Skip to main content
Log in

A static boundary element solution for Bickford–Reddy beam

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract.

Bickford–Reddy beam theory is a refined model in which it is assumed that axial displacements vary cubically across the height of the cross section. Consequently, quadratic distribution for transverse shear stresses is automatically satisfied instead of Timoshenko beam model which predicts a constant distribution for those stresses, requiring the incorporation of a shear correction factor into the model. This article shows a new static solution which is based on direct boundary element method (BEM) for Bickford–Reddy beam theory. Mathematical steps required by this BEM technique are adequately addressed, for instance, a) integral equations are derived using Betti’s reciprocal theorem, b) fundamental solutions are obtained from the fundamental problem which has direct relationship to the real Bickford–Reddy beam problem; c) explicit influence matrices and load vectors are derived from source collocation at boundary points, and then at domain points, and d) BEM solutions are obtained for structures containing domain discontinuities such as stepped beams and continuous beams. Numerical results are presented for uniform beams having rectangular and circular cross sections and for problems having domain discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Timoshenko SP (1941) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil Mag Series 41:744–746

    Article  Google Scholar 

  2. Levinson M (1981) A new rectangular beam theory. J Sound Vib 74:81–87

    Article  Google Scholar 

  3. Bickford WB (1982) A consistent higher order beam theory. Develop Theor Appl Mech 11:37–50

    Google Scholar 

  4. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    Article  Google Scholar 

  5. Bhimaraddi A, Chandrashekhara K (1993) Observations on higher order beam theory. J Aerosp Eng ASCE 6:408–413

    Article  Google Scholar 

  6. Krishna Murty AV (1984) Towards a consistent beam theory. AIAA J 22:811–816

    Article  Google Scholar 

  7. Rehfield LW, Murthy PLN (1982) Toward a new engineering theory of bending: fundamentals. AIAA J 20:693–699

    Article  Google Scholar 

  8. Ghugal YM, Nakhate VV (2009) Flexure of thick beams using trigonometric shear deformation theory. Bridge Struct Eng 39:1–17

    Google Scholar 

  9. Ghugal YM, Sharma R (2009) A hyperbolic shear deformation theory for flexure and free vibration of thick beams. Int J Comp Meth 6:585–604

    Article  Google Scholar 

  10. Ghugal YM, Sharma R (2011) A refined shear deformation theory for flexure of thick beams. Lat Am J Solids Struct 8:183–195

    Article  Google Scholar 

  11. Wang CM, Reddy JN, Lee KH (2000) Shear deformable beams and plates: relationships with classical solutions. Elsevier, Amsterdam

    MATH  Google Scholar 

  12. Kant T, Gupta A (1988) A finite element model for a higher-order shear-deformable beam theory. J Sound Vib 125:193–202

    Article  Google Scholar 

  13. Heyliger PR, Reddy JN (1988) A higher order beam finite element for bending and vibration problems. J Sound Vib 126:309–326

    Article  Google Scholar 

  14. Petrolito J (1995) Stiffness analysis of beams using a higher-order theory. Comput Struct 55:33–39

    Article  Google Scholar 

  15. Eisenberger M (2003) An exact high order beam element. Comput Struct 81:147–152

    Article  Google Scholar 

  16. Zhong H, Wang Y (2001) Weak form quadrature element analysis of bickford beams. Eur J Mech A/Solids 29:851–858

    Article  Google Scholar 

  17. Karttunen AT, von Hertzen R (2015) Variational formulation of the static Levinson beam theory. Mech Res Comm 66:15–19

    Article  Google Scholar 

  18. Sayyad AS (2001) Comparison of various refined beam theories for the bending and free vibration analysis of thick beams. Appl Comp Mech 5:217–230

    Google Scholar 

  19. Banerjee PK, Butterfield R (1981) Boundary Element Methods in Engineering Science. McGRaw-Hill, New York

    MATH  Google Scholar 

  20. Antes H (2003) Fundamental solution and integral equations for Timoshenko beams. Comput Struct 81:383–396

    Article  Google Scholar 

  21. Providakis CP, Beskos DE (1986) Dynamic analysis of beams by the boundary element method. Comput Struct 22:957–967

    Article  Google Scholar 

  22. Antes H, Shanz M, Alvermann S (2004) Dynamic analyses of plane frames by integral equations for bars and Timoshenko beams. J Sound Vib 276:807–836

    Article  Google Scholar 

  23. Hormander L (1963) Linear partial differential operators. Springer, Berlin

    Book  Google Scholar 

  24. Martha LF (1999) Ftool: A structural analysis educational interactive tool. In: Proceedings of workshop in multimedia computer techniques in engineering education, Institute for Structural Analysis, Technical University of Graz, Austria, pp 51–65.

