Skip to main content
Log in

Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this research, thermal vibration analysis of a graphene oxide powder-reinforced (GOPR) nanocomposite embedded plate is carried out once the plate is exposed to different types of thermal loading. The plate is reinforced with various functionally graded (FG) distributions through the thickness, namely uniform, X, V, and O in a comparative way to find out the most efficient model of GOPs’ distribution for the purpose of improving vibrational behaviors of the structure. Also, the Halpin–Tsai micromechanical model is employed to describe the material properties of an FG nanocomposite plate. The shear deformation effects are taken into account using a refined higher order shear deformation plate theory. Moreover, the governing equations of the structure have been derived using Hamilton’s principle and then solved analytically for a simply supported GOPR nanocomposite plate. Besides, detailed parametric studies are procured to show the influences of different variants on the natural frequency of the nanocomposite plates. Presented results reveal that the frequency responses of the nanocomposite plates in a thermal environment dramatically depend on the distribution pattern of the GOPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdelaziz HH, Meziane MAA, Bousahla AA et al (2017) An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos Struct 25:693–704

    Google Scholar 

  2. Abualnour M, Houari MSA, Tounsi A et al (2018) A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates. Compos Struct 184:688–697

    Article  Google Scholar 

  3. Ahouel M, Houari MSA, Bedia E et al (2016) Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos Struct 20:963–981

    Article  Google Scholar 

  4. Anlas G, Göker G (2001) Vibration analysis of skew fibre-reinforced composite laminated plates. J Sound Vib 242:265–276

    Article  Google Scholar 

  5. Arani AG, Maghamikia S, Mohammadimehr M et al (2011) Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods. J Mech Sci Technol 25:809–820

    Article  Google Scholar 

  6. Bakhadda B, Bouiadjra MB, Bourada F et al (2018) Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation. Wind Struct 27:311–324

    Google Scholar 

  7. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  8. Barati MR, Zenkour AM (2017) Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos Struct 181:194–202

    Article  Google Scholar 

  9. Belabed Z, Bousahla AA, Houari MSA et al (2018) A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthq Struct 14:103–115

    Google Scholar 

  10. Belkorissat I, Houari MSA, Tounsi A et al (2015) On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos Struct 18:1063–1081

    Article  Google Scholar 

  11. Bouadi A, Bousahla AA, Houari MSA et al (2018) A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv Nano Res 6:147–162

    Google Scholar 

  12. Bouderba B, Houari MSA, Tounsi A et al (2016) Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Struct Eng Mech 58:397–422

    Article  Google Scholar 

  13. Bouhadra A, Tounsi A, Bousahla AA et al (2018) Improved HSDT accounting for effect of thickness stretching in advanced composite plates. Struct Eng Mech 66:61–73

    Google Scholar 

  14. Boukhari A, Atmane HA, Tounsi A et al (2016) An efficient shear deformation theory for wave propagation of functionally graded material plates. Struct Eng Mech 57:837–859

    Article  Google Scholar 

  15. Bousahla AA, Benyoucef S, Tounsi A et al (2016) On thermal stability of plates with functionally graded coefficient of thermal expansion. Struct Eng Mech 60:313–335

    Article  Google Scholar 

  16. Cai W, Moore AL, Zhu Y et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10:1645–1651

    Article  Google Scholar 

  17. Civalek Ö (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos Part B Eng 111:45–59

    Article  Google Scholar 

  18. Demir Ç, Mercan K, Civalek Ö (2016) Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel. Compos Part B Eng 94:1–10

    Article  Google Scholar 

  19. Ebrahimi F (2013) Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment. Mech Adv Mater Struct 20:854–870

    Article  Google Scholar 

  20. Ebrahimi F, Barati MR (2018) Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory. Compos Struct 185:241–253

    Article  Google Scholar 

  21. Ebrahimi F, Dabbagh A (2018) On wave dispersion characteristics of double-layered graphene sheets in thermal environments. J Electromagn Waves Appl 32:1869–1888

    Article  Google Scholar 

  22. Ebrahimi F, Dabbagh A (2018) Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates. Eur Phys J Plus 133:151

    Article  Google Scholar 

  23. Ebrahimi F, Farazmandnia N (2017) Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory. Mech Adv Mater Struct 24:820–829

    Article  Google Scholar 

  24. Ebrahimi F, Habibi M, Safarpour H (2018) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 2018:1–15

    Google Scholar 

  25. Ebrahimi F, Rostami P (2018) Wave propagation analysis of carbon nanotube reinforced composite beams. Eur Phys J Plus 133:285

    Article  Google Scholar 

  26. El-Haina F, Bakora A, Bousahla AA et al (2017) A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech 63:585–595

    Google Scholar 

  27. Formica G, Lacarbonara W, Alessi R (2010) Vibrations of carbon nanotube-reinforced composites. J Sound Vib 329:1875–1889

    Article  Google Scholar 

  28. García-Macías E, Rodriguez-Tembleque L, Sáez A (2018) Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos Struct 186:123–138

    Article  Google Scholar 

  29. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049

    Article  Google Scholar 

  30. Kaci A, Houari MSA, Bousahla AA et al (2018) Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory. Struct Eng Mech 65:621–631

