Skip to main content
Log in

A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the \(\theta \)-weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hundsdorfer W, Verwer JG (2003) Numerical solution of time dependent advection–diffusion–reaction equations. Springer, Berlin

    MATH  Google Scholar 

  2. Kuramoto Y (2003) Chemical oscillations waves and turbulence. Dover, Mineola

    MATH  Google Scholar 

  3. Murray JD (2003) Mathematical biology. II. Interdisciplinary applied mathematics. Springer, New York

    Google Scholar 

  4. Wilhelmsson H, Lazzaro E (2001) Reaction–diffusion problems in the physics of hot plasmas. Institute of Physics Publishing, Philadelphia

    Google Scholar 

  5. Atangana A (2016) On the new fractional derivative and application to nonlinear Fishers reaction–diffusion equation. Appl Math Comput 273:948–956

    MathSciNet  MATH  Google Scholar 

  6. Liu Q, Burrage K, Simpson MJ, Zhenga M, Liub F (2017) Numerical solution of the time fractional reaction–diffusion equation with a moving boundary. J Comput Phys 338:493–510

    MathSciNet  Google Scholar 

  7. Zhang Z, Xie J (2018) The high-order multistep ADI solver for two-dimensional nonlinear delayed reaction–diffusion equations with variable coefficients. Comput Math Appl 75:3558–3570

    MathSciNet  MATH  Google Scholar 

  8. Volkov VT, Shishlenin MA, Lukyanenko DV, Grigorev VB (2018) Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data. Comput Math Appl 77:1245–1254

    MathSciNet  MATH  Google Scholar 

  9. Li D, Cheng X, Duan J (2019) A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl Math Comput 346:452–464

    MathSciNet  MATH  Google Scholar 

  10. Yuste SB, Lindenberg K (2001) Subdiffusion-limited A + A reactions. Phys Rev Lett 87(11):118301

    Google Scholar 

  11. Metzler R, Barkai E, Klafter J (2000) From continuous time random walks to the fractional Fokker–Planck equation. Phys Rev E 61:132–138

    MathSciNet  Google Scholar 

  12. Metzler R, Klafter J (2000) Boundary value problems for fractional diffusion equations. J Phys A 278:107–125

    MathSciNet  MATH  Google Scholar 

  13. Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos 140:753–764

    MathSciNet  MATH  Google Scholar 

  14. Acedo L, Yuste SB, Lindenberg K (2004) Reaction front in an \( A + B> C \) reaction subdiffusion process. Phys Rev E 69:136–144

    Google Scholar 

  15. Wheatcraft SW, Benson DA, Meerschaert MM (2000) The fractional-order governing equation of lévy motion. Water Resour Res 36(6):1413–1423

    Google Scholar 

  16. Anh V, Liu F, Turner I (2004) Numerical solution of the space fractional Fokker–Planck equation. J Comput Appl Math 166:209–219

    MathSciNet  MATH  Google Scholar 

  17. Gorenflo R, Scalas E, Mainardi F (2000) Fractional calculus and continuous-time finance. J Phys A 284:376–384

    MathSciNet  Google Scholar 

  18. Eiswirth M, Bar M, Gottschalk N, Ertl G (1994) Spiral waves in a surface reaction: model calculations. J Chem Phys 100:1202–1214

    Google Scholar 

  19. Gupta PK, Das S, Ghosh P (2011) An approximate solution of nonlinear fractional reaction–diffusion equation. Appl Math Model 35:4071–4076

    MathSciNet  MATH  Google Scholar 

  20. Pindza E, Owolabi KM (2016) Fourier spectral method for higher order space fractional reaction–diffusion equations. Commun Nonlinear Sci Numer Simul 40:112–128

    MathSciNet  MATH  Google Scholar 

  21. Mei L, Guo Sh, Li Y (2017) An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction–diffusion-wave equation. Comput Math Appl 74:2449–2465