  25. Hutchinson JR (2001) Shear coefficients for Timoshenko beam theory. J Appl Mech 68:87–92

    Article  Google Scholar 

  26. Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  27. Kaliakin VN (2016) Bending of a Cantilever Loaded at its End. In: Supplementary Notes for CIEG 605 (Intermediate Topics in Finite Element Analyses), University of Delaware, unpublished document.http://ce.udel.edu/faculty/kaliakin/cantilever_elas_P.pdf. Accessed 10 May 2016

  28. Ding HJ, Huang DJ, Wang HM (2005) Analytical solution for fixed-end beam subjected to uniform load. J Zhejiang Univ SCI (Journal of Zhejiang University SCIENCE) 6A:779–783

    Article  Google Scholar 

  29. Lekhnitskii SG (1968) Anisotropic Plate. Gordon and Breach, New York

    Google Scholar 

Download references

Acknowledgements

The author Cibelle Dias de Carvalho Dantas Maia acknowledges the financial support of Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mendonca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The higher derivatives of function \(\psi\) used in Eqs. (27) and (28) are

$$\begin{aligned} {\text{d}}\psi /{\text{d}}x & = \left[ {C_{1} + 3C_{2} r^{2} - C_{3} \sqrt y e^{ - r\sqrt y } } \right]sgn\left( {x,\hat{x}} \right), \\ {\text{d}}^{2} \psi /{\text{d}}x^{2} & = 6C_{2} r + C_{3} ye^{ - r\sqrt y } , \\ {\text{d}}^{3} \psi /{\text{d}}x^{3} & = \left[ {6C_{2} - C_{3} y\sqrt y e^{ - r\sqrt y } } \right]sgn\left( {x,\hat{x}} \right), \\ {\text{d}}^{4} \psi /{\text{d}}x^{4} & = C_{3} y^{2} e^{ - r\sqrt y } , \\ {\text{d}}^{5} \psi /{\text{d}}x^{5} & = \left[ { - C_{3} y^{2} \sqrt y e^{ - r\sqrt y } } \right]sgn\left( {x,\hat{x}} \right), \\ {\text{d}}^{6} \psi /{\text{d}}x^{6} & = C_{3} y^{3} e^{ - r\sqrt y } - 2\delta \left( {x,\hat{x}} \right)C_{3} y^{2} \sqrt y e^{ - r\sqrt y } , \\ \end{aligned}$$

and \({\text{sgn}}\left( {x,\hat{x}} \right)\) is the sign function defined by

$${\text{sgn}}\left( {x,\hat{x}} \right) = \left\{ {\begin{array}{*{20}l} {1, \quad {\text{if}} \quad x > \hat{x}} \\ { - 1, \quad {\text{if}} \quad x < \hat{x}} \\ \end{array} } \right..$$

Appendix 2

The functions \(\eta ij\left( r \right)\) and βij(r) used in Eqs. (39) and (40) are given by

