Skip to main content
Log in

On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Due to rapid development of process manufacturing, composite materials with porosity have attracted commercial attention in promoting engineering applications. For this regard, in this research wave propagation-thermal characteristics of a size-dependent graphene nanoplatelet-reinforced composite (GNPRC) porous cylindrical nanoshell in thermal environment are investigated. The effects of small scale are analyzed based on nonlocal strain gradient theory (NSGT). The governing equations of the laminated composite cylindrical nanoshell in thermal environment have been evolved using Hamilton’s principle and solved with the assistance of the analytical method. For the first time, wave propagation-thermal behavior of a GNPRC porous cylindrical nanoshell in thermal environment based on NSGT is examined. The results show that by increasing the thickness, the effect of porosity on the phase velocity decreases. Another important result is that by increasing the value of the radius, the difference between the minimum and maximum values of the phase velocity increases. Finally, influence of temperature change, wave number, angular velocity and different types of porosity distribution on phase velocity are investigated using the mentioned continuum mechanics theory. As a useful suggestion, for designing of a GPLRC nanostructure should be attention to the GNP weight function and radius, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shi G, Araby S, Gibson CT, Meng Q, Zhu S, Ma J (2018) Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv Funct Mater 28:1706705

    Article  Google Scholar 

  2. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  Google Scholar 

  3. Rafiee M, Rafiee J, Yu Z-Z, Koratkar N (2009) Buckling resistant graphene nanocomposites. Appl Phys Lett 95:223103

    Article  Google Scholar 

  4. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183

    Article  Google Scholar 

  5. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  6. Montazeri A, Rafii-Tabar H (2011) Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375:4034–4040

    Article  Google Scholar 

  7. Mortazavi B, Benzerara O, Meyer H, Bardon J, Ahzi S (2013) Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60:356–365,

    Article  Google Scholar 

  8. Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L et al (2015) Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym Compos 36:556–565

    Article  Google Scholar 

  9. Baibarac M, Gómez-Romero P (2006) Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J Nanosci Nanotechnol 6:289–302

    Article  Google Scholar 

  10. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  Google Scholar 

  11. Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  Google Scholar 

  12. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  13. Kothurkar NK (2004) Solid state, transparent, cadmium sulfide-polymer nanocomposites. University of Florida, Gainesville

    Google Scholar 

  14. Yang J, Wu H, Kitipornchai S (2017) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Article  Google Scholar 

  15. Feng C, Kitipornchai S, Yang J (2017) Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos Part B Eng 110:132–140

    Article  Google Scholar 

  16. Ghadiri M, Shafiei N, Safarpour H (2017) Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol 23:1045–1065

    Article  Google Scholar 

  17. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  18. Fleck N, Hutchinson J (1997) Strain gradient plasticity. Adv Appl Mech 33:296–361

    MATH  Google Scholar 

  19. Lam DC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  20. Ghadiri M, Safarpour H (2016) Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl Phys A 122:833

    Article  Google Scholar 

  21. Barooti MM, Safarpour H, Ghadiri M (2017) Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur Phys J Plus 132:6

    Article  Google Scholar 

  22. SafarPour H, Ghadiri M (2017) Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid Nanofluidics 21:22

    Article  Google Scholar 

  23. Safarpour H, Mohammadi K, Ghadiri M (2017) Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution. J Mech Behav Mater 26:9–24

    Article  Google Scholar 

  24. SafarPour H, Hosseini M, Ghadiri M (2017) Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: an exact solution. J Therm Stresses 40:1353–1367

    Article  Google Scholar 

  25. Li L, Tang H, Hu Y (2018) The effect of thickness on the mechanics of nanobeams. Int J Eng Sci 123:81–91

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang H, Li L, Hu Y (2019) Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Appl Math Model 66:527–547

    Article  MathSciNet  Google Scholar 

  27. Karami B, Janghorban M, Tounsi A (2018) Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin Walled Struct 129:251–264

    Article  Google Scholar 

  28. Zine A, Tounsi A, Draiche K, Sekkal M, Mahmoud S (2018) A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos Struct 26:125–137

    Google Scholar 

  29. Bousahla AA, Benyoucef S, Tounsi A, Mahmoud S (2016) On thermal stability of plates with functionally graded coefficient of thermal expansion. Struct Eng Mech 60:313–335

    Article  Google Scholar 

  30. Bouderba B, Houari MSA, Tounsi A, Mahmoud S (2016) Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Struct Eng Mech 58:397–422

