Skip to main content

Advertisement

Log in

Novel approach to establish model-based development and virtual commissioning in practice

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Due to several challenges such as faster development cycles or growing customer demands, the engineering of machines and plants is becoming increasingly complex. Methods such as model-based development and virtual commissioning (i.e. an early commissioning of plant control by means of virtual machine models) are known in theory, academia and industry. These methods can significantly contribute to face time, quality and cost challenges within the development of machines and plants. However, the application and implementation of these methods and related tools are a major task. One challenge is the integration of several models in various description languages. In addition, the usage often fails because of a lack of willingness and knowledge. In addition, innovative methods also require new work- and data flows in the respective enterprises. Therefore, the challenge is to cope with historically grown structures. For this reason, this paper proposes an approach to address the challenge of introducing model-based development and virtual commissioning in enterprises in the field of machinery and plant engineering. After presenting a novel three-step methodology to introduce these methods, the theoretical implementation of virtual commissioning is described in detail. Afterwards, an industrial application example with explanation of the realization of virtual commissioning is presented and critically discussed. Finally, a summary with results and benefits and an insight to future research aspects with regard to the design of cyber-physical system and related topics is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Garetti M, Taisc M (2012) Sustainable manufacturing: trends and research challenges. Prod Control 23:83–104

    Article  Google Scholar 

  2. Afshar A, Kaveh A, Shoghli O (2007) Multi-objective optimization of time-cost-quality using multi-colony ant algorithm. Asian J Civil Eng (Build Hous) 2:113–124

    MATH  Google Scholar 

  3. Gausemeier J, Dumitrescu R, Steffen D (2013) Systems engineering in der industriellen Praxis. Study by the Heinz-Nixdorf-Institut and the Fraunhofer IPT—Projektgruppe Entwurfstechnik Mechatronik, Paderbron

  4. Dohmen W (2002) Interdisziplinäre Methoden für die integrierte Entwicklung komplexer mechatronischer Systeme. Dissertation, TU München

  5. Diehl H (2009) Systemorientierte Visualisierung disziplinübergreifender Entwicklungsabhängigkeiten mechatronischer Automobilsysteme. Dissertation, TU München

  6. Hehenberger P (2011) Computergestützte Fertigung. Springer, Heidelberg

    Book  Google Scholar 

  7. Qamar A, Wikander J, During C (2015) Managing dependencies in mechatronic design: a case study on dependency management between mechanical design and system design. Eng Comput 31:631–646. https://doi.org/10.1007/s00366-014-0366-x

    Article  Google Scholar 

  8. Van der Auweraer H, Anthonis J, De Bruyne S, Leuridan J (2013) Virtual engineering at work: the challenges for designing mechatronic products. Eng Comput 29:389. https://doi.org/10.1007/s00366-012-0286-6

    Article  Google Scholar 

  9. Eigner M (2014) Modellbasierte Virtuelle Produktentwicklung auf einer Plattform für System Lifecycle Management. In: Eigner M et al (ed) Industrie 4.0—Beherrschung der industriellen Komplexität mit SysLM, Springer, Berlin, pp 91–110

    Google Scholar 

  10. Wünsch G, Zäh M (2005) A new method for fast plant start-up. In: 1st international conference on changeable, agile, reconfigurable and virtual production (CARV 05), Garching, Germany

  11. Scheifele S, Verl A (2016) Automated control system generation out of the virtual machine. In: 3rd international conference on system-integrated intelligence: new challenges for product and production engineering (SysInt 2016)

  12. Puntel-Schmidt P, Fay A (2015) Applying the domain-mapping-matrix to identify the appropriate level of detail of simulation models for virtual commissioning. IFAC-PapersOnLine 48(10):69–74

    Article  Google Scholar 

  13. Puntel-Schmidt P, Fay A (2015) Potential of dynamically adaptable simulation models for virtual commissioning. In: Simulation notes Europe SNE, vol 15, no 2, pp 59–68