$$\begin{aligned} \eta_{11} \left( r \right) & = \left( {\alpha^{2} \hat{F}_{x}^{2} - \alpha^{2} \bar{D}_{x} H_{x} } \right){\text{d}}^{5} \psi \left( r \right)/{\text{d}}r^{5} + \left( {2\alpha \bar{A}_{xz} \hat{F}_{x} + \alpha^{2} \bar{A}_{xz} H_{x} + \bar{A}_{xz} \bar{D}_{x} } \right){\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} , \\ \eta_{21} \left( r \right) & = - \left( {\alpha^{2} \hat{F}_{x}^{2} - \alpha^{2} \bar{D}_{x} H_{x} } \right){\text{d}}^{6} \psi \left( r \right)/{\text{d}}r^{6} - \left( {2\alpha \bar{A}_{xz} \hat{F}_{x} + \alpha^{2} \bar{A}_{xz} H_{x} + \bar{A}_{xz} \bar{D}_{x} } \right){\text{d}}^{4} \psi \left( r \right)/{\text{d}}r^{4} , \\ \eta_{31} \left( r \right) & = 0, \\ \eta_{12} \left( r \right) & = \left( {\alpha^{2} \hat{F}_{x}^{2} - \alpha^{2} \bar{D}_{x} H_{x} } \right)d^{4} \psi \left( r \right)/{\text{d}}r^{4} + \left( {\alpha \bar{A}_{xz} \hat{F}_{x} + \alpha^{2} \bar{A}_{xz} H_{x} } \right){\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} , \\ \eta_{22} \left( r \right) & = - \left( {\alpha^{2} \hat{F}_{x}^{2} - \alpha^{2} \bar{D}_{x} \cdot H_{x} } \right){\text{d}}^{5} \psi \left( r \right)/{\text{d}}r^{5} - \left( {\alpha \bar{A}_{xz} \hat{F}_{x} + \alpha^{2} \bar{A}_{xz} H_{x} } \right){\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} , \\ \eta_{32} \left( r \right) & = \left( {\bar{A}_{xz} \hat{F}_{x} + \alpha^{2} \bar{A}_{xz} H_{x} } \right){\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} , \\ \eta_{13} \left( r \right) & = \left( {\bar{D}_{x} \bar{A}_{xz} + \alpha \bar{A}_{xz} \hat{F}_{x} } \right){\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} , \\ \eta_{23} \left( r \right) & = - \left( {\bar{D}_{x} \cdot \bar{A}_{xz} + \alpha \cdot \bar{A}_{xz} \cdot \hat{F}_{x} } \right){\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} , \\ \eta_{33} \left( r \right) & = \left( { - \alpha^{2} \bar{D}_{x} H_{x} + \alpha^{2} \hat{F}_{x}^{2} } \right){\text{d}}^{5} \psi \left( r \right)/{\text{d}}r^{5} + \left( {\bar{A}_{xz} \bar{D}_{x} + \alpha \bar{A}_{xz} \hat{F}_{x} } \right){\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} , \\ \beta_{11} \left( {\text{r}} \right) & = \bar{D}_{x} {\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} - \bar{A}_{xz} \psi \left( r \right), \\ \beta_{21} \left( {\text{r}} \right) & = - \bar{D}_{x} {\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} + \bar{A}_{xz} {\text{d}}\psi \left( r \right)/{\text{d}}r, \\ \beta_{31} \left( r \right) & = - \hat{F}_{x} \alpha {\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} - \bar{A}_{xz} {\text{d}}\psi \left( r \right)/{\text{d}}r, \\ \beta_{12} \left( {\text{r}} \right) & = \bar{D}_{x} {\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} - \bar{A}_{xz} {\text{d}}\psi \left( r \right)/{\text{d}}r, \\ \beta_{22} \left( {\text{r}} \right) & = - \bar{D}_{x} {\text{d}}^{4} \psi \left( r \right)/{\text{d}}r^{4} + \bar{A}_{xz} {\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} , \\ \beta_{32} \left( {\text{r}} \right) & = - \hat{F}_{x} \cdot \alpha {\text{d}}^{4} \psi \left( r \right)/{\text{d}}r^{4} - \bar{A}_{xz} {\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} , \\ \beta_{13} \left( {\text{r}} \right) & = \bar{A}_{xz} {\text{d}}\psi \left( r \right)/{\text{d}}r + \hat{F}_{x} \alpha {\text{d}}^{3} \psi \left( r \right)/{\text{d}}r^{3} , \\ \beta_{23} \left( {\text{r}} \right) & = - \bar{A}_{xz} {\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} - \hat{F}_{x} \cdot \alpha {\text{d}}^{4} \psi \left( r \right)/{\text{d}}r^{4} , \\ \beta_{33} \left( {\text{r}} \right) & = - H_{x} \alpha^{2} {\text{d}}^{4} \psi \left( r \right)/{\text{d}}r^{4} + \bar{A}_{xz} {\text{d}}^{2} \psi \left( r \right)/{\text{d}}r^{2} . \\ \end{aligned}$$

Appendix 3

The results of the integrations in Eqs. (41) and (42) are depending on a relative position between \(\hat{x}\) and x. If \(\hat{x} > x\)

$$\begin{aligned} {\text{g}}_{{0{\text{a}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{0}^{{\hat{x}}} \psi \left( {r = \hat{x} - x} \right){\text{d}}x = C_{3} /\sqrt y \left( {1 - e^{{ - \hat{x}\sqrt y }} } \right) + C_{1} \hat{x}^{2} /2 + C_{2} \hat{x}^{4} /4, \\ {\text{g}}_{{1{\text{a}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{0}^{{\hat{x}}} \left[ {{\text{d}}\psi \left( {r = \hat{x} - x} \right)/{\text{d}}r} \right]{\text{d}}x = C_{3} (e^{{ - \hat{x}\sqrt y }} - 1) + \hat{x}^{3} C_{2} + \hat{x}C_{1} , \\ {\text{g}}_{{2{\text{a}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{0}^{{\hat{x}}} \left[ {{\text{d}}^{2} \psi \left( {r = \hat{x} - x} \right)/{\text{d}}r^{2} } \right]{\text{d}}x = 3\hat{x}^{2} C_{2} + C_{3} \sqrt y \left( {1 - e^{{ - \hat{x}\sqrt y }} } \right), \\ {\text{g}}_{{3{\text{a}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{0}^{{\hat{x}}} \left[ {{\text{d}}^{3} \psi \left( {r = \hat{x} - x} \right)/{\text{d}}r^{3} } \right]{\text{d}}x = 6C_{2} \hat{x} + C_{3} y\left( {e^{{ - \hat{x}\sqrt y }} - 1} \right), \\ {\text{g}}_{{4{\text{a}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{0}^{{\hat{x}}} \left[ {{\text{d}}^{4} \psi \left( {r = \hat{x} - x} \right)/{\text{d}}r^{4} } \right]{\text{d}}x = - C_{3} \cdot \sqrt {y^{3} } \left( {e^{{ - \hat{x}\sqrt y }} - 1} \right) . \\ \end{aligned}$$

