Skip to main content
Log in

An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, a new computational approach for determination of the bond strength of fibre reinforced polymer (FRP) strip-to-concrete joints is presented based on adaptive neuro–fuzzy inference system (ANFIS). For this purpose, 150 experimental data were gathered from the literature. The number of 120 data was used to train the system, and the other 30 were applied to the test. Six parameters including the compressive strength of the concrete, width of the concrete prism, FRP thickness, FRP modulus of elasticity, FRP bond length and FRP width were utilized to determine the bond strength. The results of the proposed ANFIS show high accuracy in the model. A comparison study with other published equations was also done, and it was concluded that ANFIS had less error and also had better results in comparison with other existing methods. Finally, a sensitivity analysis was done to investigate the relative importance of each input parameter on the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Naderpour H, Mirrashid M (2015) Application of soft computing to reinforced concrete beams strengthened with fibre reinforced polymers: a state-of-the-art review. Computational techniques for civil and structural engineering, vol 38. Saxe-Coburg Publications, Stirlingshire, pp 305–323

    Chapter  Google Scholar 

  2. Li L, Guo Y, Liu F (2008) Test analysis for FRC beams strengthened with externally bonded FRP sheets. Constr Build Mater 22(3):315–323. https://doi.org/10.1016/j.conbuildmat.2006.08.016

    Article  Google Scholar 

  3. Maalej M, Goh W, Paramasivam P (2001) Analysis and design of FRP externally-reinforced concrete beams against debonding-type failures. Mater Struct 34(7):418–425. https://doi.org/10.1007/BF02482288

    Article  Google Scholar 

  4. Gunes O, Buyukozturk O, Karaca E (2009) A fracture-based model for FRP de-bonding in strengthened beams. Eng Fract Mech 76(12):1897–1909. https://doi.org/10.1016/j.engfracmech.2009.04.011

    Article  Google Scholar 

  5. Patel MR, Tank TG, Vasanwala SA, Modhera CD (2015) Assessment of debonding load for RC beam strengthened with pre-designed CFRP strip mechanism. In: Matsagar V (ed) Advances in structural engineering. Springer, New Delhi, pp 1971–1985

    Chapter  Google Scholar 

  6. Toutanji H, Ortiz G (2001) The effect of surface preparation on the bond interface between FRP sheets and concrete members. Compos Struct 53(4):457–462. https://doi.org/10.1016/S0263-8223(01)00057-5

    Article  Google Scholar 

  7. Chen JF, Teng J (2001) Anchorage strength models for FRP and steel plates bonded to concrete. J Struct Eng 127(7):784–791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784)

    Article  Google Scholar 

  8. Lu X, Teng J, Ye L, Jiang J (2005) Bond–slip models for FRP sheets/plates bonded to concrete. Eng Struct 27(6):920–937. https://doi.org/10.1016/j.engstruct.2005.01.014

    Article  Google Scholar 

  9. Diab HM, Farghal OA (2014) Bond strength and effective bond length of FRP sheets/plates bonded to concrete considering the type of adhesive layer. Compos Part B 58:618–624. https://doi.org/10.1016/j.compositesb.2013.10.075

    Article  Google Scholar 

  10. Niu H, Wu Z (2006) Effects of FRP–concrete interface bond properties on the performance of RC beams strengthened in flexure with externally bonded FRP sheets. J Mater Civil Eng 18(5):723–731. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:5(723)

    Article  Google Scholar 

  11. Sharma S, Ali MM, Goldar D, Sikdar P (2006) Plate–concrete interfacial bond strength of FRP and metallic plated concrete specimens. Compos Part B 37(1):54–63. https://doi.org/10.1016/j.compositesb.2005.05.011

    Article  Google Scholar 

  12. Ko H, Sato Y (2007) Bond stress–slip relationship between FRP sheet and concrete under cyclic load. J Compos Constr 11(4):419–426. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(419)

    Article  Google Scholar 

  13. Dai J, Ueda T, Sato Y (2007) Bonding characteristics of fibre-reinforced polymer sheet–concrete interfaces under dowel load. J Compos Constr 11(2):138–148. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(138)

    Article  Google Scholar 

  14. Seracino R, Jones NM, Ali M, Page MW, Oehlers DJ (2007) Bond strength of near-surface mounted FRP strip-to-concrete joints. J Compos Constr 11(4):401–409. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(401)

