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Abstract 

This paper studies the inverse problem related to the identification of the flexural stiffness of an 

Euler Bernoulli beam in order to reconstruct its profile starting from available response data. The 

proposed identification procedure makes use of energy measurements and is based on the 

application of a closed form solution for the static displacements of multi-stepped beams. This 

solution allows to easily calculate the energy related to beams modeled with arbitrary multi-step 

shapes subjected to a transversal roving force, and to compare it with the correspondent data 

obtained through direct measurements on real beams. The optimal solution which minimizes the 

difference between measured and calculated data is then sought by means of genetic algorithms.  

In the paper several different stepped beams are investigated showing that the proposed procedure 

allows in many cases to identify the exact beam profile. However it is shown that in some other 

cases different multi-step profiles may correspond to very similar static responses, and therefore to 

comparable minima in the optimization problem, thus complicating the profile identification 

problem. 
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1. Introduction 

It is very well known that an important task for an engineer is the detailed knowledge, for every 

construction typology, of the geometric and mechanical characteristics of the structure and the 

maintenance of its integrity against natural degradation over time. In the context of health 

monitoring several studies have been presented in the literature concerning damage detection on 

beams [1]-[15], frames [16]-[18] and arch structures [19]-[24]. Another important aspect, which has 

received minor attention in the scientific research, concerns the correct identification of the profiles 

of existing beams whose visual inspections are not allowed. To this purpose an attempt to identify 

the stiffness distribution in a structure employing a FEM approach can be found in [25]. The 

detailed knowledge of the shape, and therefore of the flexural stiffness, of each beam composing the 

entire structure, is fundamental in order to build a reliable model for the study of either the dynamic 

or static behavior of the structure under assigned external loads [26]. 

Within the context of inverse problems focused either on the identification of the presence of 

damage or of the geometry of the structure, reference can be made to static or dynamic tests. 

Dynamic load tests provide global information such as natural frequencies and mode shapes, 

however, static tests are easily executable and can give useful information without introducing 

uncertainties due to masses and damping ratios. In the literature there are several studies, dedicated 

to the identification of both physical and geometrical parameters of the structural systems which 

perform identification procedures based on dynamic measurements [1][4]-[11][14][20]-[30]. A 

comprehensive review of damage identification techniques that exploit modal curvature analysis 

can be found in [31]. Less numerous, although relevant, are the papers proposing static tests 

[2],[3],[17]-[19].  

In this paper an original approach for the identification of the geometrical characteristics of beams, 

in particular of the shape of their profile, is proposed. Although the proposed procedure can be 

framed in the context of static identification approaches, usually based on single load distribution 

tests, it features the same property of inverse identification procedures relying of dynamic tests that 



is of dealing with global response data. In fact, the proposed objective function to be minimized for 

the solution of the inverse problem, consists in the total external work related to a concentrated load 

roving along the beam axis that is directly related to its elastic energy in view of the Clapeyron 

theorem. Since the total static response of the beam is taken into account in evaluating this work, 

the considered data provide useful global information for the identification of the beam profile. 

The execution of the proposed static test requires therefore the application of a concentrated load of 

given intensity which must be moved along a beam axis grid measuring, at each position, the 

transversal displacement below the load. The total external work can therefore be evaluated as the 

sum of the work done by the force for the transversal displacements in the current, and in all the 

positions previously assumed by the load. 

The procedure proposes to compare these static data with those provided by a closed form solution 

for the evaluation of transversal displacements according to a multi-stepped beam model, proposed 

in [32],[33], in order to seek, within this beam typology, the profile which better suits the measured 

data. 

The availability of an analytical explicit equation for the evaluation of static displacements in multi-

stepped beams allows to explore the responses related to all the possible profiles rapidly and to find 

the best one by means of an optimization procedure based on the use of genetic algorithms. 

In the applicative section of the paper many examples of the capability of the proposed procedure of 

identifying the correct profile of beams are provided. Furthermore, the robustness of the procedure 

is studied and, according to the precision of the input data, some counter-intuitive static responses 

in multi-stepped beams are highlighted together with the related effects leading to a non uniqueness 

of the solution of the inverse profile identification problem. 