Otherwise,

$$\begin{aligned} {\text{g}}_{{0{\text{d}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{{\hat{x}}}^{L} \psi \left( {r = - \hat{x} + x} \right){\text{d}}x = C_{3} /\sqrt y \left( {1 - e^{{ - \left( {L - \hat{x}} \right)\sqrt y }} } \right) + C_{1} \left( {L - \hat{x}} \right)^{2} /2 + C_{2} \left( {L - \hat{x}} \right)^{4} /4, \\ {\text{g}}_{{1{\text{d}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{{\hat{x}}}^{L} \left[ {{\text{d}}\psi \left( {r = - \hat{x} + x} \right)/{\text{d}}r} \right]{\text{d}}x = \left( {e^{{ - \left( {L - \hat{x}} \right)\sqrt y }} - 1} \right)C_{3} + \left( {L - \hat{x}} \right)^{3} C_{2} + \left( {L - \hat{x}} \right)C_{1} , \\ {\text{g}}_{{2{\text{d}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{{\hat{x}}}^{L} \left[ {{\text{d}}^{2} \psi \left( {r = - \hat{x} + x} \right)/{\text{d}}r^{2} } \right]{\text{d}}x = 3\left( {L - \hat{x}} \right)^{2} C_{2} + C_{3} \sqrt y \left( {1 - e^{{ - \left( {L - \hat{x}} \right)\sqrt y }} } \right), \\ {\text{g}}_{{3{\text{d}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{{\hat{x}}}^{L} \left[ {{\text{d}}^{3} \psi \left( {r = - \hat{x} + x} \right)/{\text{d}}r^{3} } \right]{\text{d}}x = 6 \cdot C_{2} \cdot \left( {L - \hat{x}} \right) + C_{3} \cdot y\left( {e^{{ - \left( {L - \hat{x}} \right)\sqrt y }} - 1} \right), \\ {\text{g}}_{{4{\text{d}}}} \left( {\hat{x}} \right) & = \mathop \smallint \limits_{{\hat{x}}}^{L} \left[ {{\text{d}}^{4} \psi \left( {r = - \hat{x} + x} \right)/{\text{d}}r^{4} } \right]{\text{d}}x, \\ & = - C_{3} \sqrt {y^{3} } \left( {e^{{ - \left( {L - \hat{x}} \right)\sqrt y }} - 1} \right). \\ \end{aligned}$$

Appendix 4

Consider a cantilever beam under concentrated load \({\text{Q}}_{\text{L}}\) at its tip. Four distinct analytical solutions for transverse displacement are discussed based on beam theories and elasticity. For Euler and Timoshenko beam models, displacements \(w_{E} \left( x \right)\)and \(w_{T} \left( x \right)\) are [11]

$$w_{E} \left( x \right) = {\text{Q}}_{\text{L}} x^{2} \left( {3L - x} \right)/\left( {6D_{x} } \right),$$
(50)
$$w_{T} \left( x \right) = w_{E} \left( x \right) + {\text{Q}}_{\text{L}} x/\left( {kA_{xz} } \right).$$
(51)

According to Hutchinson [25], the shear correction factors of rectangular and circular cross sections are, respectively, given by \(k = 5\left( {1 + \nu } \right)/\left( {6 + 5\nu } \right)\) and \(k = 6\left( {1 + \nu } \right)^{2} /\left( {7 + 12\nu + 4\nu^{2} } \right)\). For a rectangular cross section, transverse displacement \(w_{B} \left( x \right)\) of the Bickford beam is [16]

