Skip to main content
Log in

Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the wave propagation analysis of fluid-conveying magneto-electro-elastic (MEE) nanotube incorporating fluid effect is investigated. To take into account the small-scale effects, the nonlocal elasticity theory of Eringen is employed. Nonlocal governing equations of MEE-FG nanotube have been derived utilizing Hamilton’s principle. The results of this study have been verified by checking them with antecedent investigations. An analytical solution of governing equations is used to acquire wave frequencies and phase velocities. The Knudsen number is applied to study the effect of slip boundary wall of nanotube and flow. Effect of Knudsen number, different modes, length parameter, nonlocal parameter, fluid velocity, fluid effect and slip boundary condition on wave propagation characteristics of fluid-conveying MEE nanotube is investigated, and the results are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425

    MATH  Google Scholar 

  2. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703

    Google Scholar 

  3. Yang F, Chong ACM, Lam DCM, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731

    MATH  Google Scholar 

  4. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288

    MATH  Google Scholar 

  5. Tounsi A, Benguediab S, Adda B, Semmah A, Zidour M (2013) Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv Nano Res 1(1):1–11

    Google Scholar 

  6. Benguediab S, Tounsi A, Zidour M, Semmah A (2014) Chirality and scale effects on mechanical buckling properties of zigzag double walled carbon nanotubes. Compos Part B Eng 57:21–24

    Google Scholar 

  7. Tlidji Y, Zidour M, Draiche K, Safa A, Bourada M, Tounsi A, Bousahla AA, Mahmoud SR (2019) Vibration analysis of different material distributions of functionally graded microbeam. Struct Eng Mech 69(6):637–649

    Google Scholar 

  8. Zemri A, Houari MS, Bousahla AA, Tounsi A (2015) A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct Eng Mech 54(4):693–710

    Google Scholar 

  9. Bouafia K, Kaci A, Houari MS, Benzair A, Tounsi A (2017) A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams. Smart Struct Syst 19(2):115–126

    Google Scholar 

  10. Youcef DO, Kaci A, Benzair A, Bousahla AA, Tounsi A (2018) Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct Syst 21(1):65–74

    Google Scholar 

  11. Hamza-Cherif R, Meradjah M, Zidour M, Tounsi A, Belmahi S, Bensattalah T (2018) Vibration analysis of nano beam using differential transform method including thermal effect. J Nano Res 54:1–14

    Google Scholar 

  12. Wang YQ, Liu YF, Zu JW (2019) Analytical treatment of nonlocal vibration of multilayer functionally graded piezoelectric nanoscale shells incorporating thermal and electrical effect. Eur Phys J Plus 134(2):54

    Google Scholar 

  13. Liu YF, Wang YQ (2019) Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells. Nanomaterials 9(2):301

    MathSciNet  Google Scholar 

  14. Besseghier A, Houari MS, Tounsi A, Mahmoud SR (2017) Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Struct Syst 19(6):601–614

    Google Scholar 

  15. Mouffoki A, Bedia EA, Houari MS, Tounsi A, Mahmoud SR (2017) Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory. Smart Struct Syst 20(3):369–383

    Google Scholar 

  16. Wang YQ, Liang C (2019) Wave propagation characteristics in nanoporous metal foam nanobeams. Results Phys 12:287–297

    Google Scholar 

  17. Wang YQ, Ye C, Zu JW (2019) Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol 85:359–370

    Google Scholar 

  18. Belkorissat I, Houari MS, Tounsi A, Bedia EA, Mahmoud SR (2015) On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos Struct 18(4):1063–1081

    Google Scholar 

  19. Bounouara F, Benrahou KH, Belkorissat I, Tounsi A (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20(2):227–249

    Google Scholar 

  20. Karami B, Shahsavari D, Janghorban M, Tounsi A (2019) Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Int J Mech Sci 156:94–105

    Google Scholar 

  21. Bouadi A, Bousahla AA, Houari MS, Heireche H, Tounsi A (2018) A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv Nano Res 6(2):147–162