    Article  Google Scholar 

  15. Wu Z, Islam S, Said H (2009) A three-parameter bond strength model for FRP–concrete interface. J Reinf Plast Compos 28(19):2309–2323. https://doi.org/10.1177/0731684408091961

    Article  Google Scholar 

  16. Wu Y, Zhou Z, Yang Q, Chen W (2010) On shear bond strength of FRP–concrete structures. Eng Struct 32(3):897–905. https://doi.org/10.1016/j.engstruct.2009.12.017

    Article  Google Scholar 

  17. Wang F, Li M, Hu S (2014) Bond behavior of roughing FRP sheet bonded to concrete substrate. Constr Build Mater 73:145–152. https://doi.org/10.1016/j.conbuildmat.2014.09.057

    Article  Google Scholar 

  18. Tong GS, Chen SS (2014) Prediction bond strength between FRP and concrete interface by LEFM method. In: Advanced materials research, vol 988. Trans Tech Publications, pp 195–200

  19. Abbass MM, Matsagar V, Nagpal A (2015) Bond-slip response of FRP sheets or plates bonded to reinforced concrete beam under dynamic loading. In: Matsagar V (ed) Advances in structural engineering. Springer, New Delhi, pp 1959–1969

    Chapter  Google Scholar 

  20. Woo S-K, Lee Y (2010) Experimental study on interfacial behavior of CFRP-bonded concrete. KSCE J Civil Eng 14(3):385–393. https://doi.org/10.1007/s12205-010-0385-0

    Article  Google Scholar 

  21. Zhou Y-W, Wu Y-F, Yun Y (2010) Analytical modeling of the bond–slip relationship at FRP–concrete interfaces for adhesively-bonded joints. Compos Part B Eng 41(6):423–433. https://doi.org/10.1016/j.compositesb.2010.06.004

    Article  Google Scholar 

  22. Pan J, Xu Z, Leung C, Li Z (2012) Analytical and numerical modelling of FRP debonding from concrete substrate under pure shearing. J Wuhan Univ Technol Mater Sci Ed 27(1):142–148. https://doi.org/10.1007/s11595-012-0425-3

    Article  Google Scholar 

  23. Huang JL, Huang PY, Li ZW, Zheng XH (2011) Prediction of bond strength of FRP–concrete based on multiple linear regression method. In: Advanced materials research, vol 163. Trans Tech Publications, pp 3623–3628

  24. Bhatti AQ, Kishi N (2012) Control of FRP debonding in strengthened RC beams. Arab J Sci Eng 37(8):2103–2112. https://doi.org/10.1007/s13369-012-0304-4

    Article  Google Scholar 

  25. Naderpour H, Mirrashid M (2017) Compressive strength of mortars admixed with wollastonite and microsilica. Mater Sci Forum 890:415–418. https://doi.org/10.4028/www.scientific.net/MSF.890.415

    Article  Google Scholar 

  26. Naderpour H, Mirrashid M (2018) An innovative approach for compressive strength estimation of mortars having calcium inosilicate minerals. J Build Eng 19:205–215. https://doi.org/10.1016/j.jobe.2018.05.012

    Article  Google Scholar 

  27. Mashrei MA, Seracino R, Rahman M (2013) Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr Build Mater 40:812–821. https://doi.org/10.1016/j.conbuildmat.2012.11.109

    Article  Google Scholar 

  28. Wu Y-F, Jiang C (2013) Quantification of bond–slip relationship for externally bonded FRP-to-concrete joints. J Compos Constr 17(5):673–686. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000375

    Article  MathSciNet  Google Scholar 

  29. Abdellahi M, Heidari J, Bahmanpour M (2014) A new predictive model for the bond strength of FRP-to-concrete composite joints. Struct Concr 15(4):509–521

    Article  Google Scholar 

  30. Shen D, Shi H, Ji Y, Yin F (2015) Strain rate effect on effective bond length of basalt FRP sheet bonded to concrete. Constr Build Mater 82:206–218. https://doi.org/10.1016/j.conbuildmat.2015.02.016

    Article  Google Scholar 

  31. Biscaia HC, Chastre C, Silva MA (2015) bond–slip model for FRP-to-concrete bonded joints under external compression. Compos Part B Eng 80:246–259. https://doi.org/10.1016/j.compositesb.2015.06.004

    Article  Google Scholar 

  32. Shen D, Ji Y, Yin F, Zhang J (2015) Dynamic bond stress–slip relationship between basalt FRP sheet and concrete under initial static loading. J Compos Constr 19(6):04015012. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000568