$$w_{B} \left( x \right) = {\text{Q}}_{\text{L}} \cdot {\text{L}}^{3} \left( {1 + \nu } \right)\left( {{\text{h}}/{\text{L}}} \right)^{2} \left\{ {{\text{x}}/{\text{L}} - \left[ {\sinh \left( {\eta _{1} \cdot {\text{L}}} \right) - \sinh \left( {\eta _{1} \cdot \left( {{\text{L}} - {\text{x}}} \right)} \right)} \right]} \right\}/ \propto_{1} + {\text{Q}}_{\text{L}} \cdot {\text{L}}^{3} \left( {{\text{x}}/{\text{L}}} \right)^{2} \left[ {3/2 - {\text{x}}/\left( {2{\text{L}}} \right)} \right]/\left( {3D_{x} } \right) ,$$
(52)

with \(\eta_{1} = \left( {1/h} \right)\left( {420/\left( {1 + \nu } \right)} \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} ,\)

$$\propto_{1} = \left[ {\eta_{1} .{\text{L}}.{ \cosh }\left( {\eta _{1} .{\text{L}}} \right)} \right]\} /\left( {5D_{x} } \right).$$

Different from beam solutions given in Eq. (50), (51), (52), plane stress elasticity solutions are now discussed assuming the right end fixed, see Fig. 5c. According to Timoshenko and Goodier [26], axial and transverse displacements for a rectangular cross-sectional beam after setting \(u\left( {L,0} \right) = w\left( {L,0} \right) = 0\) are given as follows:

$$u\left( {x,z_{1} } \right) = - {\text{Q}}_{\text{L}} x^{2} z_{1} /\left( {2D_{x} } \right) - \nu {\text{Q}}_{\text{L}} z_{1}^{3} /\left( {6D_{x} } \right) + {\text{Q}}_{\text{L}} z_{1}^{3} /\left( {6GI} \right) + B_{2} z_{1} ,$$
(53)
$$\begin{aligned} w\left( {x,z_{1} } \right) & = \nu {\text{Q}}_{\text{L}} xz_{1}^{2} /\left( {2D_{x} } \right) + {\text{Q}}_{\text{L}} x^{3} /\left( {6D_{x} } \right) \\ & \quad + B_{1} \left( {{\text{x}} - {\text{L}}} \right) - {\text{Q}}_{\text{L}} L^{2} /\left( {6D_{x} } \right). \\ \end{aligned}$$
(54)

The constants \(B_{1}\) and \(B_{2}\) can be determined using a third constraint condition to eliminate rotation of the \(xz_{1}\) plane about centroidal fixed point. In Ref. [26], a condition \(\partial u/\partial z_{{1\left( {x = L,,z = 0} \right)}} = 0\) is set, resulting \(B_{2} = - {\text{Q}}_{\text{L}} L^{2} /\left( {2D_{x} } \right)\) and \(B_{1} = - {\text{Q}}_{\text{L}} \left[ {L^{2} /(2D_{x} } \right) + h^{2} /\left( {8{\text{GI}}} \right)]\). So, assuming \(\nu = 0\) and using Eq. (54) at centroid and \(x = 0\) gives

$${\text{w}}\left( {0,0} \right) = {\text{Q}}_{\text{L}} \left[ {L^{3} + 2{\text{L}}\left( {h/2} \right)^{2} } \right]/\left( {3D_{x} } \right).$$
(55)

By back-substituting \(B_{2}\) into Eq. (53), axial displacement at fixed end with \(z_{1} = \pm h/2\) gives \(u\left( {L, \pm h/2} \right) \ne 0.\)

If an alternative third constraint condition given by Kaliakin [27], \(u\left( {L,z_{1} = h/2} \right) = 0\) or \(u\left( {L,z_{1} = - h/2} \right) = 0\) is used instead, the values of \(B_{1}\) and \(B_{2}\) using Eq. (53) and Eq. (54) yields \(B_{2} = {\text{Q}}_{\text{L}} {\text{h}}\left[ {12L^{2} - \left( {2 + \nu } \right)h^{2} } \right]/(48D_{x} )\) and \(B_{1} = - {\text{Q}}_{\text{L}} {\text{h}}\left[ {12L^{2} - \left( {2 + \nu } \right)h^{2} } \right]/(48D_{x} ) - \left( {1 + \nu } \right){\text{Q}}_{\text{L}} /\left( {4D_{x} } \right)\). Consequently, Eq. (54) at centroid with \(x = L\) and assuming \(\nu = 0\) gives

$${\text{w}}\left( {0,0} \right) = {\text{Q}}_{\text{L}} \left[ {L^{3} + 3{\text{L}}\left( {h/2} \right)^{2} } \right]/\left( {3D_{x} } \right).$$
(56)