    Google Scholar 

  14. Puntel-Schmidt P, Fay A (2015) Levels of detail and appropriate model types for virtual commissioning in manufacturing engineering. In: 8th Vienna International Conference on Mathematical Modelling, Vienna, Austria

  15. Schneider M, Gausemeier J, Schmüdderrich T, Trächtler A (2014) Approach for scenario-based test specification for virtual commissioning. In: International design conference (Design 2014), Dubrovnik, Croatia

  16. ICG-Capability s.r.o (2015) Integrated consulting group|capability. http://www.capability.cz/en/. Accessed 30 Sept 2015

  17. Hehenberger P, Bradley D (2016) Mechatronic futures, challenges and solutions for mechatronic systems and their designers. Springer, London

    Google Scholar 

  18. Eigner M, Zafirov R, Baudisch T (2012) Information transfer from electrical design to simulation models in Modelica for virtual commissioning. In: NordDesign 2012, August 22–24, 2012 Aalborg, Denmark

  19. Stahl T, Völter M (2006) Model-driven software development. Wiley, Chichester

    MATH  Google Scholar 

  20. Estefan J (2007) Survey of model-based systems engineering (MBSE) methodologies. INCOSE MBSE Focus Group 25

  21. VDI-Guideline 2206 (2003) Entwicklungsmethodik für mechatronische Systeme. Verein Deutscher Ingenieure, Beuth, Berlin

    Google Scholar 

  22. Friedenthal S, Moore A, Steiner R (2015) A practical guide to SysML. Morgan Kaufmann, Waltham

    Google Scholar 

  23. Lerche M, Pesch D, Klemm P, Korajda I (2004) Baukastenbasiertes engineering mit Föderal. VDMA, Frankfurt am Main

    Google Scholar 

  24. Litto M et. al (2010) AQUIMO: Ein Leitfaden für Maschinen- und Anlagenbauer. VDMA, Frankfurt am Main

    Google Scholar 

  25. Gausemeier J, Frank U, Donoth J, Kahl S (2009) Specification technique for the description of self-optimizing mechatronic systems. Res Eng Des 20:201–223

    Article  Google Scholar 

  26. Hackenberg G, Richter C, Zäh M (2014) A multi-disciplinary modelling technique for requirements management in mechatronic systems engineering. In: 2nd international conference on system-integrated intelligence: challenges for product and production engineering

  27. Tschirner C, Dumitrscu R, Bansmann M, Gausemeier J (2015) Tailoring model-based systems engineering—concepts for industrial application. In: 9th annual IEEE international systems conference (SysCon), pp 69–76

  28. Wünsch G (2007) Methoden für die virtuelle Inbetriebnahme automatisierter Produktionssysteme. Dissertation, TU München

  29. Lacour F (2011) Modellbildung für die physikbasierte Virtuelle Inbetriebnahme materialflussintensiver Produktionsanlagen. Dissertation, TU München

  30. Botaschanjan J, Hensel T, Hummel B, Lindworsky A, Zäh M, Reinhart G, Broy M (2010) AutoVIBN—Abschlussbericht. Technische Universität München, München

    Google Scholar 

  31. Ahmad A, Andersson K, Sellgren U, Khan S (2014) A stiffness modelling methodology for simulation-driven design of haptic devices. Eng Comput 30:125. https://doi.org/10.1007/s00366-012-0296-4

    Article  Google Scholar 

  32. VDI-Guideline 3693 (2016) Virtuelle Inbetriebnahme—Modellarten und Glossar. Verein Deutscher Ingenieure, Beuth, Berlin

    Google Scholar 

  33. Boschert S, Rosen R (2016) Digital twin—the simulation aspect. In: Hehenberger P, Bradley D (eds) Mechatronic futures. Springer, London, pp 59–74

    Google Scholar 

  34. Rosen R, von Wichert G, Lo G, Bettenhausen K (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC PapersOnLine 48(3):567–572

