Skip to main content
Log in

Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The static deflection, frequency and transient responses of the layered sandwich shell (flat/curved) structure computed under the different types of mechanical loading. The higher order polynomial kinematic type of mid-plane kinematics is derived for the mathematical modeling and subsequent numerical analysis. A suitable home-made code is prepared in MATLAB for the computation of deflection (static and dynamic) parameter using the proposed mathematical model. Furthermore, the numerical solution accuracy has been verified by comparing the numerical output with those available published data including the convergence test as a priori. In addition, the influences of the variable design parameters (span-to-thickness ratios, curvature ratios, aspect ratios, core-to-face thickness ratios, lamination configurations, shell configurations, and support conditions) on the deflection, frequency, and the transient values are computed extensively and the inferences provided in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Reddy JN (1984) A simple higher order theory for laminated composite plates. ASME J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  2. Senthilnathan NR, Lim KH, Lee KH, Chow ST (1987) Buckling of shear deformable plates. AISS J 25(9):1268–1271

    Google Scholar 

  3. Kant T, Mallikarjuna B (1989) Transient dynamics of composite sandwich plates using 4-, 8-, 9-noded isoparametric quadrilateral elements. Finite Elem Anal Des 6:307–318

    Article  MATH  Google Scholar 

  4. Kant T, Arora CP, Varaiya JH (1990) Finite element transient analysis of composite and sandwich plates based on a refined theory and a mode superposition method. Comput Struct 22(2):109–120

    Article  Google Scholar 

  5. Kant T, Varaiya JH, Arora CP (1992) Finite element transient analysis of composite and sandwich plates based on a refined theory and implicit time integration schemes. Compos Struct 36(3):401–420

    Article  MATH  Google Scholar 

  6. Kommineni JR, Kant T (1993) Large deflection elastic and inelastic transient analyses of composite and sandwich plates with a refined theory. J Reinf Plast Compos 12:1150–1170

    Article  Google Scholar 

  7. Kant T, Kommineni JR (1994) Geometrically non-linear transient analysis of laminated composite and sandwich shells with a refined theory and C0 finite elements. Comput Struct 52:1243–1259

    Article  MATH  Google Scholar 

  8. Kommineni JR, Kant T (1995) Pseudo-transient large deflection analysis of composite and sandwich shells with a refined theory. Comput Methods Appl Mech Eng 123:1–13

    Article  Google Scholar 

  9. Kant T, Swaminathan K (2001) Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory. Compos Struct 53:73–85

    Article  Google Scholar 

  10. Makhecha DP, Patel BP, Ganapathi M (2001) Transient dynamics of thick skew sandwich laminates under thermal/mechanical loads. J Reinf Plast Compos 20:1524–1545

    Article  Google Scholar 

  11. Nayak AK, Shenoi RA, Moy SSJ (2002) Transient analysis of composite sandwich plates using assumed strain plate bending elements based on Reddy’s higher order theory. Adv Polym Compos Struct Appl Constr 216:347–357. ISBN 978-1-85573-736-5

    Google Scholar 

  12. Nayak AK, Shenoi RA, Moy SSJ (2004) Transient response of composite sandwich plates. Compos Struct 64:249–267

    Article  Google Scholar 

  13. Roque CMC, Ferreira AJM, Neves AMA, Soares CMM, Reddy JN, Jorge RMN (2011) Transient analysis of composite and sandwich plates by radial basis functions. J Sandw Struct Mater 13:681–704

    Article  Google Scholar 

  14. Madhukar S, Singha MK (2013) Geometrically nonlinear finite element analysis of sandwich plates using normal deformation theory. Compos Struct 97:84–90

    Article  Google Scholar 

  15. Ferreira AJM, Viola E, Tornabene F, Fantuzzi N, Zenkour AM (2013) Analysis of sandwich plates by generalized differential quadrature method. Math Probl Eng 2013:1–12. https://doi.org/10.1155/2013/964367

    Article  MathSciNet  MATH  Google Scholar 

  16. Marjanović M, Vuksanović D (2014) Transient analysis of laminated composite and sandwich plates with embedded delaminations using GLPT. In: Proc. 9th int conf struct Dyn Porto, pp 3373–3380