For cylindrical beam problems, the left end is considered fixed for both beam and elasticity solutions. Transverse displacements of Bickford model is given by

$$w_{E} \left( x \right) = {\text{Q}}_{\text{L}} x^{2} \left( {3L - x} \right)/\left( {6D_{x} } \right) + \propto_{2} \left\{ {\lambda x - [\sinh \left( {\lambda x} \right) - \sinh \lambda \left( {L - x} \right)]/[\lambda \cosh \left( {\lambda x} \right)]} \right\},$$
(57)

where

$$\lambda = \sqrt {\bar{A}_{xz} \cdot D_{x} /\left[ {\alpha \left( {F_{x} \cdot \hat{D}_{x} - \hat{F}_{x} \cdot Dx} \right)} \right]} ,$$
$$\mu = \hat{A}_{xz} \hat{D}_{x} /[\alpha \left( {\hat{D}_{x} \cdot F_{x} - \hat{F}_{x} \cdot D_{x} } \right),$$
$$\propto_{2} = {\text{Q}}_{\text{L}} \hat{D}_{x}^{2} /\left( {\bar{A}_{xz} D_{x}^{2} } \right).$$

According to Ref. [26], non-zero stresses of a cylindrical beam with radius R under plane stress conditions are given, respectively, by

$$\begin{aligned} & \sigma_{x} = - {\text{Q}}_{\text{L}} \left( {{\text{L}} - {\text{x}}} \right)z_{1} /{\text{I,}} \hfill \\ & \sigma_{y} = \sigma_{{z_{1} }} = \tau_{{yz_{1} }} = 0, \hfill \\ & \tau_{xy} = - \left( {1 + 2\nu } \right){\text{Q}}_{\text{L}} yz_{1} /\left[ {4\left( {1 + \nu } \right)I} \right], \hfill \\ & \tau_{xz} = \propto_{7} {\text{Q}}_{\text{L}} \left[ {R^{2} - z_{1}^{2} - \left( {1 - 2\nu } \right)y^{2} / \propto_{7} } \right]/ \propto_{8} , \hfill \\ \end{aligned}$$
(58)

with \(I = \pi R^{4} /4\) or \(I = D_{x} /E,\)

$$\propto_{7} = 3 + 2\nu ,$$
$$\propto_{8} = 8\left( {1 + \nu } \right)I.$$

Assuming \(\nu = 0\) and using strain–displacement relations, Hooke’s law, and Eq. (58) gives

$$\begin{aligned} \partial u/\partial x = \varepsilon_{x} = \sigma_{x} /E = - {\text{Q}}_{\text{L}} z_{1} \left( {{\text{L}} - {\text{x}}} \right)/D_{x} , \hfill \\ \partial v/\partial y = \varepsilon_{y} = \sigma_{y} /E = 0, \hfill \\ \partial w/\partial z_{1} = \varepsilon_{{z_{1} }} = \sigma_{{z_{1} }} /E = 0, \hfill \\ \end{aligned}$$
(59)
$$\begin{aligned} \partial u/\partial z_{1} + \partial w/\partial x & = \gamma_{{xz_{1} }} = \tau_{{xz_{1} }} /\left( {E/2} \right) \\ & = 3{\text{Q}}_{\text{L}} \left( {R^{2} - z_{1}^{2} - y^{2} /3} \right)/\left( {4D_{x} } \right), \\ \partial v/\partial z_{1} + \partial w/\partial y & = \gamma_{{yz_{1} }} = \tau_{{yz_{1} }} /\left( {E/2} \right) = 0, \\ \partial u/\partial y + \partial v/\partial x & = \gamma_{xy} = \tau_{xy} /\left( {E/2} \right) = - {\text{Q}}_{\text{L}} yz_{1} /\left( {2D_{x} } \right). \\ \end{aligned}$$
(60)

After integrating properly Eq. (59), displacements can be given as follows:

$$\begin{aligned} v\left( {x,z_{1} } \right) = b\left( {x,z_{1} } \right), \hfill \\ w\left( {x,y} \right) = c\left( {x,y} \right),\,\,\,{\text{and}} \hfill \\u \left( {x,y,z_{1} } \right) = - {\text{Q}}_{\text{L}} z_{1} \left( {Lx - x^{2} /2} \right) + a\left( {y,z_{1} } \right). \hfill \\ \end{aligned}$$
(61)

If the resulting expressions obtained by substituting Eq. (61) into Eq. (60) are conveniently integrated, functions a, b, and c can be written as follows:

$$\begin{aligned} a\left( {y,z_{1} } \right) & = - C_{4} z_{1} + C_{6} z_{1} + C_{5} + \\ & \quad {\text{Q}}_{\text{L}} z\left( {R^{2} - y^{2} } \right)/\left( {4D_{x} } \right), \\ b\left( {x,z_{1} } \right) & = C_{1} z_{1} - C_{6} x + C_{2} , \\ c\left( {x,y} \right) & = - {\text{Q}}_{\text{L}} z_{1} x^{2} \left( {x - 3L} \right)/\left( {6D_{x} } \right) \\ & \quad - C_{1} y + C_{4} x + C_{3} . \\ \end{aligned}$$
(62)

