Skip to main content
Log in

ANSYS Workbench System Coupling: a state-of-the-art computational framework for analyzing multiphysics problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Due to the interactions between more than one physics, multiphysics problems such as those encountered in aerospace, biomedical, civil, and nuclear engineering domains tend to be extremely challenging to simulate. This paper discusses a novel and versatile computational framework called System Coupling being developed at ANSYS Inc. that can simulate complex multiphysics coupled problems and also presents comprehensive verification and validation studies. System Coupling is a generic computational infrastructure that allows individual physics solvers running as different processes either within the same physical machine or on different machines in the network to communicate with one another using an in-house socket-based remote procedure call library. The infrastructure is capable of handling a variety of multiphysics coupled analyses such as those related to fluid–structure–thermal interactions. Thus far, ANSYS Mechanical/APDL, ANSYS FLUENT, and ANSYS CFX which are ANSYS’ major computational structural and fluid dynamics solvers were instrumented to work with the System Coupling infrastructure. Verification and validation studies involving different fluid–structure interaction scenarios drawn from a variety of applications in various engineering domains are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Noll et al. [18]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

(courtesy of Gluck et al. [37])

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

References

  1. Kleinstreuer C, Zhang Z, Li Z, Roberts WL, Rojas C (2008) A new methodology for targeting drug-aerosols in the human respiratory system. Int J Heat Mass Transf 51(23–24):5578–5589

    Article  MATH  Google Scholar 

  2. Bielen J, Stulemeijer J, Noijen S (2008) No more dropped calls. ANSYS Advant II(3):89

  3. Collins W, Bitz C, Blackmon M, Bonan G, Bretherton C, Carton J et al (2005) The community climate system model version 3:(CCSM3) J Clim 19:2122–2143

    Google Scholar 

  4. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Praveen Kumar, Rao PSC, Basu NB, Wilson JS. (2010) The future of hydrology: An evolving science for a changing world. Water Resour Res 46:W05301. https://doi.org/10.1029/2009WR008906

  5. Keyes DE (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27:4–83

    Article  Google Scholar 

  6. Felker F (1992) Direct solutions of the Navier-Stokes equations with application to static aeroelasticity. Stanford University, California, USA

  7. Kuhl E, Hulshoff S, Borst R (2001) A comparison of partitioned and monolithic solution procedures for fluid–structure interaction problems. In: European conference on computational mechanics. Cracow, Poland

  8. Felippa C, Park K, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 24–25(190):3247–3270

    Article  MATH  Google Scholar 

  9. Löhner R, Cebral J, Yang C, Baum J, Mestreau E, Soto O (2006) Extending the range and applicability of loose coupling approach for FSI simulations. Lect Notes Comput Sci Eng 53:82–100

  10. Michler C, Hulshoff S, van Brummelen E, de Borst R (2004) A monolithic approach to fluid–structure interaction. Comput Fluids 33(5–6):839–848

    Article  MATH  Google Scholar 

  11. Degroote J, Bathe K-J, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput Struct 87(11–12):793–801

    Article  Google Scholar 

  12. Heil M, Hazel A, Boyle J (2008) Solvers for large displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101

    Article  MATH  Google Scholar 

  13. Cardoni J, Rizwan-uddin D (2011) Nuclear reactor multiphysics simulations with coupled MCNP5 and star-CCM+. In: International conference on mathematics and computational methods applied to nuclear science and engineering. Rio de Janeiro, Brazil

  14. Chimakurthi SK, Tang J, Palacios R, Cesnik CES, Shyy W (2009) Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. AIAA J 47(8):1865–1878

    Article  Google Scholar 

  15. Ko S, Kim N, Kim J, Thota A, Jha S (2010) Efficient runtime environment for coupled multiphysics simulations: dynamic resource allocation and load balancing. In: Cluster, cloud and grid computing (CCGrid), 10th IEEE/ACM international conference on. IEEE

  16. Halfmann A, Rank E, Gluck M, Breuer M, Durst F (2000) A partitioned solution approach for the fluid–structure interaction of wind and thin-walled structures. In: Conference proceedings of IKM

  17. Chimakurthi S (2009) A computational aeroelasticity framework for analyzing flapping wings. In: Ph.D. Dissertation. The University of Michigan, Ann Arbor

  18. Noll TE, Brown JM, Perez-Davis ME, Ishmael SD, Tiffany GC, Gaier M (2007) Investigation of the helios prototype aircraft mishap [online article]. http://www.nasa.gov/pdf/64317main_helios.pdf [retrieved 10 Feb. 2007]; also see NASA Press Release http://www.nasa.gov/home/hqnews/2004/sep/HQ_04283_helios_mishap.html

  19. Bailey C, Taylor GA, Bounds SM, Moran GJ, Cross M (1997) PHYSICA: a multi-physics framework and its application to casting simulation. In Schwarz MP et al (eds) Computational fluid dynamics in mineral & metal processing and power generation. CSIRO: Sydney, pp 419–425

  20. Jiao X, Campbell MT, Michael T (2003) Roccom: an object-oriented, data-centric software integration framework for multiphysics simulations. In: Proceedings of the 17th annual international conference on supercomputing. ACM