    Article  Google Scholar 

  31. El-Haina F, Bakora A, Bousahla AA, Tounsi A, Mahmoud S (2017) A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech 63:585–595

    Google Scholar 

  32. Menasria A, Bouhadra A, Tounsi A, Bousahla AA, Mahmoud S (2017) A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Compos Struct 25:157–175

    Google Scholar 

  33. Attia A, Bousahla AA, Tounsi A, Mahmoud S, Alwabli AS (2018) A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations. Struct Eng Mech 65:453–464

    Google Scholar 

  34. Hamidi A, Houari MSA, Mahmoud S, Tounsi A (2015) A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos Struct 18:235–253

    Article  Google Scholar 

  35. Beldjelili Y, Tounsi A, Mahmoud S (2016) Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct Syst 18:755–786

    Article  Google Scholar 

  36. Khetir H, Bouiadjra MB, Houari MSA, Tounsi A, Mahmoud S (2017) A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct Eng Mech 64:391–402

    Google Scholar 

  37. Mouffoki A, Bedia E, Houari MSA, Tounsi A, Mahmoud S (2017) Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory. Smart Struct Syst 20:369–383

    Google Scholar 

  38. Tounsi A, Houari MSA, Benyoucef S (2013) A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp Sci Technol 24:209–220

    Article  Google Scholar 

  39. Bouderba B, Houari MSA, Tounsi A (2013) Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel Compos Struct 14:85–104

    Article  Google Scholar 

  40. Zidi M, Tounsi A, Houari MSA, Bég OA (2014) Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp Sci Technol 34:24–34

    Article  Google Scholar 

  41. SafarPour H, Ghanbari B, Ghadiri M (2018) Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. Appl Math Model 35:428–442. https://doi.org/10.1016/j.apm.2018.08.028

    MathSciNet  Google Scholar 

  42. Yahia SA, Atmane HA, Houari MSA, Tounsi A (2015) Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech 53:1143–1165

    Article  Google Scholar 

  43. Fourn H, Atmane HA, Bourada M, Bousahla AA, Tounsi A, Mahmoud S (2018) A novel four variable refined plate theory for wave propagation in functionally graded material plates. Steel Compos Struct 27:109–122

    Google Scholar 

  44. Yazid M, Heireche H, Tounsi A, Bousahla AA, Houari MSA (2018) A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct Syst 21:15–25

    Google Scholar 

  45. Bellifa H, Benrahou KH, Bousahla AA, Tounsi A, Mahmoud S (2017) A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct Eng Mech 62:695–702

    Google Scholar 

  46. Zemri A, Houari MSA, Bousahla AA, Tounsi A (2015) A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct Eng Mech 54:693–710

    Article  Google Scholar 

  47. Bouadi A, Bousahla AA, Houari MSA, Heireche H, Tounsi A (2018) A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv Nano Res 6:147–162

    Google Scholar 

  48. Bouafia K, Kaci A, Houari MSA, Benzair A, Tounsi A (2017) A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams. Smart Struct Syst 19:115–126

    Article  Google Scholar 

  49. Bounouara F, Benrahou KH, Belkorissat I, Tounsi A (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20:227–249

    Article  Google Scholar 

  50. Youcef DO, Kaci A, Benzair A, Bousahla AA, Tounsi A (2018) Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct Syst 21:65–74

    Google Scholar 

  51. Chaht FL, Kaci A, Houari MSA, Tounsi A, Bég OA, Mahmoud S (2015) Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos Struct 18:425–442

    Article  Google Scholar 

  52. Ahouel M, Houari MSA, Bedia E, Tounsi A (2016) Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos Struct 20:963–981

    Article  Google Scholar 

  53. Kadari B, Bessaim A, Tounsi A, Heireche H, Bousahla AA, Houari MSA (2018) Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. J Nano Res 55:42–56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42

    Article  Google Scholar 

  54. Hamza-Cherif R, Meradjah M, Zidour M, Tounsi A, Belmahi S, Bensattalah T (2018) Vibration analysis of nano beam using differential transform method including thermal effect. J Nano Res 54:1–14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1

    Article  Google Scholar 

  55. Besseghier A, Houari MSA, Tounsi A, Mahmoud S (2017) Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Struct Syst 19:601–614

    Google Scholar 

  56. Mokhtar Y, Heireche H, Bousahla AA, Houari MSA, Tounsi A, Mahmoud S (2018) A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct Syst 21:397–405