Assuming no translational displacements at origin, three constants in Eqs. (61) and (62) can be determined, giving \(C_{2} = C_{3} = C_{5} = 0.\) If the rigid body rotation components \(\omega_{x} = \partial v/\partial z_{1} - \partial w/\partial y,\)\(\omega_{y} = \partial u/\partial z_{1} - \partial w/\partial x\), and \(\omega_{{z_{1} }} = \partial u/\partial y - \partial v/\partial x\) are also assumed to be zero at origin, the remaining constants give \(C_{1} = C_{6} = 0\) and \(C_{4} = 3{\text{Q}}_{\text{L}} R^{2} /\left( {8D_{x} } \right)\). Consequently, the maximum transverse displacement at \(x = L\) is

$$w_{max} = L{\text{Q}}_{\text{L}} \left[ {4L^{2} + 3R^{2} } \right]/(12D_{x} ).$$
(63)

By back-substituting the constants \(C_{5} ,C_{6}\) and \(C_{4}\) into Eq. (61), axial displacements at fixed end with \(z_{1} = \pm R\) give non-zero values, which is, \(u\left( {0,0, \pm R} \right) = \pm 3{\text{Q}}_{\text{L}} R^{3} /\left( {8D_{x} } \right)\).

If the constraint of rotation about the y-axis is set using \(u = 0\) at point \(\left( {x = 0, y = 0, z_{1} = R} \right)\), all values of the constants are maintained, except the fourth constant which gives \(C_{4} = {\text{Q}}_{\text{L}} R^{2} /\left( {4D_{x} } \right)\). So, the maximum transverse displacement at \(x = L\) is

$$w_{max} = L{\text{Q}}_{\text{L}} \left[ {4L^{2} + 6R^{2} } \right]/(12D_{x} ).$$
(64)

Appendix 5

Considering a cantilever beam under a uniformly distributed load \(q_{0}\). In Ref. [11], analytical solutions of transverse displacement for Euler, Timoshenko, and Bickford beam models are

$$w_{E} \left( {\text{x}} \right) = {\text{q}}_{0} {\text{L}}^{4} \left( {6{\text{x}}^{2} /{\text{L}}^{2} - 4{\text{x}}^{3} /{\text{L}}^{3} + {\text{x}}^{4} /{\text{L}}^{4} } \right)/\left( {24{\text{D}}_{\text{x}} } \right),$$
(65)
$$w_{T} \left( {\text{x}} \right) = w_{E} \left( {\text{x}} \right) + {\text{q}}_{0} {\text{Lx}}\left( {2 - {\text{x}}/{\text{L}}} \right)/\left( {2{\text{kA}}_{\text{xz}} } \right),$$
(66)
$$\begin{aligned} w_{B} \left( x \right) & = \propto_{3} \left[ {\cosh \left( {\lambda x} \right) + \lambda L\sinh \left( {\lambda \left( {L - x} \right)} \right)} \right] \\ & \quad + w_{E} \left( x \right) + c, \\ \end{aligned}$$
(67)

where

$$c = - q_{0} \mu \hat{D}_{x} \left( {1 + \lambda \cdot L \cdot \sinh \left( {\lambda \cdot L} \right)} \right)/ \propto_{3} + \left( {2Lx - x^{2} } \right)/\left( {2\lambda^{2} \hat{A}_{xz} D_{x} } \right),$$

and coefficients \(\lambda ,\)\(\mu ,\) and \(\propto_{3}\) are given by

$$\begin{aligned} \propto_{3} & = q_{0} \mu \hat{D}_{x} /\left[ {\hat{A}_{xz} D_{x} \lambda^{4} \cosh \left( {\lambda L} \right)} \right], \\ \lambda & = \sqrt {\bar{A}_{xz} \cdot D_{x} /\left[ {\alpha \left( {F_{x} \cdot \hat{D}_{x} - \hat{F}_{x} \cdot Dx} \right)} \right]} , \\ \mu & = \hat{A}_{xz} \hat{D}_{x} /\left[ {\alpha \left( {\hat{D}_{x} \cdot F_{x} - \hat{F}_{x} \cdot D_{x} } \right)} \right]. \\ \end{aligned}$$
(68)

The coefficient \(\mu\) given in Eq. (68) contains a slight correction from the expression found in Ref. [11, p.32].