    MathSciNet  MATH  Google Scholar 

  22. Abdelfatah B, Taki-Eddine O (2017) A priori estimates for weak solution for a time-fractional nonlinear reaction–diffusion equations with an integral condition. Chaos Solitons Fractals 103:79–89

    MathSciNet  MATH  Google Scholar 

  23. Chen X, Li L, Zhou B, Wang Z (2018) Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay. Appl Math Comput 337:144–152

    MathSciNet  MATH  Google Scholar 

  24. Khaliq AQM, Alzahrani SS (2019) High-order time stepping Fourier spectral method for multi-dimensional space-fractional reaction–diffusion equations. Comput Math Appl 77:615–630

    MathSciNet  MATH  Google Scholar 

  25. Baleanu D, Sun H, Hajipour M, Jajarmi A (2019) On an accurate discretization of a variable-order fractional reaction–diffusion equation. Commun Nonlinear Sci Numer Simul 69:119–133

    MathSciNet  MATH  Google Scholar 

  26. Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integral Transforms Special Function 1:277–300

    MathSciNet  MATH  Google Scholar 

  27. Ramirez LES, Coimbra CFM (2011) On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys D 240:1111–1118

    MathSciNet  MATH  Google Scholar 

  28. Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Special Top 193:185–192

    Google Scholar 

  29. Shyu JJ, Pei SC, Chan CH (2009) An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process 89:320–327

    MATH  Google Scholar 

  30. Coimbra C (2003) Mechanics with variable-order differential operators. Ann Phys 12:692–703

    MathSciNet  MATH  Google Scholar 

  31. Lin R, Liu F, Anh V, Turner I (2009) Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl Math Comput 212:435–445

    MathSciNet  MATH  Google Scholar 

  32. Atangana A, Gómez-Aguilar JF (2018) Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus 133:166

    Google Scholar 

  33. Atangana A (2018) Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys A 505:688–706

    MathSciNet  Google Scholar 

  34. Atangana A (2018) Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 114:347–363

    MathSciNet  MATH  Google Scholar 

  35. Atangana A, Gómez-Aguilar JF (2018) Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114:516–535

    MathSciNet  MATH  Google Scholar 

  36. Bhrawy AH, Zaky MA (2016) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80(1):101–116

    MathSciNet  MATH  Google Scholar 

  37. Zayernouri M, Karniadakis GE (2015) Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys 80(1):312–338

    MathSciNet  MATH  Google Scholar 

  38. Li XY, Wu BY (2015) A numerical technique for variable fractional functional boundary value problems. Appl Math Lett 43:108–113

    MathSciNet  MATH  Google Scholar 

  39. Abdelkawy MA, Zaky MA, Bhrawy AH, Baleanu D (2015) Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom Rep Phys 67:773–791

    Google Scholar 

  40. Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85(3):1815–1823

    MathSciNet  MATH  Google Scholar 

  41. Hosseininia M, Heydari MH (2019) Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel. Chaos Solitons Fractals 127:389–399

    MathSciNet  MATH  Google Scholar 

  42. Hosseininia M, Heydari MH (2019) Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag–Leffler non-singular kernel. Chaos Solitons Fractals 127:400–407

    MathSciNet  MATH  Google Scholar 

  43. Heydari MH, Hooshmandasl MR, Cattani C, Hariharan G (2017) An optimization wavelet method for multi variable-order fractional differential equations. Fundam Inform 153(3–4):173–198

    MathSciNet  MATH  Google Scholar 

  44. Heydari MH, Avazzadeh Z, Haromi MF (2019) A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl Math Comput 341:215–228

    MathSciNet  MATH  Google Scholar 

  45. Heydari MH, Avazzadeh Z, Yang Y (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248

    MathSciNet  MATH  Google Scholar 

  46. Heydari MH, Avazzadeh Z (2018) Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos Solitons Fractals 112:180–190

    MathSciNet  MATH  Google Scholar 

  47. Heydari MH, Avazzadeh Z (2018) An operational matrix method for solving variable-order fractional biharmonic equation. Comput Appl Math 37(4):4397–4411