  17. Marjanović M, Vuksanović D, Meschke G (2015) Geometrically nonlinear transient analysis of delaminated composite and sandwich plates using a layerwise displacement model with contact conditions. Compos Struct 122:67–81

    Article  Google Scholar 

  18. Qu Y, Wu S, Li H, Meng G (2015) Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: Beams, plates and solids. Compos Part B Eng 73:96–110

    Article  Google Scholar 

  19. Mishra PK, Pradhan AK, Pandit MK (2016) Inter-laminar delamination analyses of spar wingskin joints made with flat FRP composite laminates. Int J Adhes Adhes 68:19–29

    Article  Google Scholar 

  20. Yin S, Yu T, Bui TQ, Liu P, Hirose S (2016) Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets. Comput Struct 177:23–38

    Article  Google Scholar 

  21. Nguyen MN, Bui TQ, Truong TT, Tanaka S, Hirose S (2017) Numerical analysis of 3-D solids and composite structures by an enhanced 8-node hexahedral element. Finite Elem Anal Des 131:1–16

    Article  MathSciNet  Google Scholar 

  22. Tornabene F, Fantuzzi N, Bacciocchi M, Viola E, Reddy JN (2017) A numerical investigation on the natural frequencies of FGM sandwich shells with variable thickness by the local generalized differential quadrature method. Appl Sci 7(131):1–39

    Google Scholar 

  23. Tornabene F, Fantuzzi N, Bacciocchi M, Reddy JN (2017) An equivalent layer-wise approach for the free vibration analysis of thick and thin laminated and sandwich shells. Appl Sci 7(17):1–34

    Google Scholar 

  24. Tornabene F, Brischetto S (2018) 3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells. Thin Walled Struct 129:94–124

    Article  Google Scholar 

  25. Szekrényes A (2017) Analytical solution of some delamination scenarios in thick structural sandwich plates. J Sandw Struct Mater. https://doi.org/10.1177/1099636217714182

    Article  Google Scholar 

  26. Szekrényes A (2018) The role of transverse stretching in the delamination fracture of softcore sandwich plates. Appl Math Model 63:611–632

    Article  MathSciNet  Google Scholar 

  27. Heydari MM, Kolahchi R, Heydari M, Abbasi A (2014) Exact solution for transverse bending analysis of embedded laminated Mindlin plate. Struct Eng Mech 49(5):661–672

    Article  Google Scholar 

  28. Bidgoli AMM, Daneshmehr AR, Kolahchi R (2015) Analytical bending solution of fully clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method. J Appl Comput Mech 1(2):52–58

    Google Scholar 

  29. Kolahchi R (2017) A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp Sci Technol 66:235–248

    Article  Google Scholar 

  30. Arani AG, Jafari SS, Kolahchi R (2017) Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst Technol 23(5):1509–1535

    Article  Google Scholar 

  31. Kolahchi R, Bidgoli AMM (2016) Size-dependent sinusoidal beam model for dynamic instability of single walled carbon nanotubes. Appl Math Mech 37(2):265–274

    Article  MathSciNet  Google Scholar 

  32. Kolahchi R, Zarei MS, Hajmohammad MH, Nouri A (2017) Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined Zigzag theory. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2017.06.039

    Article  Google Scholar 

  33. Zarei MS, Hajmohammad MH, Kolahchi R, Karami H (2018) Dynamic response control of aluminum beams integrated with nanocomposite piezoelectric layers subjected to blast load using hyperbolic visco-piezo-elasticity theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636218785316

    Article  Google Scholar 

  34. Hajmohammad MH, Farrokhian A, Kolahchi R (2018) Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2018.04.030

    Article  Google Scholar 

  35. Hajmohammad MH, Azizkhani MB, Kolahchi R (2018) Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2018.01.026

    Article  Google Scholar 

  36. Bessaim A, Houari MSA, Tounsi A, Mahmoud SR, Bedia EAA (2013) A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J Sandw Struct Mater 15(6):671–703

