Skip to main content

Advertisement

Log in

Multi-objective optimization of stainless steel 304 tube laser forming process using GA

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Laser forming is one of the most recent forming processes developed which uses a laser beam to induce a deliberate thermal stress on a workpiece to form a sheet metal. Accordingly, bending tubes using laser beam have attracted the attention of many engineers. In this paper, we studied the effects of various laser beam parameters on the tube bending process. To investigate the effects of all the parameters, we performed a large number of analyses and generated applicable tube laser bending data. We utilized Taguchi design of experiment method to manage the finite element simulation of the laser forming process. Subsequently, to have an easier, but more flexible and more complete laser forming data bank, we employed artificial neural networks to predict the required tube bending parameters for the proposed forming criteria. Finally, we used genetic algorithm programming to solve the multi-objective optimization with respect to the laser forming parameters. The objectives include maximum bending angle, minimum ovality, minimum thickening, and minimum forming energy consumption. The results from this study indicate that we can use applied data tables to find the optimum tube laser forming parameters. The outcome of the numerical experiments is consistent with the existing literature on the laser forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Li W, Yao YL (2001) Laser bending of tubes: mechanism, analysis, and prediction. J Manuf Sci Eng 123(4):674–681

    Article  Google Scholar 

  2. Hao N, Li L (2003) An analytical model for laser tube bending. Appl Surf Sci 208:432–436

    Article  Google Scholar 

  3. Hao N, Li L (2003) Finite element analysis of laser tube bending process. Appl Surf Sci 208:437–441

    Article  Google Scholar 

  4. Hsieh H-S, Lin J (2005) Study of the buckling mechanism in laser tube forming. Opt Laser Technol 37(5):402–409

    Article  Google Scholar 

  5. Hsieh H-S, Lin J (2005) Study of the buckling mechanism in laser tube forming with axial preloads. Int J Mach Tools Manuf 45(12–13):1368–1374

    Article  Google Scholar 

  6. Safdar S, Li L, Sheikh M, Liu Z (2005) The effect of beam geometry on stress distribution in laser bending of tubes. Int Congress Appl Lasers Electro-Optics 1:106

    Google Scholar 

  7. Zhang J, Cheng P, Zhang W, Graham M, Jones J, Jones M, Yao YL (2006) Effects of scanning schemes on laser tube bending. J Manuf Sci Eng 128(1):20–33

    Article  Google Scholar 

  8. Safdar S, Li L, Sheikh M, Liu Z (2007) Finite element simulation of laser tube bending: effect of scanning schemes on bending angle, distortions and stress distribution. Opt Laser Technol 39(6):1101–1110

    Article  Google Scholar 

  9. Guglielmotti A, Quadrini F, Squeo E, Tagliaferri V (2008) Diode laser forming of stainless steel tubes. Int J Mater Form 1(1):1343–1346

    Article  Google Scholar 

  10. Wang XY, Wang J, Wang L, Xu W, Guo D (2011) Scanning path planning in laser bending of tube based on curvature. Adv Mater Res Trans Tech Publ 264–265:6–11

    Google Scholar 

  11. Gollo MH, Mahdavian S, Naeini HM (2011) Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd: YAG laser. Opt Laser Technol 43(3):475–482

    Article  Google Scholar 

  12. Cheng P, Lin S (2000) Using neural networks to predict bending angle of sheet metal formed by laser. Int J Mach Tools Manuf 40(8):1185–1197

    Article  Google Scholar 

  13. Chen D-J, Xiang Y-B, Wu S-C, Li M-Q (2002) Application of fuzzy neural network to laser bending process of sheet metal. Mater Sci Technol 18(6):677–680

    Article  Google Scholar 

  14. Du Y, Wang X, Silvanus Jr (2010) Improved BP network to predict bending angle in the laser bending process for sheet metal. In: 2010 International Conference on intelligent system design and engineering application. IEEE, pp 839–843

  15. Shen H, Shi Y, Yao Z, Hu J (2006) Fuzzy logic model for bending angle in laser forming. Mater Sci Technol 22(8):981–986

    Article  Google Scholar 

  16. Esfahani RT, Zojaji Z (2016) Optimization of finite element model of laser forming in circular path using genetic algorithms and ANFIS. Soft Comput 20(5):2031–2045

    Article  Google Scholar 

  17. Maji K, Pratihar DK, Nath A (2013) Analysis and synthesis of laser forming process using neural networks and neuro-fuzzy inference system. Soft Comput 17(5):849–865

    Article  Google Scholar 

  18. Imhan KI, Baharudin B, Zakaria A, Ismail MISB, Alsabti NMH, Ahmad AK (2017) Investigation of material specifications changes during laser tube bending and its influence on the modification and optimization of analytical modeling. Opt Laser Technol 95:151–156

    Article  Google Scholar 

  19. Imhan KI, Baharudin B, Zakaria A, Ismail MISB, Alsabti NMH, Ahmad AK (2018) Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment. Opt Laser Technol 99:15–18

    Article  Google Scholar 

  20. Guan Y, Yuan G, Sun S, Zhao G (2013) Process simulation and optimization of laser tube bending. Int J Adv Manuf Technol 65(1–4):333–342

    Article  Google Scholar 

  21. Hibbitt H, Karlsson B, Sorensen P (2011) Abaqus analysis user’s manual version 6.10. Dassault Systèmes Simulia Corp, Providence

    Google Scholar 

  22. Hsieh H-S, Lin J (2004) Laser-induced vibration during pulsed laser forming. Opt Laser Technol 36(6):431–439

    Article  Google Scholar 

  23. Scott P, Olson R, Bockbrader J, Wilson M, Gruen B, Morbitzer R, Yang Y, Williams C, Brust F, Fredette L (2005) The Battelle Integrity of Nuclear Piping (BINP) Program Final Report. No NUREG/CR-6837

  24. Beale M, Hagan MT, Demuth HB (2011) Neural network toolbox, User’s guide, MATLAB. The MathWorks Inc, Natick

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa’id Golabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtiara, M., Golabi, S. & Tarkesh Esfahani, R. Multi-objective optimization of stainless steel 304 tube laser forming process using GA. Engineering with Computers 37, 155–171 (2021). https://doi.org/10.1007/s00366-019-00814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00814-0

Keywords

Navigation