    MathSciNet  MATH  Google Scholar 

  48. Heydari MH, Avazzadeh Z (2018) A new wavelet method for variable-order fractional optimal control problems. Asian J Control 20(5):1–14

    MathSciNet  MATH  Google Scholar 

  49. Heydari MH (2018) A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J Frankl Inst 355:4970–4995

    MathSciNet  MATH  Google Scholar 

  50. Hosseininia M, Heydari MH, Ghaini FMM, Avazzadeh Z (2018) Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection–diffusion equation with variable coefficients. Int J Nonlinear Sci Numer Simul 19(7–8):793–802

    MathSciNet  MATH  Google Scholar 

  51. Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. J Comput Phys 340(1):655–669

    MathSciNet  MATH  Google Scholar 

  52. Levin D (1998) The approximation power of moving least-squares. Math Comput Am Math Soc 67(224):1517–1531

    MathSciNet  MATH  Google Scholar 

  53. Cohen-Or D, Fleishman S, Levin D, Alexa M, Behr J, Silva CT (2003) Computing and rendering point set surfaces. IEEE Trans Vis Comput Graph 9(1):3–15

    Google Scholar 

  54. Mirzaei D (2016) A greedy meshless local Petrov–Galerkin method based on radial basis functions. Numer Methods Partial Differ Equ 32(3):847–861

    MathSciNet  MATH  Google Scholar 

  55. Dehghan M, Abbaszadeh M (2017) Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems. Comput Methods Appl Mech Eng 328:775–803

    MathSciNet  MATH  Google Scholar 

  56. Mardani A, Hooshmandasl MR, Hosseini MM, Heydari MH (2017) Moving least squares (MLS) method for the nonlinear hyperbolic telegraph equation with variable coefficients. Int J Comput Methods 14(3):1750026

    MathSciNet  MATH  Google Scholar 

  57. Matinfar M, Pourabd M (2018) Modified moving least squares method for two-dimensional linear and nonlinear systems of integral equations. Comput Appl Math 37:5857–5875

    MathSciNet  MATH  Google Scholar 

  58. Turner I, Zhuang P, Gu YT, Yarlagadda PKDV (2011) Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88:1346–1362

    MathSciNet  MATH  Google Scholar 

  59. Shekari Y, Tayebi A, Heydari MH (2019) A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Comput Methods Appl Mech Eng 350:154–168

    MathSciNet  MATH  Google Scholar 

  60. Pandey RK, Yadav S, Shukla AK (2019) Numerical approximations of Atangana–Baleanu Caputo derivative and its application. Chaos Solitons Fractals 118:58–64

    MathSciNet  MATH  Google Scholar 

  61. Feng Zh (2007) Traveling waves to a reaction–diffusion equation. Discrete Contin Dyn Syst Suppl 382–390

  62. Hasegawa A (1989) Optical solitons in fibers. Springer, Berlin

    Google Scholar 

  63. Fries TP, Matthies HG (2003) Classification and overview of meshfree methods. Department of Mathematics and Computer Science, Technical University of Braunschweig, Brunswick

    MATH  Google Scholar 

  64. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Google Scholar 

  65. Wangb W, Li D, Zhang C, Zhang Y (2011) Implicit–explicit predictor–corrector schemes for nonlinear parabolic differential equations. Appl Math Model 35:2711–2722

    MathSciNet  MATH  Google Scholar 

  66. Maslov VP, Danilov VG, Volosov KA (1995) Mathematical modelling of heat and mass transfer processes. Springer, Netherlands

    MATH  Google Scholar 

  67. Li D, Wu F, Cheng X, Duan J (2018) A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction–diffusion equations. Comput Math Appl 75:2835–2850

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Heydari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseininia, M., Heydari, M.H., Rouzegar, J. et al. A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel. Engineering with Computers 37, 731–743 (2021). https://doi.org/10.1007/s00366-019-00852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00852-8

Keywords

Navigation