 

2. A flexural stiffness model with multiple singularities 

In this section a model of Euler-Bernoulli beam showing multiple singularities is presented, and its 

capability of describing discontinuities in the response functions is shown. The Euler-Bernoulli 



beam model subjected to external transversal loads , and accounting for a spatial variable 

flexural stiffness , is governed by the following differential equations with respect to the 

spatial abscissa x spanning from 0 to the beam length L : 

 (1) 

In Eq. (1) the apex indicates differentiation, with respect to the abscissa x, and v(x) is the transverse 

deflection function. The flexural stiffness is considered variable according to the following law: 

                                                     (2) 

which accounts for m abrupt decreases in the flexural stiffness with respect to a maximum reference 

value . The parameters , represent the flexural jumps and  are the relevant 

singularity positions, respectively. The definition of the flexural stiffness requires the adoption of 

the well-known generalized Dirac’s delta functions  and Heaviside . 

The external transversal load distribution  can be generalized since can model both continuous 

 and discontinuous loads, included transversal point loads  at , as follows:  

 (3) 

For simplicity, by considering the dimensionless coordinate , and indicating with the prime 

the differentiation with respect to , the governing differential equation of the Euler-Bernoulli 

beam given by Eq. (1), by accounting for the singularities introduced in Eqs. (2),(3), takes the 

following form: 

                                             (4) 

Eq. (4), expressed in term of the normalized function  , accounts for generic external 
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loads , given by Eq. (3) referred to the normalised abscissa , by means of the normalised 

transversal load parameter . In Eq. (4) the property  of 

the Dirac’s delta distribution has been exploited.  

Integration of Eq.(4) leads to the following general form of the deflection function: 

  (5) 

where the constants , represent the integration constants to be obtained as a function of 

the boundary conditions, while the  functions are given by: 

 

 
                  (6) 

In Eqs. (6) the  indicates the p-th integral of the function and the following parameters have been 

introduced: 

 
(7) 

When the beam is subject to a constant distributed vertical load , the  function in Eq.(6) 

becomes: 

 
(8) 

while in the case of a single concentrated load the  function in Eqs.(6) becomes: 
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where the normalized concentrated load is given by  

In the following Table 1, the four integration constants for some significant boundary conditions are 

reported. 

Table 1. Boundary conditions and corresponding integration constants 

Boundary 

conditions 

Mathematical 

conditions 
Integration constants 

Simply supported 

beam 
  

Clamped 

clamped beam 
 

 

Cantilever beam   

 

It is worth pointing out that this closed form solution of the Euler-Bernoulli beam under static loads 

requires the enforcing of four boundary conditions only irrespectively of the number of the along 

beam steps in the flexural stiffness. This solution will be exploited in the context of an inverse 
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problem aiming at identifying the best step distribution of the flexural stiffness which approximate 

the static response of a real beam. To this purpose, an energy cumulative parameter able to collect 

the static response of the beam subjected to a roving static concentrated load will be employed, as 

better shown in the next section. 

 

3. Beam discretization and objective function for profile identification 

In order to identify the profile of a generic beam with a variable flexural stiffness, it is convenient to 

consider a simplified model with m abrupt equally spaced changes in the stiffness that correspond to 

an arbitrary number  of uniform segments (of course ) of the beam. This kind of beam is 

called “multi-step”. In Figure 1 an example of a multi-step beam discretization is reported, with 

 and . The concentrated load  roving along the beam is represented as an arrow 

which progressively changes its location, applied in the centre  of each segment, where a device 

for the measurement of transversal displacement is also present.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Discretized stepped beam with roving concentrated load 
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The closed form expression, provided in the previous paragraph, for the transversal displacement of 

a stepped beam subjected to a concentrated load, allows a straightforward evaluation of the total 

external work W done by a concentrated load roving along the beam axis. In fact, W can be 

expressed as the summation of the products of the concentrated load times the transversal 

displacement of the cross section crossed by the load itself. Once a suitable sequence of Np points 

with interval   is chosen and the position  of the roving load is considered ranging from 

 to  along the grid, the total external work as function of an increasing number  

of visited positions , can be expressed, in view of Eqs. (5), (6) and (9) as follows: 

                                  

(10)

 

According to the expression in Eq.(10), the direct contribution of the external work of the roving 

load to the transversal displacement at the same cross section where the load is applied disappears 

and its influence is related only to the integration constants.  