    Article  Google Scholar 

  33. Colotti V (2016) Effectiveness factors for bond strength in FRP shear-strengthened RC beams. Mater Struct 49(12):5031–5049. https://doi.org/10.1617/s11527-016-0842-4

    Article  Google Scholar 

  34. Irshidat MR, Al-Saleh MH (2016) Effect of using carbon nanotube modified epoxy on bond–slip behavior between concrete and FRP sheets. Constr Build Mater 105:511–518. https://doi.org/10.1016/j.conbuildmat.2015.12.183

    Article  Google Scholar 

  35. Mohamed OA, Khattab R (2016) Bond–slip modelling of FRP sheets externally bonded to concrete beam. Procedia Eng 161:833–838

    Article  Google Scholar 

  36. Gusheng T, Songtao X (2016) The multiple nonlinear regression to predict the bond strength of FRP-to-concrete joints. Paper presented at the international conference on materials, energy and environment, China,

  37. Nauck D, Klawonn F, Kruse R (1997) Foundations of neuro–fuzzy systems. Wiley, New York

    MATH  Google Scholar 

  38. Naderpour H, Mirrashid M (2019) Shear failure capacity prediction of concrete beam–column joints in terms of ANFIS and GMDH. Pract Period Struct Design Constr. https://doi.org/10.1061/(asce)sc.1943-5576.0000417

    Article  Google Scholar 

  39. Naderpour H, Mirrashid M (2018) Shear strength prediction of RC beams using adaptive neuro–fuzzy inference system. Sci Iran. https://doi.org/10.24200/sci.2018.50308.1624

    Article  Google Scholar 

  40. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  41. Chajes MJ, Finch WW, Januszka TF, Thomson TA (1996) Bond and force transfer of composite material plates bonded to concrete. ACI Struct J 93(2):208–217

    Google Scholar 

  42. Takeo K, Matsushita H, Makizumi T, Nagashima G (1997) Bond characteristics of CFRP sheets in the CFRP bonding technique. Proc Jpn Concr Inst 19(2):1599–1604

    Google Scholar 

  43. Zhao H, Zhang Y, Zhao M (2000) Research on the bond performance between CFRP plate and concrete. In: Proc. 1st Conf. on FRP concrete structures of China, pp 247–253

  44. Ren H (2003) Study on basic theories and long time behavior of concrete structures strengthened by fibre reinforced polymers. Graduation thesis, Dalian Univ of Technology, Dalian, China (in Chinese)

  45. Yao J, Teng J, Chen JF (2005) Experimental study on FRP-to-concrete bonded joints. Compos Part B Eng 36(2):99–113. https://doi.org/10.1016/j.compositesb.2004.06.001

    Article  Google Scholar 

  46. Toutanji H, Saxena P, Zhao L, Ooi T (2007) Prediction of interfacial bond failure of FRP–concrete surface. J Compos Constr 11(4):427–436. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(427)

    Article  Google Scholar 

  47. Mirrashid M (2014) Earthquake magnitude prediction by adaptive neuro–fuzzy inference system (ANFIS) based on fuzzy C-means algorithm. Nat Hazards 74(3):1577–1593. https://doi.org/10.1007/s11069-014-1264-7

    Article  Google Scholar 

  48. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  49. Dai J, Ueda T, Sato Y (2005) Development of the nonlinear bond stress–slip model of fibre reinforced plastics sheet–concrete interfaces with a simple method. J Compos Constr 9(1):52–62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Naderpour.

Ethics declarations

Conflict of interests

The authors do not have any conflict of interests.

Data availability

The processed data required to reproduce these findings are available in the body of the article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

 

\(b_{c}\)(mm)

\(f_{\text{c}}^{\prime }\) (MPa)

\(b_{\text{f}}\) (mm)

\(t_{\text{f}}\) (mm)

\(E_{\text{f}}\) (GPa)

L (mm)

\(P_{\text{u}}\) (kN)

Using type

Chajes et al. [3]

228.2

36.1

25.4

1.02

106

76.2

8.46

Train

228.2

47.1

25.4

1.02

106

76.2

10.4

Test

228.2

43.6

25.4

1.02

106

76.2

10.62

Test

228.2

24.1

25.4

1.02

106

76.2

9.87

Test

228.2

28.9

25.4

1.02

106

76.2

9.34

Train

228.2

36.4

25.4

1.02

106

50.8

8.09

Train

228.2

36.4

25.4

1.02

106

101.6

12.81

Train

152.4

36.4

25.4

1.02

106

152.4

11.92

Train

152.4

36.4

25.4

1.02

106

203.2

11.57

Train

Takeo et al. [4]

