article  MathSciNet  MATH  Google Scholar 

  36. Kohout J, Kolingerová I, Žára J (2005) Parallel Delaunay triangulation in E\(^2\) and E\(^3\) for computers with shared memory. Parallel Comput 31(5):491–522

    Article  MathSciNet  Google Scholar 

  37. Angel E (2008) Interactive computer graphics–a top-down approach using OpenGL, 5th edn. Addison Wesley, Boston

    Google Scholar 

Download references

Acknowledgments

The first author acknowledges the support from the Brazilian agency CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) through the fellowship granted to him (Process 2823-12-8). The third author acknowledges the support from the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) through the Research Productivity Grant 307941/2013-2, CAPES through the grant BEX 6881-12-2 and FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) through the grant CI1-0080-00064.01.00/13. All the authors acknowledge the Texas Advanced Computing Center (TACC) (http://www.tacc.utexas.edu) at The University of Texas at Austin for providing high performance computing resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markos O. Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, M.O., Wawrzynek, P.A., Cavalcante-Neto, J.B. et al. Parallel generation of meshes with cracks using binary spatial decomposition. Engineering with Computers 32, 655–674 (2016). https://doi.org/10.1007/s00366-016-0444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0444-3

Keywords

Navigation