Skip to main content
Log in

Simultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithms

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper proposes the design of trusses using simultaneous topology, shape, and size design variables and reliability optimization. Objective functions consist of structural mass and reliability, while the probability of failure is set as a design constraint. Design variables are treated to simultaneously determine structural topology, shape, and sizes. Six test problems are posed and solved by a number of multi-objective evolutionary algorithms, and it is found that Hybridized Real-Code Population-Based Incremental Learning and Differential Evolution is the best performer. This work is considered an initial study for the combination of reliability optimization and simultaneous topology, shape, and sizing optimization of trusses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Karagöz S, Yıldız AR (2017) A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects. Int J Veh Des 73(1–3):179–188

    Article  Google Scholar 

  2. Kiani M, Yildiz AR (2015) A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng 23(4):723–734

    Article  MathSciNet  MATH  Google Scholar 

  3. Yıldız AR, Kurtuluş E, Demirci E, Yıldız BS, Karagöz S (2016) Optimization of thin-wall structures using hybrid gravitational search and Nelder–Mead algorithm. Mater Test 58(1):75–78

    Article  Google Scholar 

  4. Yıldız BS, Yıldız AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater Test 60(3):311–315

    Article  Google Scholar 

  5. Yıldız BS, Yıldız AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Test 59(5):425–429

    Article  Google Scholar 

  6. Yıldız BS (2017) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Veh Des 73(1–3):208–2187

    Article  Google Scholar 

  7. Yıldız BS (2017) Yıldız AR, Pholdee N, Bureerat S (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1–3):20–538

  8. Yıldız AR, Öztürk F (2010) Hybrid Taguchi-harmony search approach for shape optimization. Recent Adv Harmon Search Algorithm 8:89–98

    Article  Google Scholar 

  9. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333

    Article  Google Scholar 

  10. Yildiz AR, Saitou K (2011) Topology synthesis of multicomponent structural assemblies in continuum domains. J Mech Des 133(1):011008–011009

    Article  Google Scholar 

  11. Yildiz BS, Lekesiz H, Yildiz AR (2016) Structural design of vehicle components using gravitational search and charged system search algorithms. Mater Test 58(1):79–81

    Article  Google Scholar 

  12. Victoria M, Querin OM, Díaz C, Martí P (2016) liteITD a MATLAB graphical user interface (GUI) program for topology design of continuum structures. Adv Eng Softw 100:126–147

    Article  Google Scholar 

  13. Savsani VJ, Tejani GG, Patel VK, Savsani P (2017) Modified meta-heuristics using random mutation for truss topology optimization with static and dynamic constraints. J Comput Des Eng 4(2):106–130

    Google Scholar 

  14. Assimi H, Jamali A, Nariman-zadeh N (2017) Sizing and topology optimization of truss structures using genetic programming. Swarm Evolut Comput 37:90–103

    Article  Google Scholar 

  15. Kaveh A, Ilchi Ghazaan M (2015) Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints. Adv Eng Softw 79:137–147

    Article  Google Scholar 

  16. Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369

    Article  Google Scholar 

  17. Assimi H, Jamali A (2018) A hybrid algorithm coupling genetic programming and Nelder–Mead for topology and size optimization of trusses with static and dynamic constraints. Expert Syst Appl 95:127–141

    Article  Google Scholar 

  18. Tejani GG, Savsani VJ, Bureerat S, Patel VK (2018) Topology and size optimization of trusses with static and dynamic bounds by modified symbiotic organisms search. J Comput Civil Eng 32(2):04017085–04017011

    Article  Google Scholar 

  19. Tejani GG, Savsani VJ, Bureerat S, Patel VK, Savsani P (2018) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng Comput. https://doi.org/10.1007/s00366-018-0612-8

    Article  Google Scholar 

  20. Kaveh A, Zolghadr A (2011) Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J Civil Eng 12:487–509

    Google Scholar 

  21. Šilih S, Kravanja S, Premrov M (2010) Shape and discrete sizing optimization of timber trusses by considering joint flexibility. Adv Eng Softw 41(2):286–294

    Article  MATH  Google Scholar 

  22. Lieu Q, Do DTT, Lee J (2018) An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints. Comput Struct 195:99–112

    Article  Google Scholar 

  23. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng 3(3):226–249

    Google Scholar 

  24. Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 47:1–17

    MathSciNet  Google Scholar 

  25. Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538

    Article  Google Scholar 

  26. Mortazavi A, Toğan V (2016) Simultaneous size, shape, and topology optimization of truss structures using integrated particle swarm optimizer. Struct Multidiscip Optim 54(4):715–736