100

28.88

40

0.17

230

100

8.75

Train

100

26.66

40

0.17

230

100

8.85

Test

100

28.88

40

0.17

230

200

9.30

Train

100

26.66

40

0.17

230

200

8.50

Train

100

28.88

40

0.17

230

300

9.30

Train

100

26.66

40

0.17

230

300

8.30

Train

100

24.99

40

0.17

230

100

8.80

Train

100

26.17

40

0.17

230

100

8.41

Train

100

24.4

40

0.17

230

100

7.89

Train

100

24.99

40

0.33

230

100

11.4

Test

100

24.99

40

0.5

230

100

13.5

Test

100

24.4

40

0.17

230

100

11.23

Train

100

49.97

40

0.17

230

100

7.9

Train

100

24.99

40

0.11

230

100

7.7

Test

100

26.17

40

0.11

230

100

6.95

Train

Zhao et al. [5]

150

16

100

0.08

240

100

11.0

Train

150

16

100

0.08

240

150

11.25

Train

150

28.63

100

0.08

240

100

12.5

Train

150

28.63

100

0.08

240

150

12.5

Train

Ren [6]

150

22.39

20

0.51

83.03

150

5.81

Train

150

22.39

50

0.51

83.03

150

10.6

Train

150

22.39

80

0.51

83.03

150

18.23

Test

150

35.33

20

0.51

83.03

100

4.63

Test

150

35.33

20

0.51

83.03

150

5.77

Train

150

35.33

50

0.51

83.03

60

9.42

Train

150

35.33

50

0.51

83.03

100

11.03

Train

150

35.33

50

0.51

83.03

150

11.8

Train

150

35.33

80

0.51

83.03

100

14.65

Train

150

35.33

80

0.51

83.03

150

16.44

Train

150

43.29

20

0.51

83.03

100

5.99

Train

150

43.29

20

0.51

83.03

150

5.9

Test

150

43.29

50

0.51

83.03

100

9.84

Train

150

43.29

50

0.51

83.03

150

12.28

Train

150

43.29

80

0.51

83.03

100

14.02

Test

150

43.29

80

0.51

83.03

150

16.71

Test

150

22.39

20

0.33

207

150

5.48

Train

150

22.39

50

0.33

207

150

10.02

Train

150

22.39

80

0.33

207

150

19.27

Train

150

35.33

20

0.33

207

100

5.54

Test

150

35.33

20

0.33

207

150

4.61

Train

150

35.33

50

0.33

207

100

11.08

Train

150

43.29

20

0.33

207

100

5.78

Train

150

43.29

50

0.33

207

100

12.95

Test

150

43.29

50

0.33

207

150

16.72

Train

150

43.29

80

0.33

207

100

16.24

Train

150

43.29

80

0.33

207

150

22.8

Train

Yao et al. [7]

150

23

25

0.17

256

75

5.24

Train

150

23

25

0.17

256

85

5.85

Train

150

23

25

0.17

256

95

6

Train

150

23

25

0.17

256

115

6.08

Train

150

23

25

0.17

256

145

6.11

Test

150

23

25

0.17

256

190

6.69

Train

150

27.1

25

0.17

256

100

5.94

Train

150

27.1

50

0.17

256

100

11.66

Train

150

27.1

75

0.17

256

100

14.63

Train

150

27.1

100

0.17

256

100

19.07

Train

150

18.9

25

0.17

256

95

5.64

Train

150

19.8

25

0.17

256

95

6.10

Train

150

21.1

15

0.17

256

95

4.11

Train

150

21.1

25

0.17

256

95

6.26

Train

150

21.1

50

0.17

256

95

12.22

Train

150

21.1

75

0.17

256

95

14.29

Train

150

21.1

100

0.17

256

95

15.58

Train

150

24.9

25

0.17

256

95

6.71

Train

150

24.9

25

0.17

256

145

6.91

Train

150

24.9

25

0.17

256

190

7.26

Train

150

24.9

25

0.17

256

240

6.7

Test

Sharma et al. [8]

