Skip to main content
Log in

Solving randomized time-varying knapsack problems by a novel global firefly algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a novel global firefly algorithm (GFA) is proposed for solving randomized time-varying knapsack problems (RTVKP). The RTVKP is an extension from the generalized time-varying knapsack problems (TVKP), by dynamically changing the profit and weight of items as well as the capacity of knapsack. In GFA, two-tuples which consists of real vector and binary vector is used to represent the individual in a population, and two principal search processes are developed: the current global best-based search process and the trust region-based search process. Moreover, a novel and effective two-stage repair operator is adopted to modify infeasible solutions and optimize feasible solutions as well. The performance of GFA is verified by comparison with five state-of-the-art classical algorithms over three RTVKP instances. The results indicate that the proposed GFA outperform the other five methods in most cases and that GFA is an efficient algorithm for solving randomized time-varying knapsack problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments—a survey. IEEE Trans Evol Comput 9(3):303–317

    Article  Google Scholar 

  2. Weicker K (2003) Evolutionary algorithms and dynamic optimization problems. Verlag, Der Andere

  3. Morrison RW (2004) Designing evolutionary algorithms for dynamic environments. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Krishnakumar K (1990) Micro-genetic algorithms for stationary and non-stationary function optimization//1989 Advances in Intelligent Robotics Systems Conference. In: International Society for Optics Photonics pp 289–296

  5. Dréo J, Siarry P (2006) An ant colony algorithm aimed at dynamic continuous optimization. Appl Math Comput 181(1):457–467

    MathSciNet  MATH  Google Scholar 

  6. Lepagnot J, Nakib A, Oulhadj H et al (2012) A new multi-agent algorithm for dynamic continuous optimization. Modeling, analysis, and applications in Metaheuristic Computing: advancements and trends: advancements and trends, p 131

  7. Li C, Yang M, Kang L (2006) A new approach to solving dynamic traveling salesman problems. In: Simulated evolution and learning, lecture notes in computer science 4247: pp 236–243

  8. Uyar AS, Harmanci AE (2005) A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput 9(11):803–814

    Article  MATH  Google Scholar 

  9. Goldberg DE, Smith RE (1987) Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: International conference on genetic algorithms. L. Erlbaum Associates Inc, Hillsdale, pp 59–68

    Google Scholar 

  10. He Y, Zhang X, Li W et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117

    Article  MathSciNet  MATH  Google Scholar 

  11. He YC, Wang XZ, Li WB et al (2017) Exact algorithms and evolutionary algorithms for randomized time-varying knapsack problems. J Softw 28(2):185–202

    MathSciNet  MATH  Google Scholar 

  12. Yang XS, Cui Z, Xiao R et al (2013) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier insights

  13. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  14. Bhattacharjee KK, Sarmah SP (2014) Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. ApplSoft Comput J 19:252–263

    Google Scholar 

  15. Li X, Zhang J, Yin M (2013) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 1–11

  16. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  17. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  18. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), IEEE Publications, pp 210–214

  19. Wang GG, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Article  Google Scholar 

  20. Wang GG, Guo LH, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  21. Wang GG, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370

    Article  Google Scholar 

  22. Cui ZH, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio Inspired Comput 5(2):133–139

    Article  Google Scholar 

  23. Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1923-y

    Google Scholar 

  24. Feng YH, Wang G-G, Deb S, Lu M, Zhao XJ (2017) Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 28(7):1619–1634

    Article  Google Scholar 

  25. Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio Inspired Comput. https://doi.org/10.1504/IJBIC.2015.10004283

  26. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using Firefly Algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  27. Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int J Bio Inspired Comput 7(6):386–401. https://doi.org/10.1504/IJBIC.2015.073165

    Article  Google Scholar 

  28. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver

  29. Fister I, Fister I Jr, Yang XS et al (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46

    Article  MATH  Google Scholar 

  30. Baykasoğlu A, Ozsoydan FB (2014) An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst Appl 41(8):3712–3725

    Article  Google Scholar 

  31. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  32. Teoh BE, Ponnambalam SG, Kanagaraj G (2015) Differential evolution algorithm with local search for capacitated vehicle routing problem. Int J Bio Inspired Comput 7(5):321–342. https://doi.org/10.1504/IJBIC.2015.072260

    Article  Google Scholar 

  33. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    Book  MATH  Google Scholar 

  34. Dantzig GB (1957) Discrete variable extremum problems. Oper Res 5(2):266–288

    Article  MathSciNet  Google Scholar 

  35. Du DZ, Ko KI (2011) Theory of computational complexity. Wiley, Hoboken

    MATH  Google Scholar 

  36. Brassard G, Bratley P (1996) Fundamentals of algorithmics. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  37. Pisinger D (1995) Algorithms for knapsack problems. N-Holl Math Stud 132:213–257

    MathSciNet  Google Scholar 

  38. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of the IEEE International Conference on Neural Networks, pp 1942–1948

  39. Zou D, Gao L, Li S et al (2011) Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput J 11(2):1556–1564

    Article  Google Scholar 

  40. He YC, Wang XZ, Kou YZ (2007) A binary differential evolution algorithm with hybrid encoding. J Comput Res Dev 44(9):1476–1484

    Article  Google Scholar 

  41. Feng Y, Jia K, He Y (2014) An improved hybrid encoding cuckoo search algorithm for 0–1 knapsack problems. Comput Intell Neurosci 2014(2):970456. https://doi.org/10.1155/2014/970456

  42. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  43. Wilcoxon F, Katti SK, Wilcox RA (1970) Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel Tables Math Stat 1:171–259

    MATH  Google Scholar 

  44. Bhattacharjee KK, Sarmah SP (2015) A binary firefly algorithm for knapsack problems// Industrial Engineering and Engineering Management (IEEM), 2015 IEEE International Conference on IEEE

  45. Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s//Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence. In: Proceedings of the First IEEE Conference on. IEEE, pp 579–584

  46. Olsen AL (1994) Penalty functions and the knapsack problem//Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence. Proceedings of the First IEEE Conference on IEEE, pp 554–558

  47. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  48. Simon D (2013) Evolutionary optimization algorithms. Wiley, New York

    Google Scholar 

  49. He YC, Song JM, Zhang JM et al (2015) Research on genetic algorithms for solving static and dynamic knapsack problems. Appl Res Comput 32(4):1011–1015

    Google Scholar 

  50. He YC, Wang XZ, He YL et al (2016) Exact and approximate algorithms for discounted {0–1 knapsack problem. Inf Sci 369:634–647

    Article  MathSciNet  Google Scholar 

  51. Feng Y, Wang G-G, Li W, Li N (2017) Multi-strategy monarch butterfly optimization algorithm for discounted {0–1} knapsack problem. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2903-1

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61503165, No. 61402207, No. 61673196, No. 61772225), Natural Science Foundation of Jiangsu Province (No. BK20150239), and National Natural Science Fund for Distinguished Young Scholars of China (No. 61525304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gai-Ge Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Wang, GG. & Wang, L. Solving randomized time-varying knapsack problems by a novel global firefly algorithm. Engineering with Computers 34, 621–635 (2018). https://doi.org/10.1007/s00366-017-0562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0562-6

Keywords

Navigation