Skip to main content
Log in

A meshless multiple-scale polynomial method for numerical solution of 3D convection–diffusion problems with variable coefficients

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper numerical solution of 3D convection–diffusion problems both with high Reynolds (Re) numbers and variable coefficients are investigated via a meshless method based on polynomial basis. It is well known that using polynomial basis directly for solving partial differential equations may be unsafe due to ill-conditioned resultant coefficients matrix that formed after discretization process. Therefore to get rid of highly ill-conditioned coefficient matrix we took advantage of multiple-scale method which is essentially based on the idea of equating norm of each column of resultant coefficients matrix. Through this approach we can reduce the condition number greatly. The proposed method is a truly meshless method since there is no need for meshing or any node connectivity and implementation of the method is simple and straightforward. The performance of the proposed method is measured by four test problems in both regular and irregular computational domains. Numerical results corroborate efficiency of meshless multiple-scale polynomial method for 3D convection–diffusion problems as well show its stability in case of large noise effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang J (1998) An explicit fourth-order compact finite difference scheme for three dimensional convection-diffusion equation. Commun Numer Meth Eng 14:263–280

    MathSciNet  Google Scholar 

  2. Roache P (1972) Computational fluid dynamics. Hermosa Press, Albuquerque

    MATH  Google Scholar 

  3. Gupta MM, Zhang J (2000) High accuracy multigrid solution of the 3D convection diffusion equation. Appl Math Comput 113:249–274

    MathSciNet  MATH  Google Scholar 

  4. Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150:5–19

    MathSciNet  MATH  Google Scholar 

  5. Dehghan M, Mohebbi A (2008) High-order compact boundary value method for the solution of unsteady convection–diffusion problems. Math Comput Simul 79:683–699

    MathSciNet  MATH  Google Scholar 

  6. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30

    MathSciNet  MATH  Google Scholar 

  7. Oruç Ö (2018) A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun Nonlinear Sci Numer Simul 57:14–25

    MathSciNet  Google Scholar 

  8. Oruç Ö, Bulut F, Esen A (2015) A haar wavelet-finite difference hybrid method for the numerical solution of the modified burgers’ equation. J Math Chem 53(7):1592–1607

    MathSciNet  MATH  Google Scholar 

  9. Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89(1):173–188

    Google Scholar 

  10. Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835

    MathSciNet  MATH  Google Scholar 

  11. Shivanian E, Jafarabadi A (2018) Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation. Mod Phys Lett B 32(22):1850251

    MathSciNet  Google Scholar 

  12. Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12

    MathSciNet  MATH  Google Scholar 

  13. Fatahi H, Saberi-Nadjafi J, Shivanian E (2016) A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J Comput Appl Math 294:196–209

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M (2007) Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36(5/6):791–805

    MATH  Google Scholar 

  15. Dehghan M (2005) Quasi-implicit and two-level explicit finite-difference procedures for solving the one-dimensional advection equation. Appl Math Comput 167(1):46–67

    MathSciNet  MATH  Google Scholar 

  16. Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150(1):5–19

    MathSciNet  MATH  Google Scholar 

  17. Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection-diffusion equation. Appl Math Comput 147(2):307–319

    MathSciNet  MATH  Google Scholar 

  18. Dehghan M (2005) On the numerical solution of the one-dimensional convection-diffusion equation. Math probl eng 1:61–74

    MATH  Google Scholar 

  19. Wang C, He M, Sun P (2016) A new combined finite element-upwind finite volume method for convection-dominated diffusion problems. Numer Methods Partial Differ Equ 32:799–818

    MathSciNet  MATH  Google Scholar 

  20. Varanasi C, Murthy JY, Sanjay Mathur (2012) Numerical schemes for the convection-diffusion equation using a meshless finite-difference method. Numer Heat Tr, Part B-Fund 62(1):1–27. https://doi.org/10.1080/10407790.2012.687976

    Article  Google Scholar 

  21. Vertnik R, Šarler B (2006) Meshless local radial basis function collocation method for convective-diffusive solid–liquid phase change problems. Int J Numer Method Heat 16(5):617–640. https://doi.org/10.1108/09615530610669148

    Article  MathSciNet  MATH  Google Scholar 

  22. Safdari-Vaighani A, Heryudono A, Larsson E (2015) A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. J Sci Comput 64(2):341–367