Following Eq.(10), the total external work  can be calculated for any  by adding the 

products of the concentrated load times the measured transversal displacement of the cross section 

crossed by the load itself. Depending on the beam profile, the values of both NP  and m, and the 

chosen boundary conditions, a given trend of  as function of the roving load position can 

be obtained.  

Figure 2 shows some illustrative examples of the trend of the total external work for  multi-step 

beams with  and the three considered boundary conditions. As it can be observed the 

curves are always increasing, as expected; those related to simply supported, Figure 2(a), and 

clamped-clamped beams, Figure 2(c), present an inflection point since the vertical displacements 

towards the right end of the beams assume decreasing values. On the contrary the total external 

work for multi-step cantilever beams, Figure 2(b), has increasing slope.   
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Figure 2. Total external work trend for (a) simply supported beam, (b) cantilever beam, (c) clamped-

clamped beam  

At this point, taking into account all these prescriptions, it is possible to summarize the 

procedure for the inverse problem regarding the identification of the profile of a generic real 

beam starting from its total external work Wr, which is made of the following fundamental steps: 

1. Define an arbitrary number NP of uniform segments with the same length along the real 

beam; 

2. Apply a roving load at the mid-point of each segment defined at point 1 and measure the 

transversal displacement below the load; 

3. Calculate the real total external work  (function of the roving load position ); 

4. Generate several different multi-stepped profiles of the beam, with  (like that one in 

Fig.1); 

5. For each new profile assigned at point 4, calculate the total external work  as 

function of the roving load position ; 

6. Evaluate the following objective function Ob which depends, for each position of the roving 

load, on the differences between the value of the real total external work (point 3) and that of 

the corresponding calculated one (point 5), normalized to the total external work  of 

( )r PW n Pn

Pm N£

( )c PW n

Pn

0 ( )PW n



the beam with constant reference stiffness : 

                                                           (11) 

7. Find the multi-stepped profile that minimizes the objective function exploring different 

multi-step profiles by means of an optimization procedure based on genetic algorithms, as 

described in the next paragraph. If the inverse problem results well-conditioned, the found 

profile should coincide with that of a given real multi-stepped beam or should represent the 

best multi-step approximation of a given real smooth profile. 

 

4. Optimization procedure and the Genetic Algorithm based Software 

A “genetic algorithm” is an adaptive stochastic method that mimic the Darwinian evolution, based 

on an opportune combination of random mutations and natural selection, in order to numerically 

find optimal values of some specific function. The algorithm acts over a population of P 

chromosomes, corresponding to potential solutions of the considered problem, by iteratively 

applying the “survival of the fittest” principle. In such a way it produces a sequence of new 

generations of chromosomes that evolves towards a stationary population where the large majority 

of surviving solutions do coincide and approach as much as possible the real solution of a practical 

problem [34]. 

Concerning the problem of reconstructing the profile of a generic beam with a variable flexural 

stiffness, discretized in  uniform segments, a given chromosome is coded as a string of integer 

numbers, where each number (called gene) is related to the stiffness of the corresponding segment, 

directly related to the beam cross section. Therefore, a generic chromosome Ci of the population (i 

= 1, …, P) can be coded in the following string: 

Ci    (c1, c2, c3, … ck, …, c  ) 

with , where cmax indicates the maximum decrease with respect to the reference 
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stiffness EoIo (ck=0 means that the corresponding segment has the reference stiffness, ck=cmax is 

associated to zero flexural stiffness). In particular, recalling the definition of the singularity 

parameter  introduced in Eq.(4), the stiffness of the k-th segment of the discretized beam will be  

EoIo (1 – ), with  = ck / cmax.  