    Google Scholar 

  22. Yazid M, Heireche H, Tounsi A, Bousahla AA, Houari MS (2018) A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct Syst 21(1):15–25

    Google Scholar 

  23. Bellifa H, Benrahou KH, Bousahla AA, Tounsi A, Mahmoud SR (2017) A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct Eng Mech 62(6):695–702

    Google Scholar 

  24. Mokhtar Y, Heireche H, Bousahla AA, Houari MS, Tounsi A, Mahmoud SR (2018) A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct Syst 21(4):397–405

    Google Scholar 

  25. Semmah A, Heireche H, Bousahla AA, Toumsi A (2019) Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT. Adv Nano Res 7(2):89–98

    Google Scholar 

  26. Khetir H, Bouiadjra MB, Houari MS, Tounsi A, Mahmoud SR (2017) A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct Eng Mech 64(4):391–402

    Google Scholar 

  27. Kadari B, Bessaim A, Tounsi A, Heireche H, Bousahla AA, Houari MS (2018) Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. J Nano Res 55:42–56

    Google Scholar 

  28. Al-Basyouni KS, Tounsi A, Mahmoud SR (2015) Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos Struct 125:621–630

    Google Scholar 

  29. Chaht FL, Kaci A, Houari MS, Tounsi A, Bég OA, Mahmoud SR (2015) Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos Struct 18(2):425–442

    Google Scholar 

  30. Ahouel M, Houari MS, Bedia EA, Tounsi A (2016) Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos Struct 20(5):963–981

    Google Scholar 

  31. Karami B, Janghorban M, Tounsi A (2018) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput. https://doi.org/10.1007/s00366-018-0664-9

    Article  Google Scholar 

  32. Karami B, Janghorban M, Tounsi A (2018) Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos Struct 27(2):201–216

    Google Scholar 

  33. Karami B, Janghorban M, Tounsi A (2017) Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos Struct 25(3):361–374

    Google Scholar 

  34. Ke LL, Wang Y-S, Yang J, Kitipornchai S (2014) The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater Struct 23:12

    Google Scholar 

  35. Ebrahimi F, Barati MR, Dabbagh A (2016) Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl Phys A 122:949

    Google Scholar 

  36. Ebrahimi F, Barati MR (2017) Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J Mech 33(1):23

    Google Scholar 

  37. Arefi M, Zenkour AM (2017) Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation. Mech Res Commun 79:51

    Google Scholar 

  38. Farajpour MR, Shahidi AR, Hadi A, Farajpour A (2018) Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms. J Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1432820

    Article  Google Scholar 

  39. Wang YQ (2018) Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut 143:263–271

    Google Scholar 

  40. Wang YQ, Zu JW (2017) Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates. Smart Mater Struct 26(10):105014

    Google Scholar 

  41. Fourn H, Atmane HA, Bourada M, Bousahla AA, Tounsi A, Mahmoud SR (2018) A novel four variable refined plate theory for wave propagation in functionally graded material plates. Steel Compos Struct 27(1):109–122

    Google Scholar 

  42. Boukhari A, Atmane HA, Tounsi A, Adda B, Mahmoud SR (2016) An efficient shear deformation theory for wave propagation of functionally graded material plates. Struct Eng Mech 57(5):837–859

    Google Scholar 

  43. Yahia SA, Atmane HA, Houari MS, Tounsi A (2015) Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech 53(6):1143–1165

    Google Scholar 

  44. Enoksson P, Stemme G, Stemme E (1996) Silicon tube structures for a fluid-density sensor. Sens Actuators A 54:558–562

    Google Scholar 

  45. Kim KH, Moldovan N, Espinosa HD (2005) A nano fountain probe with sub-100 nm molecular writing resolution. Small 1:632–635

    Google Scholar 

  46. Najmzadeh M, Haasl S, Enoksson P (2007) A silicon straight tube fluid density sensor. J Micromech Microeng 17:1657–1663

    Google Scholar 

  47. Wu ZJ, Luo Z, Rastogia A, Stavchansky S, Bowman PD, Ho PS (2011) Micro-fabricated perforated polymer devices for longterm drug delivery. Biomed Microdevices 13:485–491