  21. Flemisch B, Fritz J, Helmig R, Niessner J, Wohlmuth B (2007) DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media. In: ECCOMAS thematic conference on multi-scale computational methods for solids and fluids. Cachan, France

  22. Michopoulos J, Tsompanopoulou P, Houstis E, Rice J, Farhat C, Lesoinne M, Lechenault F (2003) DDEMA: a data-driven environment for multiphysics applications. In: Sloot PMA, Abramson D, Bogdanov A, Dongarra JJ, Zomaya A, Gorbache Y (eds) Lecture notes in computer science, 2660, Pt. 4, Springer, Heidelberg, Germany, pp 309–318

    Google Scholar 

  23. Kingsley G, Siegel J Jr, Harrand V, Lawrence C, Luker J (1998) Development of a multi-disciplinary computing environment (MDICE). In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. AIAA

  24. Cary J, Hakim A, Miah M, Kruger S, Pletzer A, Shasharina S et al (2010) FACETS—a framework for parallel coupling of fusion components. In: Parallel, distributed and network-based processing (PDP), 2010 18th euromicro international conference, pp 435–442

  25. Blades E, Miskovish R, Nucci M, Shah P, Bremner P, Luke E (2011) Towards a coupled multiphysics analysis capability for hypersonic vehicle structures. In: 52nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Denver, Colorado: AIAA 2011–1962

  26. Zwart S, McMillan S, Harfst S, Groen D, Fujii M, Nuallain B et al (2009) A multiphysics and multiscale software environment for modeling astrophysical systems. New Astron 14(4)

  27. Samantha S, Elwasif W, Bernholdt D (2011) The integrated plasma simulator: a flexible python framework for coupled multiphysics simulation. In: PyHPC 2011: python for high performance and scientific computing

  28. Joppich W, Kürschner M (2006) MpCCI—a tool for the simulation of coupled applications. Concurr Comput Pract Exp 18(2):183–192

    Article  Google Scholar 

  29. Jasak H, Jemcov A, Tukovic Z (2007) OpenFOAM: a C++ library for complex physics simulations. In: International workshop on coupled methods in numerical dynamics, IUC. Dubrovnik, Croatia

  30. Schimdt R, Belcourt N, Hooper R, Pawloski R (2011) An Introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations. Sandia National Laboratories, New Mexico

    Google Scholar 

  31. Gatzhammer B, Mehl M, Neckel T (2010) A coupling environment for partitioned multiphysics simulations applied to fluid–structure interaction scenarios. Procedia Comput Sci 1(1):681–689

    Article  Google Scholar 

  32. Patzak B, Rypl D, Kruis J (2013) MuPIF—a distributed multi-physics integration tool. Adv Eng Softw 60–61:89–97

    Article  Google Scholar 

  33. Larson J, Robert J, Everest O (2005) The model coupling toolkit: a new Fortran90 toolkit for building multiphysics parallel coupled models. Int J High Perform Comput Appl 19(3):277–292

    Article  Google Scholar 

  34. Santos F, de Brito Junior E, da Silva J (2009) MPhyScas-P—multi-physics and multi-scales solver framework: parallel simulators. In: AIP conference proceedings, p 1148

  35. Degroote J, Swillens A, Bruggeman P, Haelterman R, Segers P, Vierendeels J (2010) Simulation of fluid–structure interaction with the interface artificial compressibility method. Int J Numer Methods Biomed Eng 26(3–4):276–289

    Article  MathSciNet  MATH  Google Scholar 

  36. Sausen AS (2012) The slug flow problem in oil industry and Pi level control. In: Gomes DJ (ed) New technologies in the oil and gas industry. Intechopen

  37. Gluck M, Breuer M, Durst F, Halfmann A, Rank E (2001) Computation of fluid–structure interaction on lightweight structures. J Wind Eng Ind Aerodyn 89:1351–1368

    Article  Google Scholar 

  38. Heathcote SW (2008) Effect of spanwise flexibility on flapping wing propulsion. J Fluids Struct 24(2):183–199

    Article  Google Scholar 

  39. Chandar D (2009) Computational fluid–structure interaction of a flapping wing in free flight using overlapping grids. In: 27th AIAA applied aerodynamics conference. AIAA 2009–3849. San Antonio, Texas, pp 1–18

Download references

Acknowledgements

The authors would like to thank Aseem Jain for his contributions to the System Coupling code base. Thanks to Subrahmanya Veluri for his contribution to the two-way force displacement thermal coupling case discussed in this paper. Thanks also go to the co-ops including Anubhav Tihar, Eric Co, Karthik Venkataraman, Tim Bandura, and Nicole Cress for their contributions to various verification and validation cases discussed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar Chimakurthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimakurthi, S.K., Reuss, S., Tooley, M. et al. ANSYS Workbench System Coupling: a state-of-the-art computational framework for analyzing multiphysics problems. Engineering with Computers 34, 385–411 (2018). https://doi.org/10.1007/s00366-017-0548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0548-4

keywords

Navigation