    Article  Google Scholar 

  37. Mahi A, Bedia EAA, Tounsi A (2015) A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Model 39:2489–2508

    Article  MathSciNet  Google Scholar 

  38. Abualnour M, Houari MSA, Tounsi A, Bedia EAA, Mahmoud SR (2018) A novel, quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates. Compos Struct 184:688–697

    Article  Google Scholar 

  39. Bousahla AA, Houari MSA, Tounsi A, Bedia EAA (2014) A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int J Comput Methods 11(6):1350082

    Article  MathSciNet  MATH  Google Scholar 

  40. Meziane MAA, Abdelaziz HH, Tounsi A (2014) An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J Sandw Struct Mater 16(3):293–318

    Article  Google Scholar 

  41. Hamidi A, Houari MSA, Mahmoud SR, Tounsi A (2015) A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos Struct 18(1):235–253

    Article  Google Scholar 

  42. Yahia SA, Atmane HA, Houari MSA, Tounsi A (2015) Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech 53(6):1143–1165

    Article  Google Scholar 

  43. Bellifa H, Benrahou KH, Hadji L, Houari MSA, Tounsi A (2016) Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J Braz Soc Mech Sci Eng 38:265–275

    Article  Google Scholar 

  44. Bennoun M, Houari MSA, Tounsi A (2016) A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech Adv Mater Struct 23(4):423–431

    Article  Google Scholar 

  45. Bouderba B, Houari MSA, Tounsi A, Mahmoud SR (2016) Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Struct Eng Mech 58(3):397–422

    Article  Google Scholar 

  46. Abdelaziz HH, Meziane MAA, Bousahla AA, Tounsi A, Mahmoud SR, Alwabli AS (2017) An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos Struct 25(6):693–704

    Google Scholar 

  47. Bouafia K, Kaci A, Houari MSA, Benzair A, Tounsi A (2017) A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams. Smart Struct Syst 19(2):115–126

    Article  Google Scholar 

  48. El-Haina F, Bakora A, Bousahla AA, Tounsi A, Mahmoud SR (2017) A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech 63(5):585–595

    Google Scholar 

  49. Menasria A, Bouhadra A, Tounsi A, Bousahla AA, Mahmoud SR (2017) A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Compos Struct 25(2):157–175

    Google Scholar 

  50. Belabed Z, Bousahla AA, Houari MSA, Tounsi A, Mahmoud SR (2018) A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthq Struct 14(2):103–115

    Google Scholar 

  51. Bouhadra A, Tounsi A, Bousahla AA, Benyoucef S, Mahmoud SR (2018) Improved HSDT accounting for effect of thickness stretching in advanced composite plates. Struct Eng Mech 66(1):61–73

    Google Scholar 

  52. Karami B, Janghorban M, Shahsavari D, Tounsi A (2018) A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates. Steel Compos Struct 28(1):99–110

    Google Scholar 

  53. Karami B, Janghorban M, Tounsi A (2018) Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin Walled Struct 129:251–264

    Article  Google Scholar 

  54. Younsi A, Tounsi A, Zaoui FZ, Bousahla AA, Mahmoud SR (2018) Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates. Geomech Eng 14(6):519–532

    Google Scholar 

  55. Zine A, Tounsi A, Draiche K, Sekkal M, Mahmoud SR (2018) A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos Struct 26(2):125–137

    Google Scholar 

  56. Katariya PV, Hirwani CK, Panda SK (2018) Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory. Eng Comput. https://doi.org/10.1007/s00366-018-0609-3

    Article  Google Scholar 

  57. Jones RM (1999) Mechanics of composite materials. Taylor & Francis, Philadelphia

    Google Scholar 

  58. Cook RD, Malkus DS, Plesha ME, Witt RJ (2003) Concepts and applications of finite element analysis. Willy, Singapore

    Google Scholar 

  59. Bathe KJ, Ramm E, Wilson EL (1975) Finite-element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353–386

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Panda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katariya, P.V., Panda, S.K. Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Engineering with Computers 35, 1009–1026 (2019). https://doi.org/10.1007/s00366-018-0646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0646-y

Keywords

Navigation