    MathSciNet  MATH  Google Scholar 

  23. Ge YB, Tian ZF, Zhang J (2013) An exponential high-order compact ADI method for 3d unsteady convection–diffusion problems. Numer Methods Partial Differ Equ 29:186–205

    MathSciNet  MATH  Google Scholar 

  24. Kalita JC, Dalal DC, Dass AK (2002) A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients. Int J Numer Methods Fluids 38:1111–1131

    MathSciNet  MATH  Google Scholar 

  25. Tian ZF, Dai SQ (2007) High-order compact exponential finite difference methods for convection–diffusion type problems. J Comput Phys 220:952–974

    MathSciNet  MATH  Google Scholar 

  26. Tian ZF, Yu PX (2011) A high-order exponential scheme for solving 1D unsteady convection–diffusion equations. J Comput Appl Math 235:2477–2491

    MathSciNet  MATH  Google Scholar 

  27. Ma Y, Ge Y (2010) A high order finite difference method with Richardson extrapolation for 3D convection diffusion equation. Appl Math Comput 215:3408–3417

    MathSciNet  MATH  Google Scholar 

  28. Dai R, Wang Y, Zhang J (2013) Fast and high accuracy multiscale multigrid method with multiple coarse grid updating strategy for the 3D convection–diffusion equation. Comput Math Appl 66:542–559

    MathSciNet  MATH  Google Scholar 

  29. Wang K, Wang H (2018) Stability and error estimates of a new high-order compact ADI method for the unsteady 3D convection–diffusion equation. Appl Math Comput 331:140–159

    MathSciNet  MATH  Google Scholar 

  30. Liu GR, Liu MB, Li S (2004) Smoothed particle hydrodynamics: a mesh free method. Comput Mech 33(6):491–491

    Google Scholar 

  31. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  32. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Application to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866

    MathSciNet  MATH  Google Scholar 

  33. Ilati M, Dehghan M (2017) Application of direct meshless local Petrov-Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33(1):107–124

    Google Scholar 

  34. Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37(12):1693–1702

    MathSciNet  MATH  Google Scholar 

  35. Shivanian E (2015) Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    MathSciNet  MATH  Google Scholar 

  36. Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110

    MathSciNet  MATH  Google Scholar 

  37. Shivanian E, Khodabandehlo HR (2014) Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions. Phys J Plus 129:241. https://doi.org/10.1140/epjp/i2014-14241-9

    Article  Google Scholar 

  38. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics—II. Comput Math Appl 19(8/9):147–61

    MathSciNet  MATH  Google Scholar 

  39. Cheng AHD (2007) Radial basis function collocation method. In: Computational mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75999-7_20

    Chapter  Google Scholar 

  40. Hu HY, Li ZC, Cheng AH-D (2005) Radial basis collocation methods for elliptic boundary value problems. Comput Math Appl 50:289–320

    MathSciNet  MATH  Google Scholar 

  41. Jankowska MA, Karageorghis A, Chen CS (2018) Improved Kansa RBF method for the solution of nonlinear boundary value problems. Eng Anal Bound Elem 87:173–183. https://doi.org/10.1016/j.enganabound.2017.11.012

    Article  MathSciNet  MATH  Google Scholar 

  42. Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146

    MathSciNet  MATH  Google Scholar 

  43. Dehghan M, Mohammadi V (2014) The numerical solution of Fokker-Planck equation with radial basis functions (RBFs) based on the meshless technique of Kansa’s approach and Galerkin method. Eng Anal Bound Elem 47:38–63

    MathSciNet  MATH  Google Scholar 

  44. Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865

    MathSciNet  MATH  Google Scholar 

  45. Dehghan M, Abbaszadeh M, Mohebbi A (2014) The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput Math Appl 68:212–237

    MathSciNet  MATH  Google Scholar 

  46. Xiong J, Jiang P, Zheng H, Chen CS (2018) A high accurate simulation of thin plate problems by using the method of approximate particular solutions with high order polynomial basis. Eng Anal Bound Elem 94:153–158. https://doi.org/10.1016/j.enganabound.2018.06.009