100

29.7

50

1.2

165

100

18.25

Train

100

29.7

50

1.2

165

130

24.5

Train

100

29.7

50

1.2

165

150

28.44

Test

100

29.7

50

1.2

165

175

32.00

Test

100

29.7

50

1.2

165

200

34.22

Train

100

29.7

50

1.2

165

250

33.14

Train

100

29.7

50

1.2

165

300

34.24

Train

100

35.8

50

1.2

210

150

30.40

Test

100

35.8

50

1.2

210

180

34

Train

100

35.8

50

1.2

210

190

36

Train

100

35.8

50

1.2

210

200

36.02

Test

100

35.8

50

1.2

210

230

37.02

Train

100

35.8

50

1.2

210

255

36.8

Train

100

29.7

50

1.2

300

160

38.02

Train

100

29.7

50

1.2

300

180

41.15

Train

100

29.7

50

1.2

300

200

46.35

Train

100

29.7

50

1.2

300

250

45.5

Test

100

29.7

50

1.2

300

300

45.95

Test

Toutanji et al. [9]

200

17

50

0.42

110

100

7.56

Train

200

17

50

0.66

110

100

9.29

Train

Woo and Yun [10]

200

30

10

1.4

152.2

50

5.15

Test

200

30

10

1.4

152.2

100

7.55

Train

200

30

10

1.4

152.2

150

7.7

Train

200

30

10

1.4

152.2

200

7.9

Train

200

30

10

1.4

152.2

250

6.25

Train

200

30

10

1.4

152.2

300

7.58

Train

200

40

10

1.4

152.2

50

5.1

Train

200

40

10

1.4

152.2

100

6.85

Train

200

40

10

1.4

152.2

150

6.35

Test

200

40

10

1.4

152.2

200

6.95

Train

200

40

10

1.4

152.2

250

6.8

Train

200

40

10

1.4

152.2

300

6.4

Train

200

50

10

1.4

152.2

50

4.55

Train

200

50

10

1.4

152.2

100

7.1

Train

200

50

10

1.4

152.2

150

7.78

Train

200

50

10

1.4

152.2

200

7.65

Test

200

50

10

1.4

152.2

250

6.8

Train

200

50

10

1.4

152.2

300

7.25

Train

200

30

30

1.4

152.2

50

9.3

Test

200

30

30

1.4

152.2

100

16.25

Test

200

30

30

1.4

152.2

150

16.2

Train

200

30

30

1.4

152.2

200

22.1

Train

200

30

30

1.4

152.2

250

15.6

Train

200

30

30

1.4

152.2

300

15.85

Train

200

40

30

1.4

152.2

50

9.15

Train

200

40

30

1.4

152.2

100

14.9

Train

200

40

30

1.4

152.2

150

16.05

Train

200

40

30

1.4

152.2

200

16.15

Train

200

40

30

1.4

152.2

250

16.11

Train

200

40

30

1.4

152.2

300

16.9

Train

200

50

30

1.4

152.2

50

9.2

Train

200

50

30

1.4

152.2

100

17.8

Train

200

50

30

1.4

152.2

150

15.22

Train

200

50

30

1.4

152.2

200

18.5

Train

200

50

30

1.4

152.2

250

19

Train

200

50

30

1.4

152.2

300

17.73

Train

200

30

50

1.4

152.2

50

13.3

Train

200

30

50

1.4

152.2

100

26

Train

200

30

50

1.4

152.2

150

27.8

Test

200

30

50

1.4

152.2

200

27.2

Train

200

30

50

1.4

152.2

250

24.84

Train

200

30

50

1.4

152.2

300

23

Train

200

40

50

1.4

152.2

50

10.7

Train

200

40

50

1.4

152.2

100

24.5

Train

200

40

50

1.4

152.2

150

27.45

Test

200

40

50

1.4

152.2

200

19.3

Train

200

40

50

1.4

152.2

250

21.9

Train

200

40

50

1.4

152.2

300

27.3

Train

200

50

50

1.4

152.2

50

10.8

Train

200

50

50

1.4

152.2

100

16

Train

200

50

50

1.4

152.2

150

21.25

Train

200

50

50

1.4

152.2

200

25

Train

200

50

50

1.4

152.2

250

24.9

Train

200

50

50

1.4

152.2

300

34

Test

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderpour, H., Mirrashid, M. & Nagai, K. An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system. Engineering with Computers 36, 1083–1100 (2020). https://doi.org/10.1007/s00366-019-00751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00751-y

Keywords

Navigation