    Google Scholar 

  57. Karami B, Janghorban M, Tounsi A (2018) Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos Struct 27:201–216

    Google Scholar 

  58. Karami B, Janghorban M, Tounsi A (2017) Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos Struct 25:361–374

    Google Scholar 

  59. Al-Basyouni K, Tounsi A, Mahmoud S (2015) Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos Struct 125:621–630

    Article  Google Scholar 

  60. Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2018) Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl 232:625–636

    Google Scholar 

  61. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Article  Google Scholar 

  62. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25:382–389

    Article  Google Scholar 

  63. Ebrahimi F, Barati MR (2018) Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams. Waves Random Complex Media 28:326–342

    Article  Google Scholar 

  64. Ebrahimi F, Dabbagh A (2018) Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates. Eur Phys J Plus 133:97

    Article  Google Scholar 

  65. Ebrahimi F, Barati MR, Dabbagh A (2018) Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects. Waves Random Complex Media 28:215–235

    Article  MathSciNet  Google Scholar 

  66. Dehghan M, Ebrahimi F (2018) On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory. Eur Phys J Plus 133:466

    Article  Google Scholar 

  67. Ebrahimi F, Dabbagh A (2018) On wave dispersion characteristics of double-layered graphene sheets in thermal environments. J Electromagn Waves Appl 32:1869–1888

    Article  Google Scholar 

  68. Ebrahimi F, Barati MR (2018) Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field. Waves Random Complex Media. https://doi.org/10.1080/17455030.2018.1506596

    Google Scholar 

  69. Ebrahimi F, Rostami P (2018) Wave propagation analysis of carbon nanotube reinforced composite beams. Eur Phys J Plus 133:285

    Article  Google Scholar 

  70. Ebrahimi F, Dabbagh A (2018) Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory. Waves Random Complex Media. https://doi.org/10.1080/17455030.2018.1490505

    Google Scholar 

  71. Ebrahimi F, Haghi P, Zenkour AM (2018) Modelling of thermally affected elastic wave propagation within rotating Mori–Tanaka-based heterogeneous nanostructures. Microsyst Technol 24:2683–2693

    Article  Google Scholar 

  72. Nieto A, Lahiri D, Agarwal A (2013) Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater Sci Eng A 582:338–346

    Article  Google Scholar 

  73. Karami B, Shahsavari D, Li L (2018) Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field. J Therm Stress 41:483–499

    Article  Google Scholar 

  74. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Article  Google Scholar 

  75. Sahmani S, Aghdam MM, Rabczuk T (2018) Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos Struct 198:51–62

    Article  Google Scholar 

  76. Wu H, Kitipornchai S, Yang J (2017) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441

    Article  Google Scholar 

  77. Zeighampour H, Beni YT (2017) “Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube. Compos Struct 179:124–131

    Article  Google Scholar 

  78. Zeighampour H, Beni YT, Dehkordi MB (2018) Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin Walled Struct 122:378–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The governing equations of the GPLRC cylindrical nanoshell in thermal environment are as follows:

