Skip to main content
Log in

Novel metaheuristic classification approach in developing mathematical model-based solutions predicting failure in shallow footing

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study evaluated and compared several novel classification approaches to develop the most reliable stability model-based solution in the prediction of shallow footing’s allowable settlement. By applying the biogeography-based algorithm, this study presents an optimized metaheuristic classification approach with mathematical-based multi-layer perceptron neural network and fuzzy inference system to achieve a better assessment of the recognition of a complex failure phenomenon. By the contribution of a large number of finite element simulation, and considering seven key factors, the settlement of a shallow footing placed on a two-layered soil was measured as the target variable. Then, to change into the classification method, two overall situations of stability or failure were considered for the proposed soil layer. The ensemble of BBO–MLP and BBO–FIS are developed, and the results are evaluated by well-known accuracy indices. The results showed that employing BBO helps both MLP and FIS to have a better analysis. Besides, referring to the obtained total ranking scores of 6, 5, 11, and 8, respectively, for the MLP, FIS, BBO–MLP, and BBO–FIS, the BBO–MLP found to be the most accurate model, followed by BBO–FIS, MLP, and FIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cicek E, Guler E (2015) Bearing capacity of strip footing on reinforced layered granular soils. J Civ Eng Manag 21:605–614

    Article  Google Scholar 

  2. Mosallanezhad M, Moayedi H (2017) Comparison analysis of bearing capacity approaches for the strip footing on layered soils. Arab J Sci Eng 42:3711–3722

    Article  Google Scholar 

  3. Terzaghi K, Peck R, Mesri G (1943) Soil mechanics in engineering practice. Wiley, NewYork

    Google Scholar 

  4. Frydman S, Burd H (1997) Numerical studies of bearing-capacity factor N γ. J Geotech Geoenviron Eng 123:20–29

    Article  Google Scholar 

  5. Silvestri V (2003) A limit equilibrium solution for bearing capacity of strip foundations on sand. Can Geotech J 40:351–361

    Article  Google Scholar 

  6. Lotfizadeh MR, Kamalian M (2016) Estimating bearing capacity of strip footings over two-layered sandy soils using the characteristic lines method. Int J Civ Eng 14:107–116

    Article  Google Scholar 

  7. Florkiewicz A (1989) Upper bound to bearing capacity of layered soils. Can Geotech J 26:730–736

    Article  Google Scholar 

  8. Michalowski RL, Shi L (1995) Bearing capacity of footings over two-layer foundation soils. J Geotech Eng 121:421–428

    Article  Google Scholar 

  9. Dewaikar D, Mohapatra B (2003) Computation of bearing capacity factor Nγ-Prandtl’s mechanism. Soils Found 43:1–10

    Article  Google Scholar 

  10. Ghazavi M, Eghbali AH (2008) A simple limit equilibrium approach for calculation of ultimate bearing capacity of shallow foundations on two-layered granular soils. Geotech Geol Eng 26:535–542

    Article  Google Scholar 

  11. Keskin MS, Laman M (2013) Model studies of bearing capacity of strip footing on sand slope. KSCE J Civ Eng 17:699–711

    Article  Google Scholar 

  12. Ziaee SA, Sadrossadat E, Alavi AH, Shadmehri DM (2015) Explicit formulation of bearing capacity of shallow foundations on rock masses using artificial neural networks: application and supplementary studies. Environ Earth Sci 73:3417–3431

    Article  Google Scholar 

  13. Moayedi H, Moatamediyan A, Nguyen H, Bui X-N, Bui DT, Rashid ASA (2019) Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Eng Comput 35:1–17

    Article  Google Scholar 

  14. Bui X-N, Moayedi H, Safuan ARA (2019) Developing a predictive method based on optimized M5Rules–GA predicting heating load of an energy-efficient building system. Eng Comput 36:1–10