The overall number of possible different chromosomes is thus Pmax = (cmax + 1) . The task of the 

genetic algorithm is to explore the space of all the possible chromosomes, in search of the multi 

stepped profile of the beam which maximizes an opportune “fitness function”, here defined as:   

f (Ci) = Fmax – Ob (Ci)  – g G(Ci)                                                (12) 

 where Ob(Ci) is the objective function (11) calculated for a generic chromosome Ci and G(Ci) is a 

cost function, defined as: 

                                                  
(13) 

whose purpose is to penalize chromosomes with a great average stiffness variation between 

contiguous segments of the discretized beam and to favor the chromosomes characterized by a 

smoother profile. Thus, the addition of the cost function favors chromosomes corresponding to 

beams with a more realistic profile. The parameter g modulates the relative weight of this cost with 

respect to the objective function. Finally, Fmax is an arbitrary constant, chosen great enough to have 

f (Ci)  > 0 for every possible value of Ob(Ci) and of the cost function G(Ci). In the following it will 

be set  Fmax = 10 without loss of generality (it should be noticed that, presenting the numerical 

results, G(Ci) – which typically always remains strictly greater than zero – will not be considered in 

the fitness visualization, in order to have f (Ci) = Fmax when the correct chromosome is recovered).    

The fitness value associated to each chromosome represents its probability of survival, under the 

pressure of the natural selection process. In the following it is explained more in detail how this 

process does work. 

Starting from the initial population of P chromosomes (with, typically, P = 100), randomly chosen 

among the Pmax, a new generation is created from the old one, where chromosomes that have a 
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higher fitness score are more likely to be chosen as “parent” than those that have low fitness scores. 

The selection method adopted in this paper is called “tournament selection”, with a tournament size 

of three: this means that groups of 3 chromosomes are drawn randomly from the old generation, and 

the one with the highest fitness in each group is chosen to become a parent. Either one or two 

parents are chosen to create children: with one parent, the child is simply a clone of the parent; with 

two parents, the process is the digital analogue of sexual recombination – the two children inherit 

part of their genetic material from one parent and part from the other (crossing-over). Once the new 

generation is created, there is also a chance that random mutations will occur at level of the single 

genes ck of the child chromosomes, and some of them will be changed into new ones (always 

chosen in the interval [0, cmax]).  

By iteratively repeating this process several times, chromosomes with the highest fitness will be 

progressively selected in the space of all the possible combinations and will quickly spread among 

the population reducing the diversity of the individuals, until (almost) only one of them will 

survive: hopefully, that one with the maximum fitness. Of course, it is frequent for the dynamics to 

remain trapped into local maxima of fitness therefore it is convenient to launch the genetic 

algorithm many times (events), each time starting from a different initial population, in order to 

gain more chances to reach the global maximum of fitness. 

 

5. Numerical applications 

In this section several numerical applications of the procedure previously described, are presented. 

All the applications have been developed using an original software code, which runs in NetLogo 

[35], a freeware multiplatform environment with an owner high level programming language and 

with a very ductile and versatile user interface.  

NetLogo platform was natively developed for agent-based simulations and for modelling complex 

systems behaviour. The idea is to harness the power of the NetLogo graphical user interface and the 

versatility of its agent-oriented programming language in order to create an user-friendly original 



software for the automatic profile reconstruction of beams. 

In the next subsection, the investigation of the inverse problem concerning profile identification of 

multi-stepped target beams with different boundary conditions is presented. In all the addressed 

examples, the target chromosome, i.e. the one corresponding to the target beam, has always been 

sought to be the one with the best fitness (equal to Fmax) after some runs of the genetic algorithm.  