    Google Scholar 

  48. Zhang YL, Gorman DG, Reese JM (2001) A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid. J Sound Vib 245(1):93

    MATH  Google Scholar 

  49. Amabili M, Pellicano F, Paidoussis MP (1999) Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: stability. J Sound Vib 225(4):655–699

    Google Scholar 

  50. Wang L (2009) Vibration and instability analysis of tubular nano and micro beams conveying fluid using nonlocal elastic theory. Phys E Low Dimens Syst Nanostruct 41:1835–1840

    Google Scholar 

  51. Wang X, Dong K, Liu BY (2008) Wave propagation in fluid-filled multi-walled carbon nanotubes embedded in elastic matrix. Comput Mater Sci 42:139–148

    Google Scholar 

  52. Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485

    MATH  Google Scholar 

  53. Xia W, Wang L (2010) Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape. Comput Mater Sci 49(1):99–103

    MathSciNet  Google Scholar 

  54. Kaviani F, Mirdamadi HR (2013) Wave propagation analysis of carbon nano-tube conveying fluid including slip boundary condition and strain/inertia gradient theory. Comput Struct 116:75–87

    Google Scholar 

  55. Ghasemi A, Dardel M, Ghasemi MH, Barzegari MM (2013) Analytical analysis of buckling and post-buckling of fluid conveying multi-walled carbon nanotubes. Appl Math Model 37(7):4972

    MathSciNet  MATH  Google Scholar 

  56. Arani AG, Maraghi ZK, Kolahchi R, Amir S, Bagheri MR (2013) Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos Part B Eng 45:423–432

    Google Scholar 

  57. Arani AG, Roudbari MA, Amir S (2015) Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations. Appl Math Model. https://doi.org/10.1016/j.apm.2015.09.055

    Article  MATH  Google Scholar 

  58. Daiab HL, Abdelkefi A, Wang L (2014) Modeling and nonlinear dynamics of fluid-conveying risers under hybrid excitations. Int J Eng Sci 81:1–14

    MathSciNet  MATH  Google Scholar 

  59. Ansari R, Norouzzadeh A, Gholami R, Shojaei MF, Hosseinzadeh M (2014) Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment. Phys E Low Dimens Syst Nanostruct 61:148

    Google Scholar 

  60. Nahvi H, Oveissi S (2015) Transverse vibration and instability of fluid conveying triple-walled carbon nanotubes based on strain-inertia gradient theory. J Theor Appl Vib Acoust 1(2):62–72

    Google Scholar 

  61. Filiz S, Aydogdu M (2015) Wave propagation analysis of embedded (coupled) functionally graded nanotubes conveying fluid. Compos Struct 132:1260

    Google Scholar 

  62. Sadeghi-Goughari M, Hosseini M (2015) The effects of non-uniform flow velocity on vibrations of single-walled carbon nanotube conveying fluid. J Mech Sci Technol 29(2):723–732

    Google Scholar 

  63. Hosseini M, Bahaadini R, Jamali B (2017) Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Phys B Phys Condens Matter. https://doi.org/10.1016/j.physb.2017.09.130

    Article  Google Scholar 

  64. Shabani R, Amiri A, Pournaki IJ, Jafarzadeh E, Rezazadeh G (2016) Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model. Microfluid Nanofluidics 20:38. https://doi.org/10.1007/s10404-016-1706-5

    Article  Google Scholar 

  65. Zeighampour H, Beni YT, Karimipour I (2017) Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory. Microfluid Nanofluidics 21:85

    Google Scholar 

  66. Esmailzadeh E, Askari H (2017) Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations. Compos Part B Eng 113:31–43

    Google Scholar 

  67. Zhen Y, Zhou L (2017) Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory. Mod Phys Lett B 31(8):1750069

    MathSciNet  Google Scholar 

  68. Sheng GG, Wang X (2017) Nonlinear response of fluid-conveying functionally graded cylindrical shells subjected to mechanical and thermal loading conditions. Compos Struct 168:675–684