    Article  MathSciNet  Google Scholar 

  27. Tomšič P, Duhovnik J (2014) Simultaneous topology and size optimization of 2D and 3D trusses using evolutionary structural optimization with regard to commonly used topologies. Adv Mech Eng 6:864–867

    Article  Google Scholar 

  28. Zhou M, Pagaldipti N, Thomas HL, Shyy YK (2004) An integrated approach to topology, sizing, and shape optimization. Struct Multidiscip Optim 26(5):308–317

    Article  Google Scholar 

  29. Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2018) An improved heat transfer search algorithm for unconstrained optimization problems. J Comput Des Eng

  30. Tejani GG, Savsani VJ, Patel VK, Savsani PV (2018) Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. J Comput Des Eng 5(2):198–214

    Google Scholar 

  31. Tejani GG, Savsani VJ, Patel VK, Bureerat S (2017) Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization. Adv Comput Des 2:313–331

    Google Scholar 

  32. Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38(1):957–968

    Article  Google Scholar 

  33. Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21

    Article  Google Scholar 

  34. Yang IT, Hsieh YH (2012) Reliability-based design optimization with cooperation between support vector machine and particle swarm optimization. Eng Comput 29(2):151–163

    Article  Google Scholar 

  35. Kaveh A, Talatahari S (2010) A charged system search with a fly to boundary method for discrete optimum design of truss structures. Asian J Civ Eng 11:277–293

    Google Scholar 

  36. Kaveh A, Zakian P (2014) Enhanced bat algorithm for optimal design of skeletal structures. Asian J Civil Eng 15:179–212

    Google Scholar 

  37. Kaveh A, Jafari L, Farhoudi (2015) Truss optimization with natural frequency constraints using a dolphin echolocation algorithm. Asian J Civil Eng 16:29–46

    Google Scholar 

  38. Mandhyan A, Srivastava G, Krishnamoorthi S (2016) A novel method for prediction of truss geometry from topology optimization. Eng Comput 33(1):95–106

    Article  Google Scholar 

  39. Cheng MY, Prayogo D (2016) A novel fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving structural optimization problems. Eng Comput 33(1):55–69

    Article  Google Scholar 

  40. Kaintura A, Spina D, Couckuyt I, Knockaert L, Bogaerts W, Dhaene T (2017) A kriging and stochastic collocation ensemble for uncertainty quantification in engineering applications. Eng Comput 33(4):935–949

    Article  Google Scholar 

  41. Shobeir V (2016) The optimal design of structures using ACO and EFG. Eng Comput 32(4):645–653

    Article  Google Scholar 

  42. Shi J, Cao J, Cai K, Wang Z, Qin QH (2016) Layout optimization for multi-bi-modulus materials system under multiple load cases. Eng Comput 32(4):745–753

    Article  Google Scholar 

  43. Ho-Huu V, Nguyen-Thoi T, Vo-Duy T, Nguyen-Trang T (2016) An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Comput Struct 165:59–75

    Article  Google Scholar 

  44. Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465

    Article  MATH  Google Scholar 

  45. Kaveh A, Laknejadi K (2012) A hybrid evolutionary graph-based multi-objective algorithm for layout optimization of truss structures. Acta Mech 224(2):343–364

    Article  MathSciNet  MATH  Google Scholar 

  46. Veldhuizen DAV, Lamont G (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8(2):125–147

    Article  Google Scholar 

  47. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49

    Article  Google Scholar 

  48. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

    Article  Google Scholar 

  49. Srisomporn S, Bureerat S (2008) Geometrical design of plate-fin heat sinks using hybridization of MOEA and RSM. IEEE Trans Compon Packag Technol 31(2):351–360

    Article  Google Scholar 

  50. Pholdee N, Bureerat S (2013) Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inf Sci 223:136–152

    Article  MathSciNet  Google Scholar 

  51. Santawy MFE, Ahmed AN (2012) A multi-objective chaotic harmony search technique for structural optimization. Comput Sci 1:9–12

    Google Scholar 

  52. Gholizadeh S, Baghchevan A (2017) Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm. Eng Comput 33(4):1045–1060

    Article  Google Scholar 

  53. Nasrollahi A (2017) Optimum shape of large-span trusses according to AISC-LRFD using ranked particles optimization. J Constr Steel Res 134:92–101

    Article  Google Scholar 

  54. Lim J, Lee B (2015) A semi-single-loop method using approximation of most probable point for reliability-based design optimization. Struct Multidiscip Optim 53:745–757