Successively, a deeper numerical analysis of the inverse problem, devoted to estimate the 

robustness of the procedure, will be performed. First, it will be shown that the introduction of an 

increasing instrumental error in the calculation of the transversal displacements below the roving 

load (which propagates, in turn, on the calculation of the total external work), progressively reduces 

the performance of the genetic algorithm. Then, it will be also shown that beams with multi-step 

profiles, sensibly different from the target one, may exhibit very similar static responses (i.e. may 

correspond to chromosomes with quite high fitness) while beams with multi-step profiles, very 

similar to the target one, may exhibit very different static responses (i.e. may correspond to 

chromosomes with lower fitness). This latter numerical evidence makes the problem very difficult 

to be governed, particularly in presence of several steps. However, this is a result important to 

highlight for the development of profile identification procedures. 

 

5.1 Identification of multi-stepped beam profiles 

In this paragraph several beams with both different multi-step profiles and boundary conditions are 

analysed in order to test the performance of the identification procedure when the target 

chromosome does coincide with the target beam. For all of them, a discretization with NP = 10 

uniform segments with the same length is considered; the identification procedure aims therefore at 

identifying the flexural stiffness of these uniform portions of the beam. A unitary vertical load is 

applied alternatively at the middle cross sections of each segment starting from the left end of the 

beam. For each segment, ten different values for the flexural stiffness have been considered, starting 

from the reference stiffness EoIo and decreasing it in abrupt changes. The application of the genetic 



algorithm deals therefore with chromosomes of 10 genes whose integer values can vary from ck = 0 

(reference stiffness) to cmax = 9 and the space of the total number of possible chromosomes has 

therefore a size Pmax = 1010.  

It is important to notice that in all these tests the target chromosome, corresponding to the desired 

multi-stepped beam, can be directly inserted as an input string in the NetLogo interface, then the 

software automatically calculates the transversal displacements below the roving load and the 

consequent total external work, which represents the reference data to be matched in the inverse 

problem. After several tests the optimal set of parameters for the genetic algorithm have been 

chosen as following: population of P=100 chromosomes evolving for 100 generations, cross-over 

and mutation rates respectively set to 80% and 1%, cost function weight g = 0.06 (the low value of g 

intends to favour, here, the minimization of the objective function with respect to the cost one). As 

already anticipated, the maximum fitness parameter Fmax is set to 10. Either symmetric or arbitrary 

distributions of the uniform segments have been considered for beams with the three boundary 

conditions (simply supported, clamped-clamped, cantilever) described in paragraph 2. Table 1 

reports some examples of the considered beams and the correspondent target-chromosome.  

In Figure 3 the software user interface at the beginning of a typical simulation is shown. In 

particular, the simply supported beam SS1, shown in Table 2, has been considered. The multi-step 

profile of the beam (where each segment is just represented with a vertical bar placed in the 

corresponding centroid) is reported in the central upper part of the interface, together with the plots 

of the total external work for both the target beam (in black) and the one with constant reference 

stiffness (in red). In the left part of the interface, buttons and sliders for setting the input parameters 

of the beam (included the target chromosome) are visible, while in the right part those concerning 

the input parameters of the genetic algorithm are present.  

  

 

 



 

Table 2 Tested multi-stepped beam profiles 

Multi-step target beam Target-chromosome 

 

 

[9 7 5 3 0 0 3 5 7 9] 

 

 

 

[2 3 4 3 4 5 6 3 2 1] 

 

 

 

[1 3 5 7 9 9 7 5 3 1] 

 

 

[2 3 4 3 4 5 6 3 2 1] 

 

 

[0 1 2 3 4 5 6 7 8 9] 

 

 

 

[2 3 4 3 4 5 6 3 2 1] 

 

 

SIMPLY SUPPORTED  SS1 

SIMPLY SUPPORTED  SS2 

CLAMPED-CLAMPED  CL1 

CLAMPED-CLAMPED  CL2  

CANTILEVER CA1  

CANTILEVER CA2 



Finally, at the bottom of the central-right part of the interface, the output window and the plots of 

both the average fitness and the diversity of chromosomes as function of the generations are 

reported. 

 

Figure 3. Software user interface at the beginning of a typical simulation.  

The diversity evaluates the average 'disagreement' among all the chromosomes in the population of 

the current generation and it is based on the well-known Hamming distance, which essentially 

counts the number of genes, which have different values in any couple of chromosomes. 