    Google Scholar 

  69. Wang YQ, Li HH, Zhang YF, Zu JW (2018) A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid. Appl Math Model 64:55–70

    MathSciNet  MATH  Google Scholar 

  70. Wang YQ, Wan YH, Zu JW (2019) Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence. Thin Walled Struct 135:537–547

    Google Scholar 

  71. Wang YQ, Zu JW (2017) Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Compos Struct 164:130–144

    Google Scholar 

  72. Wang YQ, Liang L, Guo XH (2013) Internal resonance of axially moving laminated circular cylindrical shells. J Sound Vib 332(24):6434–6450

    Google Scholar 

  73. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    MathSciNet  MATH  Google Scholar 

  74. Farajpour A, Rastgoo A, Farajpour MR (2017) Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics. Compos Struct 180:179–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ K_{11} = - A_{11} k^{2} - A_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - A_{11} l^{2} k^{4} - \frac{{A_{66} }}{{R^{2} }}n^{2} - A_{66} \frac{{l^{2} }}{{R^{4} }}n^{4} - A_{66} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} $$
(68)
$$ K_{12} = - \frac{{A_{12} }}{R}kn - A_{12} \frac{{l^{2} }}{{R^{3} }}kn^{3} - A_{12} \frac{{l^{2} }}{R}k^{3} n - \frac{{A_{66} }}{R}kn - A_{66} \frac{{l^{2} }}{{R^{3} }}kn^{3} - A_{66} \frac{{l^{2} }}{R}k^{3} n $$
(69)
$$ K_{13} = + \frac{{A_{12} }}{R}ki + A_{12} \frac{{l^{2} }}{{R^{3} }}kn^{2} i + A_{12} \frac{{l^{2} }}{R}k^{3} i $$
(70)
$$ K_{14} = 0 $$
(71)
$$ K_{15} = 0 $$
(72)
$$ K_{21} = \frac{{A_{66} }}{R}kn - A_{66} \frac{{l^{2} }}{{R^{3} }}kn^{3} - A_{66} \frac{{l^{2} }}{R}k^{3} n - \frac{{A_{12} }}{R}kn - A_{12} \frac{{l^{2} }}{{R^{3} }}kn^{3} - A_{12} \frac{{l^{2} }}{R}k^{3} n $$
(73)
$$ \begin{aligned} K_{22} & = - A_{66} k^{2} - A_{66} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - A_{66} l^{2} k^{4} - \frac{{A_{11} }}{{R^{2} }}n^{2} - A_{11} \frac{{l^{2} }}{{R^{4} }}n^{4} - A_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - \frac{{D_{66} }}{{R^{2} }}k^{2} \\ & \quad - D_{66} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{2} - D_{66} \frac{{l^{2} }}{{R^{2} }}k^{4} - \frac{{D_{11} }}{{R^{4} }}n^{2} - D_{11} \frac{{l^{2} }}{{R^{6} }}n^{4} - D_{11} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{2} \\ \end{aligned} $$
(74)
$$ \begin{aligned} K_{23} & = + \frac{{A_{11} }}{{R^{2} }}ni + A_{11} \frac{{l^{2} }}{{R^{4} }}n^{3} i - A_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} ni + 2\frac{{D_{66} }}{{R^{2} }}k^{2} ni + 2D_{66} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{3} i + 2D_{66} \frac{{l^{2} }}{{R^{2} }}k^{4} ni \\ & \quad + \frac{{D_{12} }}{{R^{2} }}k^{2} ni + D_{12} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{3} i + D_{12} \frac{{l^{2} }}{{R^{2} }}k^{4} ni + \frac{{D_{11} }}{{R^{4} }}n^{3} i + D_{11} \frac{{l^{2} }}{{R^{6} }}n^{5} i + D_{11} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{3} \\ \end{aligned} $$