$$\begin{aligned} & \delta u{\text{:}}\,{A_{11}}\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}+{l^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}u}}{{\partial {x^2}\partial {\theta ^2}}}} \right)+{B_{11}}\left( {\frac{{{\partial ^2}{\psi _x}}}{{\partial {x^2}}}+{l^2}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad +\,{A_{12}}\left( {\frac{1}{R}\frac{{{\partial ^2}v}}{{\partial x\partial \theta }}+\frac{1}{R}\frac{{\partial w}}{{\partial x}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}w}}{{\partial {x^3}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}v}}{{\partial x\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}w}}{{\partial x\partial {\theta ^2}}}} \right) \\ & \quad +\,{B_{12}}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial x\partial \theta }} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial x\partial {\theta ^3}}}} \right) - {N_{\text{h}}}\left( {\frac{1}{R}\frac{{{\partial ^2}v}}{{\partial x\partial \theta }} - \frac{1}{{{R^2}}}\frac{{{\partial ^2}u}}{{\partial {\theta ^2}}}} \right) \\ & \quad +\,\frac{{{A_{66}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}u}}{{\partial {\theta ^2}}}+\frac{{{\partial ^2}v}}{{\partial x\partial \theta }} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}u}}{{\partial {x^2}\partial {\theta ^2}}} - {l^2}\frac{{{\partial ^4}v}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}u}}{{\partial {\theta ^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{B_{66}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _x}}}{{\partial {\theta ^2}}}+\frac{{{\partial ^2}{\psi _\theta }}}{{\partial x\partial \theta }} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^2}\partial {\theta ^2}}} - {l^2}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial {\theta ^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad =\,(1 - {\mu ^2}{\nabla ^2})\left( {{I_0}\frac{{{\partial ^2}u}}{{\partial {t^2}}}+{I_1}\frac{{{\partial ^2}{\psi _x}}}{{\partial {t^2}}}} \right), \\ \end{aligned}$$
(29)
$$\begin{aligned} \delta v{\text{: }}\frac{{{A_{12}}}}{R}\left( {\frac{{{\partial ^2}u}}{{\partial x\partial \theta }}+{l^2}\frac{{{\partial ^4}u}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}u}}{{\partial x\partial {\theta ^3}}}} \right)+\frac{{{B_{12}}}}{R}\left( {\frac{{{\partial ^2}{\psi _x}}}{{\partial x\partial \theta }}+{l^2}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{A_{22}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}v}}{{\partial {\theta ^2}}}+\frac{1}{R}\frac{{\partial w}}{{\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial {x^2}\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}w}}{{\partial {x^2}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}v}}{{\partial {\theta ^4}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}w}}{{\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{B_{22}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {\theta ^2}}}+\frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^2}\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {\theta ^4}}}} \right) - N_{2}^{{\text{T}}}\left( {\frac{{{\partial ^2}v}}{{\partial {x^2}}}} \right) \\ & \quad +\,{A_{66}}\left( {\frac{1}{R}\frac{{{\partial ^2}u}}{{\partial x\partial \theta }}+\frac{{{\partial ^2}v}}{{\partial {x^2}}} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}u}}{{\partial {x^3}\partial \theta }} - {l^2}\frac{{{\partial ^4}v}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}u}}{{\partial x\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad +\,{B_{66}}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _x}}}{{\partial x\partial \theta }}+\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {x^2}}} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^3}\partial \theta }} - {l^2}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial x\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad +\,\frac{{{K_{\text{s}}}{A_{44}}}}{R}\left( {{\psi _\theta }+\frac{1}{R}\frac{{\partial w}}{{\partial \theta }} - \frac{v}{R} - {l^2}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {x^2}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}w}}{{\partial {x^2}\partial \theta }}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^2}v}}{{\partial {x^2}}}} \right. \\ & \quad - \,\left. {\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}w}}{{\partial {\theta ^3}}}+\frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^2}v}}{{\partial {\theta ^2}}}} \right)=(1 - {\mu ^2}{\nabla ^2})\left( {{I_0}\left[ {\frac{{{\partial ^2}v}}{{\partial {t^2}}}\,\,} \right]+{I_1}\left[ {\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {t^2}}}} \right]} \right), \\ \end{aligned}$$
(30)
$$\begin{aligned} \delta w{\text{: }}\frac{{{A_{12}}}}{R}\left( {\frac{{\partial u}}{{\partial x}}+{l^2}\frac{{{\partial ^3}u}}{{\partial {x^3}}}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}u}}{{\partial x\partial {\theta ^2}}}} \right)+\frac{{{B_{12}}}}{R}\left( {\frac{{\partial {\psi _x}}}{{\partial x}}+{l^2}\frac{{{\partial ^3}{\psi _x}}}{{\partial {x^3}}}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}{\psi _x}}}{{\partial x\partial {\theta ^2}}}} \right) \\ & \quad +\,\frac{{{A_{22}}}}{R}\left( { - \,\frac{1}{R}\frac{{\partial v}}{{\partial \theta }} - \frac{w}{R}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}v}}{{\partial {x^2}\partial \theta }}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^2}w}}{{\partial {x^2}}}+\frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}v}}{{\partial {\theta ^3}}}+\frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^2}w}}{{\partial {\theta ^2}}}} \right) \\ & \quad +\,\frac{{{B_{22}}}}{R}\left( { - \,\frac{1}{R}\frac{{\partial {\psi _\theta }}}{{\partial \theta }}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}{\psi _\theta }}}{{\partial {x^2}\partial \theta }}+\frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}{\psi _\theta }}}{{\partial {\theta ^3}}}} \right) - N_{1}^{{\text{T}}}\left( {\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right) \\ & \quad +\,{K_{\text{s}}}{A_{55}}\left( {\frac{{\partial {\psi _x}}}{{\partial x}} - \frac{{{\partial ^2}w}}{{\partial {x^2}}} - {l^2}\frac{{{\partial ^3}{\psi _x}}}{{\partial {x^3}}} - {l^2}\frac{{{\partial ^4}w}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}{\psi _x}}}{{\partial x\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}w}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad +\,\frac{{{K_{\text{s}}}{A_{44}}}}{R}\left( {\frac{{\partial {\psi _\theta }}}{{\partial \theta }} - \frac{1}{R}\frac{{{\partial ^2}w}}{{\partial {\theta ^2}}} - \frac{1}{R}\frac{{\partial v}}{{\partial \theta }} - {l^2}\frac{{{\partial ^3}{\psi _\theta }}}{{\partial {x^2}\partial \theta }} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}w}}{{\partial {x^2}\partial {\theta ^2}}}+\frac{{{l^2}}}{R}\frac{{{\partial ^3}v}}{{\partial {x^2}\partial \theta }}} \right. \\ & \quad - \,\left. {\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}{\psi _\theta }}}{{\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}w}}{{\partial {\theta ^4}}}+\frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}v}}{{\partial {\theta ^3}}}} \right)=(1 - {\mu ^2}{\nabla ^2})\left( {{I_0}\left( {\frac{{{\partial ^2}w}}{{\partial {t^2}}}} \right)} \right), \\ \end{aligned}$$
(31)
$$\begin{aligned} \delta {\psi _x}{\text{:}}\,{B_{11}}\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}} - {l^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}u}}{{\partial {x^2}\partial {\theta ^2}}}} \right)+{D_{11}}\left( {\frac{{{\partial ^2}{\psi _x}}}{{\partial {x^2}}} - {l^2}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad +\,{B_{12}}\left( {\frac{1}{R}\frac{{{\partial ^2}v}}{{\partial x\partial \theta }}+\frac{1}{R}\frac{{\partial w}}{{\partial x}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}w}}{{\partial {x^3}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}v}}{{\partial x\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}w}}{{\partial x\partial {\theta ^2}}}} \right) \\ & \quad +\,{D_{12}}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial x\partial \theta }}+\frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{B_{66}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}u}}{{\partial {\theta ^2}}}+\frac{{{\partial ^2}v}}{{\partial x\partial \theta }} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}u}}{{\partial {x^2}\partial {\theta ^2}}} - {l^2}\frac{{{\partial ^4}v}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}u}}{{\partial {\theta ^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{D_{66}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _x}}}{{\partial {\theta ^2}}}+\frac{{{\partial ^2}{\psi _\theta }}}{{\partial x\partial \theta }} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^2}\partial {\theta ^2}}} - {l^2}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial {\theta ^4}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad - \,{K_s}{A_{55}}\left( {{\psi _x}+\frac{{\partial w}}{{\partial x}} - {l^2}\frac{{{\partial ^2}{\psi _x}}}{{\partial {x^2}}} - {l^2}\frac{{{\partial ^3}w}}{{\partial {x^3}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^2}{\psi _x}}}{{\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}w}}{{\partial x\partial {\theta ^2}}}} \right) \\ & \quad =\,(1 - {\mu ^2}{\nabla ^2})\left( {{I_1}\frac{{{\partial ^2}u}}{{\partial {t^2}}}+{I_2}\frac{{{\partial ^2}{\psi _x}}}{{\partial {t^2}}}} \right), \\ \end{aligned}$$
(32)
$$\begin{aligned} \delta {\psi _\theta }{\text{:}}\,\frac{{{B_{12}}}}{R}\left( {\frac{{{\partial ^2}u}}{{\partial x\partial \theta }} - {l^2}\frac{{{\partial ^4}u}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}u}}{{\partial x\partial {\theta ^3}}}} \right)+\frac{{{D_{12}}}}{R}\left( {\frac{{{\partial ^2}{\psi _x}}}{{\partial x\partial \theta }} - {l^2}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^3}\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial x\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{B_{22}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}v}}{{\partial {\theta ^2}}} - \frac{1}{R}\frac{{\partial w}}{{\partial \theta }} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial {x^2}\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^3}w}}{{\partial {x^2}\partial \theta }} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}v}}{{\partial {\theta ^4}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}w}}{{\partial {\theta ^3}}}} \right) \\ & \quad +\,\frac{{{D_{22}}}}{R}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {\theta ^2}}} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^2}\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {\theta ^4}}}} \right) \\ & \quad +\,{B_{66}}\left( {\frac{1}{R}\frac{{{\partial ^2}u}}{{\partial x\partial \theta }} - \frac{{{\partial ^2}v}}{{\partial {x^2}}} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}u}}{{\partial {x^3}\partial \theta }} - {l^2}\frac{{{\partial ^4}v}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}u}}{{\partial x\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}v}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad +\,{D_{66}}\left( {\frac{1}{R}\frac{{{\partial ^2}{\psi _x}}}{{\partial x\partial \theta }} - \frac{{{\partial ^2}{\psi _\theta }}}{{\partial {x^2}}} - \frac{{{l^2}}}{R}\frac{{{\partial ^4}{\psi _x}}}{{\partial {x^3}\partial \theta }} - {l^2}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^4}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^4}{\psi _x}}}{{\partial x\partial {\theta ^3}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^4}{\psi _\theta }}}{{\partial {x^2}\partial {\theta ^2}}}} \right) \\ & \quad - \,{K_{\text{s}}}{A_{44}}\left( {{\psi _\theta }+\frac{1}{R}\frac{{\partial w}}{{\partial \theta }} - \frac{v}{R} - {l^2}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {x^2}}} - \frac{{{l^2}}}{R}\frac{{{\partial ^3}w}}{{\partial {x^2}\partial \theta }}+\frac{{{l^2}}}{R}\frac{{{\partial ^2}v}}{{\partial {x^2}}} - \frac{{{l^2}}}{{{R^2}}}\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {\theta ^2}}} - \frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^3}w}}{{\partial {\theta ^3}}}} \right. \\ & \quad +\,\left. {\frac{{{l^2}}}{{{R^3}}}\frac{{{\partial ^2}v}}{{\partial {\theta ^2}}}} \right)=(1 - {\mu ^2}{\nabla ^2})\left[ {{I_1}\left( {\frac{{{\partial ^2}v}}{{\partial {t^2}}}} \right)+{I_2}\left( {\frac{{{\partial ^2}{\psi _\theta }}}{{\partial {t^2}}}} \right)} \right], \\ \end{aligned}$$
(33)