Running the algorithm when the number of generations increases, the fitness converges towards its 

(local or global) maximum value while the diversity goes to zero, meaning that the winning 

chromosome tends to spread among the population. In Figure 4, a typical behaviour of both the 

fitness and the diversity plots during a single event simulation is reported.  

 

 (a)       (b) 

Figure 4. Behavior of fitness (a) and diversity (b) during a single event simulation. 



 

 

 

 

 

 

 

 

Figure 5. Software user interface at the end of the simulation after 50 events for the simply supported 

symmetric beam of Table 2.  

 

As visible in Figure 5, at the end of a complete simulation with 50 events (each starting from a 

different random population of P chromosomes) the target chromosome CT º [9 7 5 3 0 0 3 5 7 9] 

has been correctly recovered, in the space of all the possible ones, with a maximum fitness value for 

the winning chromosome CW equal to f (CW) = 10, i.e. with no errors. This is confirmed by the total 

external work plot, where a perfect correspondence between the target beam curve and the one 

related to the best chromosome (in green) can be appreciated.   

Analogous behaviours, with a correct retrieval of the target profile, have been obtained for all the 

other cases of multi-stepped beams shown in Table 2. 

Consider, just to show another example, the multi-stepped cantilever beam CA1 shown in Table 2. 

For example, Figure 6 refers to the multi-stepped cantilever beam CA1 and shows the final outcome 

of a 50 events simulation, together with the corresponding total external work plot: again, the target 

chromosome CT º [0 1 2 3 4 5 6 7 8 9] has been correctly recovered with a fitness value  f (CW) = 

10. 

 

  



 

 

 

 

 

 

 

 

 

Figure 6. User interface for the cantilever beam with progressively decreasing stiffness. 

 

5.2 Robustness of the procedure 

As it has been illustrated in the previous paragraph, the proposed procedure is able to provide the 

exact solution when the beam, whose profile must be reconstructed, has a multi-step shape. This 

happens because, in this case, the winning chromosome can return the correct total external work 

profile with a very good numerical approximation, therefore allowing the correct identification of 

the target multi-step beam. It is now interesting to study how the results presented in the previous 

subsection depend on the precision of the input and also how robust is the multi-step identification 

procedure with respect to variations of some genes in the target chromosome. 

In order to address these issues, consider again the multi-stepped cantilever beam with 

progressively decreasing flexural stiffness, whose target chromosome is CT º [0 1 2 3 4 5 6 7 8 9]. 

The latter was correctly recovered by a winning chromosome CW with fitness value f (CW)= Fmax. 

The total external works Wc(CT) and Wc(CW) for the chromosomes CT and CW, calculated below the 

roving load, are reported in Table 3. It is worth to remind that for each uniform segment the total 

external work contain the sum of the external works done by the force for the transversal 



displacements in the current, and in all the positions previously assumed by the load. 

Table 3 Total external work for chromosomes CT and CW 

Load position Wc(CT) Wc(CW) 

1 4.166666666666644E-5 4.166666666666671E-5 

2 0.0011712962962962935 0.001171296296296294 

3 0.006510416666666667 0.006510416666666652 

4 0.02154447751322753 0.021544477513227498 

5 0.054441633597883614 0.05444163359788358 

6 0.11647172619047616 0.11647172619047616 

7 0.22258217592592588 0.22258217592592575 

8 0.3922412367724868 0.3922412367724866 

9 0.6507991071428569 0.6507991071428567 

10 1.0321129298941796 1.0321129298941791 

 

If these total external work profiles are compared with a precision of 16 floating point digits, some 

very small discrepancies in the single values of the two energy arrays, due to unavoidable numerical 

approximation in the calculus, can be appreciated.  

These discrepancies bring to a fitness value f (CW)= 9.9999999999999999 which, of course, can be 

well approximated with f (CT)=10.  