    Article  MathSciNet  MATH  Google Scholar 

  47. Lin J, Chen CS, Wang F, Dangal T (2017) Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. Appl Math Model 49:452–469

    MathSciNet  MATH  Google Scholar 

  48. Li X, Dangal T, Lei B (2018) Localized method of approximate particular solutions with polynomial basis functions. Eng Anal Bound Elem 97:16–22

    MathSciNet  MATH  Google Scholar 

  49. Liu GR, Gu YT (2003) A meshfree method: meshfree weak strong (MWS) form method, for 2-D solids. Comput Mech 33:2–14

    MATH  Google Scholar 

  50. Liu GR, Wu YL, Ding H (2004) Meshfree weak strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids 46(10):1025–1047

    MathSciNet  MATH  Google Scholar 

  51. Gu YT, Liu GR (2005) A meshfree weak-strong (MWS) form method for time dependent problems. Comput Mech 35:134–145

    MATH  Google Scholar 

  52. Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34(4):324–336

    MathSciNet  MATH  Google Scholar 

  53. Dehghan M, Abbaszadeh M, Mohebbi A (2015) The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J Comput Appl Math 286:211–231

    MathSciNet  MATH  Google Scholar 

  54. Trobec R, Kosec G, Šterk M, Šarler B (2012) Comparison of local weak and strong form meshless methods for 2-D diffusion equation. Eng Anal Bound Elem 36:310–321

    MathSciNet  MATH  Google Scholar 

  55. Garg S, Pant M (2018) Meshfree methods: a comprehensive review of applications. Int J Comput Meth. https://doi.org/10.1142/S0219876218300015

  56. Liu CS, Kuo CL (2016) A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems. Eng Anal Bound Elem 62:35–43

    MathSciNet  MATH  Google Scholar 

  57. Liu CS, Young DL (2016) A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems. J Comput Phys 312:1–13

    MathSciNet  MATH  Google Scholar 

  58. Chang CW (2016) A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain. Eng Anal Bound Elem 70:56–71

    MathSciNet  MATH  Google Scholar 

  59. Liu G, Ma W, Ma H, Zhu L (2018) A multiple-scale higher order polynomial collocation method for 2D and 3D elliptic partial differential equations with variable coefficients. Appl Math Comput 331:430–444

    MathSciNet  MATH  Google Scholar 

  60. Wang M, Watson D, Li M (2018) The method of particular solutions with polynomial basis functions for solving axisymmetric problems. Eng Anal Bound Elem 90:39–46

    MathSciNet  MATH  Google Scholar 

  61. Oruç Ö (2019) Numerical solution of two-dimensional Berger equation in deflection of thin plates via a meshless method based on multiple-scale Pascal polynomials. Appl Math Model. https://doi.org/10.1016/j.apm.2019.04.022

  62. Liu CS, Wang F, Qu W (2018) Fast solving the cauchy problems of poisson equation in an arbitrary three-dimensional domain. CMES-Comp Model Eng 114(3):351–380

    Google Scholar 

  63. Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52

    MATH  Google Scholar 

  64. Logg A, Wells GN (2010) DOLFIN: automated finite element computing. ACM Trans Math Softw 37(2):1–28

    MathSciNet  MATH  Google Scholar 

  65. Oliphant Travis E (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20

    Google Scholar 

  66. Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) SymPy: symbolic computing in Python. PeerJ Comput Sci 3:e103. https://doi.org/10.7717/peerj-cs.103

    Article  Google Scholar 

  67. van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30

    Google Scholar 

  68. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95

    Google Scholar 

  69. Riegel J, Mayer W, van Havre Y (2001–2017). FreeCAD (Version 0.15.4671) [Software]. http://www.freecadweb.org

  70. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization. In: Visualization handbook. Elsevier, ISBN-13: 978-0123875822

Download references

Acknowledgements

The author would like to thank the reviewers for their useful comments and suggestions towards improvement of the paper.

Funding

The author(s) received no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Oruç.

Ethics declarations

Conflict of Interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruç, Ö. A meshless multiple-scale polynomial method for numerical solution of 3D convection–diffusion problems with variable coefficients. Engineering with Computers 36, 1215–1228 (2020). https://doi.org/10.1007/s00366-019-00758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00758-5

Keywords

Mathematics Subject Classification

Navigation