where the defined parameter in Eqs. (29)–(33) are described as:

$$\begin{aligned} & \left\{ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{22}}}&{{A_{66}}}&{{A_{44}}}&{{A_{55}}} \end{array}} \right\}=\int\limits_{{ - h/2}}^{{h/2}} {\left\{ {\begin{array}{*{20}{c}} {{C_{11}}}&{{C_{12}}}&{{C_{22}}}&{{C_{66}}}&{{C_{44}}}&{{C_{55}}} \end{array}} \right\}} {\text{d}}z \\ & \left\{ {\begin{array}{*{20}{c}} {{B_{11}}}&{{B_{12}}}&{{B_{22}}}&{{B_{66}}} \end{array}} \right\}=\int\limits_{{ - h/2}}^{{h/2}} {\left\{ {\begin{array}{*{20}{c}} {{C_{11}}}&{{C_{12}}}&{{C_{22}}}&{{C_{66}}} \end{array}} \right\}} z{\text{d}}z \\ & \left\{ {\begin{array}{*{20}{c}} {{D_{11}}}&{{D_{12}}}&{{D_{22}}}&{{D_{66}}} \end{array}} \right\}=\int\limits_{{ - h/2}}^{{h/2}} {\left\{ {\begin{array}{*{20}{c}} {{C_{11}}}&{{C_{12}}}&{{C_{22}}}&{{C_{66}}} \end{array}} \right\}} {z^2}{\text{d}}z \\ & \left\{ {\begin{array}{*{20}{c}} {{I_0}}&{{I_1}}&{{I_2}} \end{array}} \right\}=\int\limits_{{ - h/2}}^{{h/2}} {\rho (z,T)\left\{ {\begin{array}{*{20}{c}} 1&z&{{z^2}} \end{array}} \right\}} z{\text{d}}z. \\ \end{aligned}$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Habibi, M. & Safarpour, H. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Engineering with Computers 35, 1375–1389 (2019). https://doi.org/10.1007/s00366-018-0669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0669-4

Keywords

Navigation