In order to investigate on the effects of these discrepancies on the solution of the inverse problem 

considering as input data the total external work, a progressive error in the values is introduced, for 

example by eliminating a given increasing number of final digits in the entries of the input energy 

array.  

In the following the values of the fitness, with the relative winning chromosome, for several values 

of decreasing precision in the energy entries are reported in Table 4.  

 



Table 4 Fitness and winning chromosome for different number of floating point digits in the energy 

entries 

n° floating point 

digits 

Fitness f (CW) Fitness error (%) Winning chromosome CW 

12 9.9999999996341023 10-10 [0 1 2 3 4 5 6 7 8 9] 

10 9.9999995604706754 10-7 [0 1 2 3 4 5 6 7 8 9] 

8 9.9999944898779582 10-6 [0 1 2 3 4 5 6 7 8 9] 

5 9.9988653213175636 10-3 [0 1 2 3 4 5 6 7 8 9] 

4 9.9747776590120348 10-2 [0 1 1 5 1 1 8 4 6 6] 

 

The observation of Table 4 shows that, for errors lower than 10-4, the retrieval of the correct multi-

step profile is ensured, with a corresponding fitness approximately equal to f (CW) = Fmax. On the 

other hand, when the measurement errors go beyond that threshold, the winning chromosome 

identifies a multi-step profile which is completely different from the correct one, with a decrease in 

the corresponding fitness f (CW) which is lower than before but, anyway, not so much as expected 

by looking at CW ’s genes. 

 

 

  

 

 

Figure 7. Fitness landscape of chromosomes as function of their Hamming distance from the target 

chromosome CT. 

This finding stimulated a further investigation about the robustness of the multi-stepped beam  

identification with respect to variations of some genes in the target chromosome. 



In this respect, to have a robust identification process, the decrease in the f (CW) fitness value with 

respect to Fmax=10 should be proportional to the diversity between CW  and CT . Unfortunately, as it 

will be immediately shown, this is not the case.   

As already clarified, the calculation of the diversity among chromosomes is based on the concept of 

Hamming distance H(Ci,Cj). The latter parameter measures the number of genes which have 

different values in any couple of chromosomes Ci and Cj. Of course, if  Ci = Cj , H = 0, while if the 

chromosomes are completely different H = NP (here NP =10). In Figure 7, a fitness landscape 

diagram where the fitness of any arbitrary chromosome Ck can be plotted as function of its 

Hamming distance H(Ck,CT) from the target chromosome CT, is shown. On the extreme left side one 

finds CT, at distance H(CT,CT)=0; then, for increasing distances, other chromosomes are reported, 

each one with its fitness, in Table 5. 

 

Table 5 Fitness and Hamming distance from the target chromosome for arbitrary chromosomes 

Considered chromosome Ci Hamming distance H(Ci,CT) Fitness f (Ci) 

CT º [0 1 2 3 4 5 6 7 8 9] H(CT,CT) = 0 f (CT)= 10 

C1 º [0 1 2 4 4 5 6 7 8 9] H(C1,CT) = 1 f (C1)= 9.9531 

C2 º [0 1 2 4 4 5 6 8 8 9] H(C2,CT) = 2 f (C2)= 9.9448 

C3 º [0 0 2 4 4 5 6 8 8 9] H(C3,CT) = 3 f (C3)= 9.9492 

C4 º [0 0 4 0 4 4 7 7 8 7] H(C4,CT) = 6 f (C4)= 9.9806 

C5 º [0 1 1 5 2 0 8 1 0 3] H(C5,CT) = 8 f (C5)= 9.9892 

 

It can be noticed that, against the intuition, changing the value of a small number of genes with 

respect to the target chromosome, as done for examples with chromosomes C1, C2 and C3 

(corresponding to beams with only a slight change in the value of the stiffness for a small number of 

uniform segments), provides a significant reduction of the fitness (f < 9.96), related to a consistent  

variation in the respective total external work. 