    Article  MathSciNet  Google Scholar 

  55. Coletti G, Petturiti D, Vantaggi B (2017) Fuzzy memberships as likelihood functions in a possibilistic framework. Int J Approx Reas 88:547–566

    Article  MathSciNet  MATH  Google Scholar 

  56. Komal (2018) Fuzzy reliability analysis of DFSMC system in LNG carriers for components with different membership function. Ocean Eng 155:278–294

    Article  Google Scholar 

  57. Kharmanda G, Sharabatey S, Ibrahim H, Makhloufi A, Elhami A (2009) Reliability-based design optimization using semi-numerical strategies for structural engineering applications. Int J CAD/CAM 9:1–16

    Google Scholar 

  58. Lombardi M, Haftka RT (1998) Anti-optimization technique for structural design under load uncertainties. Comput Methods Appl Mech Eng 157(1–2):19–31

    Article  MATH  Google Scholar 

  59. Pholdee N, Bureerat S (2012) Performance enhancement of multiobjective evolutionary optimisers for truss design using an approximate gradient. Comput Struct 106–107:115–124

    Article  Google Scholar 

  60. Noilublao N, Bureerat S (2013) Simultaneous topology, shape, and sizing optimisation of plane trusses with adaptive ground finite elements using MOEAs. Math Probl Eng 2013:1–9

    Article  Google Scholar 

  61. Park S, Choi S, Sikorsky C, Stubbs N (2004) Efficient method for calculation of system reliability of a complex structure. Int J Solids Struct 41(18–19):5035–5050

    Article  MATH  Google Scholar 

  62. Greiner D, Hajela P (2011) Truss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulations. Struct Multid Optim 45(4):589–613

    Article  MathSciNet  MATH  Google Scholar 

  63. Ho-Huu V, Nguyen-Thoi T, Le-Anh L, Nguyen-Trang T (2016) An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures. Adv Eng Softw 92:48–56

    Article  Google Scholar 

  64. Kroetz HM, Tessari RK, Beck AT (2017) Performance of global metamodeling techniques in solution of structural reliability problems. Adv Eng Softw 114:394–404

    Article  Google Scholar 

  65. Zhao Y, Zhang X, Lu Z (2018) Complete monotonic expression of the fourth-moment normal transformation for structural reliability. Comput Struct 196:186–199

    Article  Google Scholar 

  66. Ma X, Liu F, Qi Y, Li L, Jiao L, Liu M, Wu J (2014) MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem. Neurocomputing 145:336–352

    Article  Google Scholar 

  67. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  68. Sivasubramani KS, Swarup S (2011) Environmental/economic dispatch using multi-objective harmony search algorithm. Electr Power Syst Res 81:1778–1785

    Article  Google Scholar 

  69. Aittokoski T, Miettinen K (2010) Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA. Optim Methods Softw 25(6):841–858

    Article  MathSciNet  MATH  Google Scholar 

  70. Bureerat S, Sriworamas K (2013) Simultaneous topology and sizing optimization of a water distribution network using a hybrid multiobjective evolutionary algorithm. Appl Soft Comput 13(8):3693–3702

    Article  Google Scholar 

  71. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  72. Mlakar M, Petelin D, Tušar T, Filipič B (2015) GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models. Eur J Oper Res 243(2):347–361

    Article  MathSciNet  MATH  Google Scholar 

  73. Robič T, Filipič B (2005) DEMO: differential evolution for multiobjective optimization. Lect Notes Comput Sci 3410:520–533

    Article  MATH  Google Scholar 

  74. Coello Coello CA, Reyes-Sierra M (2006) Multi-objective particle swarm optimizers: a survey of the state-of the-art. Int J Comput Intell Res 2(3):287–308

    Article  MathSciNet  Google Scholar 

  75. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 proceedings of the sixth international symposium on micro machine and human science, pp 39–43

  76. Ahrari A, Deb K (2016) An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput Struct 164:127–144

    Article  Google Scholar 

  77. Techasen T, Wansasueb K, Panagant N, Pholdee N, Bureerat S (2018) Multiobjective simultaneous topology, shape and sizing optimization of trusses using evolutionary optimizers. IOP Conf Ser Mater Sci Eng 370:012029

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate Engineering Camp Fund, Faculty of Engineering, Khon Kaen University, Thailand, and the Thailand Research Fund (TRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujin Bureerat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Techasen, T., Wansasueb, K., Panagant, N. et al. Simultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithms. Engineering with Computers 35, 721–740 (2019). https://doi.org/10.1007/s00366-018-0629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0629-z

Keywords

Navigation