(75)
$$ K_{24} = \frac{{E_{31} }}{{R^{2} }}ni + E_{31} \frac{{l^{2} }}{{R^{4} }}n^{3} i + E_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} ni $$
(76)
$$ K_{25} = \frac{{Q_{31} }}{{R^{2} }}ni + Q_{31} \frac{{l^{2} }}{{R^{4} }}n^{3} i + Q_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} ni $$
(77)
$$ K_{31} = - \frac{{A_{12} }}{R}ki - A_{12} \frac{{l^{2} }}{{R^{3} }}kn^{2} i - A_{12} \frac{{l^{2} }}{R}k^{3} i $$
(78)
$$ \begin{aligned} K_{32} & = + \frac{{D_{12} }}{{R^{2} }}k^{2} ni + D_{12} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{3} i + D_{12} \frac{{l^{2} }}{{R^{2} }}k^{4} ni + \frac{{2D_{66} }}{{R^{2} }}k^{2} ni + 2D_{66} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{3} i \\ & \quad + 2D_{66} \frac{{l^{2} }}{{R^{2} }}k^{4} ni - \frac{{D_{11} }}{{R^{4} }}n^{3} i - D_{11} \frac{{l^{2} }}{{R^{6} }}n^{5} i - D_{11} \frac{{l^{2} }}{{R^{4} }}n^{3} k^{2} i - \frac{{A_{11} }}{{R^{2} }}ni - A_{11} \frac{{l^{2} }}{{R^{4} }}n^{3} i \\ & \quad - A_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} ni \\ \end{aligned} $$
(79)
$$ \begin{aligned} K_{33} & = - D_{11} k^{4} - D_{11} \frac{{l^{2} }}{{R^{2} }}k^{4} n^{2} - D_{11} l^{2} k^{6} - 2\frac{{D_{12} }}{{R^{2} }}k^{2} n^{2} - 2D_{12} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{4} \\ & \quad - 2D_{12} \frac{{l^{2} }}{{R^{2} }}k^{4} n^{2} - \frac{{4D_{66} }}{{R^{2} }}k^{2} n^{2} - 4D_{66} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{4} - 4D_{66} \frac{{l^{2} }}{{R^{2} }}k^{4} n^{2} - \frac{{D_{11} }}{{R^{4} }}n^{4} \\ & \quad - D_{11} \frac{{l^{2} }}{{R^{6} }}n^{6} - D_{11} \frac{{l^{2} }}{{R^{4} }}k^{2} n^{4} - \frac{{A_{11} }}{{R^{2} }}W - A_{11} \frac{{l^{2} }}{{R^{4} }}n^{2} - A_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} + \frac{{N_{\theta 0} }}{{R^{2} }}n^{2} \\ & \quad + N_{x0} k^{2} + (e_{0} a)^{2} \left( {\frac{{N_{\theta 0} }}{{R^{4} }}n^{4} + \frac{{N_{\theta 0} }}{{R^{2} }}k^{2} n^{2} + N_{x0} k^{4} + \frac{{N_{x0} }}{{R^{2} }}k^{2} n^{2} } \right) \\ & \quad + \frac{{\rho_{f} R}}{2}\left( {(V_{\text{f}} {\text{VCF}})^{2} k^{2} } \right) + (e_{0} a)^{2} \frac{{\rho_{f} R}}{2}\left( {(V_{\text{f}} {\text{VCF}})^{2} k^{4} + (V_{\text{f}} {\text{VCF}})^{2} \frac{{k^{2} n^{2} }}{{R^{2} }}} \right) \\ \end{aligned} $$
(80)
$$ K_{34} = - E_{31} k^{2} - E_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - E_{31} l^{2} k^{4} + \frac{{E_{31} }}{{R^{2} }}n^{2} - E_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - E_{31} \frac{{l^{2} }}{{R^{4} }}n^{4} $$
(81)
$$ K_{35} = - Q_{31} k^{2} - Q_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - Q_{31} l^{2} k^{4} - \frac{{Q_{31} }}{{R^{2} }}n^{2} - Q_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - Q_{31} \frac{{l^{2} }}{{R^{4} }}n^{4} $$
(82)
$$ K_{41} = 0 $$
(83)