    Google Scholar 

  15. Liu L, Moayedi H, Rashid ASA, Rahman SSA, Nguyen H (2019) Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system. Eng Comput 36:1–13

    Google Scholar 

  16. Moayedi H, Hayati S (2018) Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput 66:208–219

    Article  Google Scholar 

  17. Moayedi H, Mosallanezhad M, Mehrabi M, Safuan ARA (2018) A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput Appl 31:1–24

    Google Scholar 

  18. Gao W, Guirao JLG, Basavanagoud B, Wu J (2018) Partial multi-dividing ontology learning algorithm. Inf Sci 467:35–58

    Article  MathSciNet  Google Scholar 

  19. Alnaqi AA, Moayedi H, Shahsavar A, Nguyen TK (2018) Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energy Convers Manage 183:137–148

    Article  Google Scholar 

  20. Moayedi H, Mosallanezhad M, Mehrabi M, Safuan ARA, Biswajeet P (2019) Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput 35:967–984

    Article  Google Scholar 

  21. Nguyen H, Bui X-N, Moayedi H (2019) A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophys 28:1–13

    Google Scholar 

  22. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  23. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  Google Scholar 

  24. Gao W, Guirao JLG, Abdel-Aty M, Xi W (2019) An independent set degree condition for fractional critical deleted graphs. Discrete Continuous Dyn Syst-S 12:877–886

    Article  MathSciNet  Google Scholar 

  25. Nguyen H, Drebenstedt C, Bui X-N, Bui DT (2019) Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Nat Resour Res 28:1–19

    Article  Google Scholar 

  26. Gao W, Wang W, Dimitrov D, Wang Y (2018) Nano properties analysis via fourth multiplicative ABC indicator calculating. Arab J Chem 11:793–801

    Article  Google Scholar 

  27. Nguyen H, Jamali Moghadam M, Moayedi H (2019) Agricultural wastes preparation, management and applications in engineering: a review. J Mater Cycles Waste Manage 21:1–13

    Article  Google Scholar 

  28. Nguyen H, Mehrabi M, Kalantar B, Moayedi H, Muazu MA (2019) Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping. Geomatics Nat Hazards Risk 10:1667–1693

    Article  Google Scholar 

  29. Nguyen H, Moayedi H, Sharifi A, Amizah WJW, Safuan ARA (2019) Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system. Eng Comput 35:1–11

    Article  Google Scholar 

  30. Shang Y, Nguyen H, Bui X-N, Tran Q-H, Moayedi H (2019) A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat Resour Res 28:1–15

    Google Scholar 

  31. Gao W, Wu H, Siddiqui MK, Baig AQ (2018) Study of biological networks using graph theory. Saudi J Biol Sci 25:1212–1219

    Article  Google Scholar 

  32. Wang B, Moayedi H, Nguyen H, Foong LK, Rashid ASA (2019) Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles. Eng Comput 36:1–10

    Google Scholar 

  33. Yuan C, Moayedi H (2019) The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition. Eng Comput 36:1–10

    Article  Google Scholar 

  34. Zhang X, Nguyen H, Bui X, Tran Q, Nguyen D, Bui D, Moayedi H (2019) Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Nat Resour Res 28:1–11

    Google Scholar 

  35. Moayedi H, Hayati S (2018) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech 18:06018009

    Article  Google Scholar 

  36. Moayedi H, Hayati S (2018) Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput Appl 31:1–17

    Google Scholar 

  37. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  38. Moayedi H, Raftari M, Sharifi A, Jusoh WAW, Rashid ASA (2019) Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng Comput 35:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Moayedi.

Ethics declarations

Conflict of interest

The authors of this manuscript declaring of no conflict of interest to other published works.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayedi, H., Nguyen, H. & Rashid, A.S.A. Novel metaheuristic classification approach in developing mathematical model-based solutions predicting failure in shallow footing. Engineering with Computers 37, 223–230 (2021). https://doi.org/10.1007/s00366-019-00819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00819-9

Keywords

Navigation