    Google Scholar 

  31. Kant T, Babu C (2000) Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Compos Struct 49:77–85

    Article  Google Scholar 

  32. Lei Z, Liew K, Yu J (2013) Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos Struct 98:160–168

    Article  MATH  Google Scholar 

  33. Liew K, Lei Z, Yu J et al (2014) Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput Methods Appl Mech Eng 268:1–17

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu G, Chen X, Reddy J (2002) Buckling of symmetrically laminated composite plates using the element-free Galerkin method. Int J Struct Stab Dyn 2:281–294

    Article  MATH  Google Scholar 

  35. Menasria A, Bouhadra A, Tounsi A et al (2017) A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Compos Struct 25:157–175

    Google Scholar 

  36. Mercan K, Civalek Ö (2016) DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct 143:300–309

    Article  Google Scholar 

  37. Mercan K, Civalek Ö (2017) Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos Part B Eng 114:34–45

    Article  Google Scholar 

  38. Mikoushkin V, Shnitov V, Nikonov SY et al (2011) Controlling graphite oxide bandgap width by reduction in hydrogen. Tech Phys Lett 37:942

    Article  Google Scholar 

  39. Mokhtar Y, Heireche H, Bousahla AA et al (2018) A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct Syst 21:397–405

    Google Scholar 

  40. Potts JR, Dreyer DR, Bielawski CW et al (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  41. Qiao P, Zou G, Davalos JF (2003) Flexural–torsional buckling of fiber-reinforced plastic composite cantilever I-beams. Compos Struct 60:205–217

    Article  Google Scholar 

  42. Shan L, Qiao P (2005) Flexural–torsional buckling of fiber-reinforced plastic composite open channel beams. Compos Struct 68:211–224

    Article  Google Scholar 

  43. Shariyat M (2010) A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int J Mech Sci 52:495–514

    Article  Google Scholar 

  44. Shen H-S, Xiang Y (2012) Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput Methods Appl Mech Eng 213:196–205

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen H-S, Xiang Y, Lin F (2017) Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos Struct 170:80–90

    Article  Google Scholar 

  46. Shen H-S, Xiang Y, Lin F (2017) Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput Methods Appl Mech Eng 319:175–193

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen H-S, Zhang C-L (2010) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Des 31:3403–3411

    Article  Google Scholar 

  48. Shojaee S, Valizadeh N, Izadpanah E et al (2012) Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method. Compos Struct 94:1677–1693

    Article  Google Scholar 

  49. Sobhani A, Saeedifar M, Najafabadi MA et al (2018) The study of buckling and post-buckling behavior of laminated composites consisting multiple delaminations using acoustic emission. Thin Wall Struct 127:145–156

    Article  Google Scholar 

  50. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Article  Google Scholar 

  51. Song M, Yang J, Kitipornchai S (2018) Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Part B Eng 134:106–113

    Article  Google Scholar 

  52. Suk JW, Piner RD, An J et al (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4:6557–6564

    Article  Google Scholar 

  53. Thai CH, Nguyen-Xuan H, Nguyen-Thanh N et al (2012) Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int J Numer Methods Eng 91:571–603

    Article  MathSciNet  MATH  Google Scholar 

  54. Tornabene F, Fantuzzi N, Viola E et al (2014) Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Compos Struct 107:675–697

    Article  Google Scholar 

  55. Urthaler Y, Reddy J (2008) A mixed finite element for the nonlinear bending analysis of laminated composite plates based on FSDT. Mech Adv Mater Struct 15:335–354

    Article  Google Scholar 

  56. Van Es M (2001) Polymer-clay nanocomposites. PhD Thesis, Delft

  57. Wang Q, Shi D, Liang Q et al (2017) Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints. Appl Math Model 46:227–262

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang Z-X, Shen H-S (2011) Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput Mater Sci 50:2319–2330

    Article  Google Scholar 

  59. Wattanasakulpong N, Ungbhakorn V (2013) Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput Mater Sci 71:201–208

    Article  Google Scholar 

  60. Wu H, Yang J, Kitipornchai S (2016) Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos Part B Eng 90:86–96

    Article  Google Scholar 

  61. Yang J, Wu H, Kitipornchai S (2017) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Article  Google Scholar 

  62. Yas M, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128

    Article  Google Scholar 

  63. Yazid M, Heireche H, Tounsi A et al (2018) A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct Syst 21:15–25

    Google Scholar 

  64. Zaoui FZ, Ouinas D, Tounsi A (2019) New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos Part B Eng 159:231–247

    Article  Google Scholar 

  65. Zhang L, Lei Z, Liew K (2015) Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos Struct 122:172–183

    Article  Google Scholar 

  66. Zhang Z, Li Y, Wu H et al (2018) Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mech Adv Mater Struct 2018:1–9

    Article  Google Scholar 

  67. Zhao Z, Feng C, Wang Y et al (2017) Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos Struct 180:799–808

    Article  Google Scholar 

  68. Zhen W, Wanji C (2006) Free vibration of laminated composite and sandwich plates using global–local higher-order theory. J Sound Vib 298:333–349

    Article  Google Scholar 

  69. Zhu P, Lei Z, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Nouraei, M. & Dabbagh, A. Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Engineering with Computers 36, 879–895 (2020). https://doi.org/10.1007/s00366-019-00737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00737-w

Keywords

Navigation