$$ K_{42} = \frac{{E_{31} }}{{R^{2} }}ni + E_{31} \frac{{l^{2} }}{{R^{4} }}n^{3} i + E_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} ni $$
(84)
$$ K_{43} = E_{31} k^{2} + E_{31} l^{2} k^{4} + E_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} + \frac{{E_{31} }}{{R^{2} }}n^{2} + E_{31} \frac{{l^{2} }}{{R^{4} }}n^{4} + E_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} $$
(85)
$$ \begin{aligned} K_{44} & = - X_{11} k^{2} - X_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - X_{11} l^{2} n^{4} - X_{22} n^{2} - X_{22} \frac{{l^{2} }}{{R^{2} }}n^{4} - X_{22} l^{2} k^{2} n^{2} - X_{33} \\ & \quad - X_{33} k^{2} - X_{33} \frac{{n^{2} }}{{R^{2} }} \\ \end{aligned} $$
(86)
$$ \begin{aligned} K_{45} & = - Y_{11} k^{2} - Y_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - Y_{11} l^{2} k^{4} - Y_{22} n^{2} - Y_{22} \frac{{l^{2} }}{{R^{2} }}n^{4} - Y_{22} l^{2} k^{2} n^{2} - Y_{33} - Y_{33} \frac{{l^{2} }}{{R^{2} }}n^{2} \\ & \quad - Y_{33} l^{2} k^{2} \\ \end{aligned} $$
(87)
$$ K_{51} = 0 $$
(88)
$$ K_{52} = \frac{{Q_{31} }}{{R^{2} }}ni + Q_{31} \frac{{l^{2} }}{{R^{4} }}n^{3} i + Q_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} ni $$
(89)
$$ K_{53} = Q_{31} k^{2} + Q_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} + Q_{31} l^{2} k^{4} + \frac{{Q_{31} }}{{R^{2} }}n^{2} + Q_{31} \frac{{l^{2} }}{{R^{4} }}n^{4} + Q_{31} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} $$
(90)
$$ \begin{aligned} K_{54} & = - Y_{11} k^{2} - Y_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - Y_{11} l^{2} k^{4} - Y_{22} n^{2} - Y_{22} \frac{{l^{2} }}{{R^{2} }}n^{4} - Y_{22} l^{2} k^{2} n^{2} - Y_{33} \\ & \quad - Y_{33} \frac{{l^{2} }}{{R^{2} }}n^{2} - Y_{33} l^{2} k^{2} \\ \end{aligned} $$
(91)
$$ \begin{aligned} K_{55} & = - T_{11} k^{2} - T_{11} \frac{{l^{2} }}{{R^{2} }}k^{2} n^{2} - T_{11} l^{2} k^{4} - T_{22} n^{2} - T_{22} \frac{{l^{2} }}{{R^{2} }}n^{4} - T_{22} l^{2} k^{2} n^{2} - T_{33} \\ & \quad - T_{33} \frac{{l^{2} }}{{R^{2} }}n^{2} - T_{33} l^{2} k^{2} \\ \end{aligned} $$
(92)
$$ M_{11} = M_{22} = - I_{1} - I_{1} (e_{0} a)^{2} \left( {k^{2} + \frac{{n^{2} }}{{R^{2} }}} \right) $$
(93)
$$ M_{33} = - I_{1} - I_{1} (e_{0} a)^{2} \left( {k^{2} + \frac{{n^{2} }}{{R^{2} }}} \right) + \frac{{\rho_{\text{f}} R}}{2} + (e_{0} a)^{2} \frac{{\rho_{\text{f}} R}}{2}\left( {k^{4} + \frac{{k^{2} n^{2} }}{{R^{2} }}} \right) $$
(94)
$$ C_{33} = - 2\frac{{\rho_{\text{f}} R}}{2}(V_{\text{f}} {\text{VCF}})k - 2(e_{0} a)^{2} \frac{{\rho_{\text{f}} R}}{2}\left( {k^{3} + \frac{{kn^{2} }}{{R^{2} }}} \right). $$
(95)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Ebrahimi, F. & Vinyas, M. Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes. Engineering with Computers 36, 1687–1703 (2020). https://doi.org/10.1007/s00366-019-00790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00790-5

Keywords

Navigation