    Article  Google Scholar 

  35. Hehenberger P, Vogel-Heuser B, Bradley D, Eynard B, Tomiyama T, Achiche S (2016) Design, modelling, simulation and integration of cyber physical systems: methods and applications. Comput Ind 82:273–289

    Article  Google Scholar 

  36. Hehenberger P (2012) Advances in model-based mechatronic design. Trauner, Linz

    Google Scholar 

  37. Brökelmann J (2015) Systematik der virtuellen Inbetriebnahme von automatisierten Produktionssystemen. Verlagshaus Monsenstein und Vannerdat OHG Druck, Münster

    Google Scholar 

  38. Auinger F. Vorderwinkler M, Buchtela G (1999) Interface driven domain-independent modelling architecture for soft-commissioning and reality in the loop. In: Simulation conference, pp 798–805

  39. Dominka S, Schiller F, Kain S (2007) Hybrid commissioning—from hardware-in-the-loop simulation to real producation plants. In: 18th IASTED international conference on modelling and simulation (MS’07), pp 544–549

  40. Kain S, Dominka S, Merz M, Schiller F (2009) Reuse of HiL simulation models in the operation phase of production plants. In: IEEE international conference on industrial technology (ICIT ‘09), pp 1–6

  41. Hensel T (2011) Modellbasierter Entwicklungsprozess für Automatisierungslösungen. Dissertation, TU München

  42. Keller G, Nüttgens M, Scheer AW (1992) Semantische Prozessmodellierung auf der Grundlage ereignisgesteuerter Prozessketten (EPK). Saarbrücken, Germany

    Google Scholar 

  43. Allweyer T (2010) BPMN 2.0. Books on demand, Norderstedt

    Google Scholar 

  44. Ross DT (1977) Structured analysis (SA): a language for communicating ideas. IEEE Trans Softw Eng SE 3:16–34

    Article  Google Scholar 

  45. Drescher B, Stich P, Kiefer J, Strahilov A, Bär T, Reinhart G (2013) Physikbasierte Simulation im Anlagenentstehungsprozess—Einsatzpotenziale bei der Entwicklung. Simulation in Produktion und Logistik

  46. Carkenord BA (2009) Seven steps to mastering business analysis. J Ross Publishing, Fort Lauderdale

    Google Scholar 

  47. Drath R, Lüder A, Peschke J, Hundt L (2008) AutomationML—the glue for seamless automation engineering. In: IEEE international conference on emerging technologies and factory automation, Hamburg, Germany

  48. Richter C, Ahrens M, Hehenberger P, Krotil S, Stich P, Reinhart G, Wiesinger A, Wimmer A (2016) Model based development and virtual commissioning in practice: a novel approach to establish innovative development methods in industrial environments. Tools and methods of competitive engineering (TMCE), in Imre Horváth, Jean-Philippe Pernot, Zoltan Rusák, ISBN: 978-94-6186-635-6

  49. Cohn M (2010) Agile Softwareentwicklung: mit Scrum zum Erfolg. Addison Wesley, Boston

    Google Scholar 

  50. Hehenberger P, Bricogne M, Le Duigou J, Eynard B (2015) Meta-model of PLM for design of systems of systems. In: PLM international conference (PLM2015), Doha, Qatar

  51. Lee EA (2008) Cyber physical systems: design challenges. In: 11th IEEE symposium on object oriented real-time distributed computing (ISORC)

Download references

Acknowledgements

We gratefully acknowledge that this work has been supported by the Austrian COMET-K2 programme of the Linz Center of Mechatronics (LCM), and was partly funded by the Austrian federal government and the federal state of Upper Austria. We also thank all partners for their kind support. The original version of this paper was published at the TMCE2016 in Aix-En-Provence (FR). This publication is a particular advanced republication and is arranged with the permission of the initial copyright owner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hehenberger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahrens, M., Richter, C., Hehenberger, P. et al. Novel approach to establish model-based development and virtual commissioning in practice. Engineering with Computers 35, 741–754 (2019). https://doi.org/10.1007/s00366-018-0622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0622-6

Keywords

Navigation