Analogous to Appendix 4, plane stress elasticity solutions are discussed in this section assuming the right end fixed, see Fig. 5c. The analytical solutions given by Ding et al. [28] for axial and transverse displacements written in terms of set of the undetermined coefficients are

$$\begin{aligned} u\left( {x,z_{1} } \right) & = \left[ {2a\left( {2 + \nu } \right)xz_{1}^{3} + 2dx - 2\nu gx} \right]/E \\ & \quad - \left( {2ax^{3} - 3bx^{2} - 6cx + 2\nu ex} \right)z_{1} /E \\ & \quad - \left[ {b\left( {2 + \nu } \right)z_{1}^{3} + 2\left( {1 + \nu } \right)fz_{1} } \right]/E + \omega z_{1} + u_{0} \\ \end{aligned}$$
(69)
$$\begin{aligned} w\left( {x,z_{1} } \right) & = - \left[ {a\left( {1 + 2\nu } \right)z_{1}^{4} /2 + 2\nu dz_{1} + 2gz_{1} } \right]/E \\ & \quad - \left[ {ax^{4} /2 - bx^{3} - 3cx^{2} - \left( {2 + \nu } \right)ex^{2} } \right]/E \\ & \quad + \left( {3a\nu x^{2} - 3b\nu x - 3\nu c + e} \right)z_{1}^{2} /E + \omega x + w_{0} , \\ \end{aligned}$$
(70)

where

(a, b, c, d, e, f, g) and (\(u_{0}\), \(w_{0,}\)\(\omega )\) are the sets of undetermined coefficients associated with displacements generated by body deformation and rigid body motions, respectively.

Using boundary conditions for stresses and stress resultants given in Lekhnitskii [29], and by setting constraint conditions \(u\left( {L,0} \right) = w\left( {L,0} \right) = 0\) and \(\partial u/\partial z_{{\left( {x = L,,z_{1} = 0} \right)}} = 0\), Ding et al. [28] show that the values of the coefficients in Eqs. (69) and (70) are \(a = q_{0} /h^{3}\), b\(= d = f = 0\), c\(= - q_{0} /\left( {10h} \right)\), \(e = 3q_{0} /\left( {4h} \right)\), q\(= - q_{0} /4\), \(u_{0} = - \nu q_{0} L/\left( {2E} \right)\), \(w_{0} = q_{0} L^{2} \left( {30L^{2} - \left( {24 + 15\nu } \right)h^{2} } \right)/(240D_{x}\)), and \(\omega = q_{0} L\left[ {20L^{2} - 3\left( {5\nu + 8} \right)h^{2} } \right]/(120D_{x}\)).

Consequently, Eq. (70) at centroid with \(x = 0\) and assuming \(\nu = 0\) gives

$$w\left( {0,0} \right) = q_{0} \left( {L - x} \right)\left[ {15L^{3} + \left( {12h^{2} - 5L^{2} } \right)x + 18Lh^{2} - 5Lx^{2} - 5x^{3} } \right]/\left( {120D_{x} } \right).$$
(71)

By back-substituting the constants \(u_{0}\), \(w_{0,}\) and \(\omega\) into Eq. (69), axial displacement at the fixed end with \(z_{1} = \pm h/2\) gives \(u\left( {L, \pm h/2} \right) \ne 0\), implying on unwanted values in a physical sense.

If constraint conditions given in Ref. [29] are changed to \(u\left( {L,0} \right) = w\left( {L,0} \right) = 0\) and \(u\left( {L, \pm h/2} \right) = 0\), only the values of \(w_{0}\) and \(\omega\) in Eqs. (69) and (70) are modified, giving \(w_{0} = q_{0} L^{2} \left[ {30L^{2} + \left( {16 + 35\nu } \right)h^{2} } \right]/(240D_{x}\)), and \(\omega = q_{0} L\left[ {20L^{2} + 2\left( {5\nu - 2} \right)h^{2} } \right]/(120D_{x}\)). Consequently, Eq. (70) at centroid with \(x = 0\) and assuming \(\nu = 0\) gives

$$\begin{aligned} w\left( {0,0} \right) & = q_{0} \left( {L - x} \right)\{ 15L^{3} + \left( {12h^{2} - 5L^{2} } \right)x \\ & \quad + 8Lh^{2} - 5Lx^{2} - 5x^{3} \} /\left( {120D_{x} } \right). \\ \end{aligned}$$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, C.D.C.D., Brito, W.K.F. & Mendonca, A.V. A static boundary element solution for Bickford–Reddy beam. Engineering with Computers 36, 1435–1451 (2020). https://doi.org/10.1007/s00366-019-00774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00774-5

Keywords

Navigation