 

Table 6 Total external work vectors corresponding to assigned chromosomes 

Wc(C1) Wc(CT) Wc(C5) 

4.166666666666686E-5 4.166666666666644E-5 4.166666666666671E-5 

0.001171296296296294 0.0011712962962962935 0.0011712962962962942 

0.006510416666666657 0.006510416666666667 0.006504622962962963 

0.02155439814814812 0.02154447751322753 0.021412037037037052 

0.05470949074074071 0.054441633597883614 0.05434375000000018 

0.11771180555555544 0.11647172619047616 0.11695254629629659 

0.22598495370370353 0.22258217592592588 0.22333912037037074 

0.3994733796296294 0.3922412367724868 0.3934525462962965 

0.6640034722222219 0.6507991071428569 0.6531817129629636 

1.0539085648148143 1.0321129298941796 1.0307065145502652 

 

This is confirmed, for example, by the comparison between the total external work vectors 

corresponding to CT and C1 shown in Table 6 where, as expected, the differences become more 

pronounced towards the right free end of the beam.  

On the other hand, considering chromosomes such as C4 and C5, with a higher Hamming distance 

from CT (i.e. corresponding to significantly different multi-stepped beam profiles), the related 

fitness results to be closer to the maximum value Fmax (f >9.98), as also confirmed by the 

comparison between the total external work vectors corresponding to, for example, CT and C5 (see 

again Table 6). This means that this kind of solutions act as local maxima which trap the genetic 

algorithm dynamics, making very difficult to reach the global maximum and therefore to achieve 

the correct solution with f = 10.  

The previous considerations demonstrate that it is typically not possible to retrieve the correct target 

chromosome, and therefore to identify the correct real beam from its total external work profile, 

when its fitness does not coincide, at a given level of numerical approximation, with the maximum 

value Fmax. This is for example the case of real beams with smooth profile. In fact, for those beams, 



the solution of the inverse problem would contemplate the retrieval of the multi-stepped beam 

which better approximates the real one. But the unavoidable, even small, discrepancies between the 

total external work profile of the real beam and that one of its multi-stepped version, imply that it 

does not exist a global maximum in the fitness landscape. Therefore, this makes it impossible to 

identify the correct target chromosome, being the landscape full of local maxima of fitness, 

corresponding to chromosomes completely different from the target one, which attract the dynamics 

of the genetic algorithm leading it away from the desired solution.  

It should be noticed that this scenario is independent from the adopted discretization NP of the real 

beam profile, therefore the identification problem cannot be circumvented by increasing the level of 

approximation of the real beam through multi-stepped profiles with a greater number of uniform 

segments.  

It is also worth noticing that the described considerations, regarding the non-uniqueness of the 

solution of the inverse problem, also apply if the number of input data is increased (for example 

evaluating the transversal displacements in all the nodes when the applied force moves along the 

beam). This circumstance lies on the peculiar behaviour of the considered problem according to 

which different multi-step profiles correspond to very similar static responses. 

 

6. Conclusions 

The present paper investigates on the possibility of identifying the profile (and therefore the flexural 

stiffness distribution) of real beams making use of measured static data. In particular, in order to 

take into account a measure able to characterize the global static response of the beam, reference is 

made to the total external work produced by a concentrated force moving along the beam axis. The 

total external work measured on real beams, whose profile must be reconstructed, is then compared 

to those obtained for arbitrary multi-stepped beams by means of a closed form solution. An original 

application of a tailored genetic algorithm allows selecting the multistep profiles which better suits 

the measured data. Many applications of the proposed procedure are presented together with a 



detailed investigation on the robustness of the procedure aimed at the individuation of the 

convenience and drawbacks of its applicability. In particular, it has been demonstrated that even 

slight changes in the value of the stiffness for a small number of uniform segments in a beam cause 

significant differences in the total external work. Therefore it is not always possible to identify a 

unique correct target chromosome when its fitness does not coincide, at a given level of numerical 

approximation, with the maximum possible value. However, the identification of the beam’s profile 

could perhaps be performed by means of more selective hybrid strategies that, taking into account 

different global measures, could allow finding the correct solution. In this context, the study here 

presented represents a first important step toward the solution of the complex problem of the 

beam’s profile identification.    
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