Skip to main content
Log in

Meshless upwind local radial basis function-finite difference technique to simulate the time- fractional distributed-order advection–diffusion equation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The main objective in this paper is to propose an efficient numerical formulation for solving the time-fractional distributed-order advection–diffusion equation. First, the distributed-order term has been approximated by the Gauss quadrature rule. In the next, a finite difference approach is applied to approximate the temporal variable with convergence order \(\mathcal{O}(\tau ^{2-\alpha })\) as \(0<\alpha <1\). Finally, to discrete the spacial dimension, an upwind local radial basis function-finite difference idea has been employed. In the numerical investigation, the effect of the advection coefficient has been studied in terms of accuracy and stability of the proposed difference scheme. At the end, two examples are studied to approve the impact and ability of the numerical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abbaszadeh M (2019) Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett 88:179–185

    MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh M, Dehghan M (2017) An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algorithms 75:173–211

    MathSciNet  MATH  Google Scholar 

  3. Aliyu AI, Inc M, Yusuf A, Baleanu D (2018) A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives. Chaos Solitons Fractals 116:268–277

    MathSciNet  MATH  Google Scholar 

  4. Atanackovic T, Pilipovic S, Zorica D (2009) Existence and calculation of the solution to the time distributed order diffusion equation. Phys Scr 2009(T136):014012

    Google Scholar 

  5. Atanackovic TM, Pilipovic S, Zorica D (2009) Time distributed-order diffusion–wave equation. i. Volterra-type equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, pp rspa–2008

  6. Atangana A, Koca I (2016) Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89:447–454

    MathSciNet  MATH  Google Scholar 

  7. Atangana A, Gomez-Aguilar JF (2018) Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114:516–535

    MathSciNet  MATH  Google Scholar 

  8. Atkinson KE An introduction to numerical analysis, New York, p 528

  9. Bhrawy AH, Zaky MA (2018) Numerical simulation of multi-dimensional distributed-order generalized Schrodinger equations. Nonlinear Dyn 89:1415–1432

    MATH  Google Scholar 

  10. Chechkin A, Gorenflo R, Sokolov I (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E 66(4):046129

    Google Scholar 

  11. Chechkin AV, Gorenflo R, Sokolov IM, Gonchar VY (2003) Distributed order time fractional diffusion equation. Fract Calc Appl Anal 6(3):259–280

    MathSciNet  MATH  Google Scholar 

  12. Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection–diffusion equation. Appl Math Comput 147(2):307–319

    MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Abbaszadeh M (2018) A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math Methods Appl Sci 41:3476–3494

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33:587–605

    Google Scholar 

  15. Dehghan M, Abbaszadeh M (2019) Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives. J Comput Appl Math 356:314–328

    MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26:448–479

    MathSciNet  MATH  Google Scholar 

  17. Ding H, Li CP (2019) A high-order algorithm for time-caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. J Sci Comput 80:81–109

    MathSciNet  MATH  Google Scholar 

  18. Ding H (2019) A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. Appl Numer Math 135:30–46

    MathSciNet  MATH  Google Scholar 

  19. Ding H, Li CP (2018) High-order numerical approximation formulas for Riemann–Liouville (Riesz) tempered fractional derivatives: construction and application (II). Appl Math Lett 86:208–214

    MathSciNet  MATH  Google Scholar 

  20. Ding H, Li CP (2017) High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J Sci Comput 71(2):759–784

    MathSciNet  MATH  Google Scholar 

  21. Driscoll TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43(3–5):413–422

    MathSciNet  MATH  Google Scholar 

  22. Eshaghi J, Kazem S, Adibi H (2018) The local discontinuous Galerkin method for 2D nonlinear time-fractional advection-diffusion equations. Eng Comput 1:4. https://doi.org/10.1007/s00366-018-0665-8

    Article  Google Scholar 

  23. Flyer N, Lehto E, Blaise S, Wright GB, St-Cyr A (2012) A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J Comput Phys 231(11):4078–4095

    MathSciNet  MATH  Google Scholar 

  24. Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230(6):2270–2285

    MathSciNet  MATH  Google Scholar 

  25. Gao G-H, Sun Z-Z (2015) Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput Math Appl 69(9):926–948

    MathSciNet  MATH  Google Scholar 

  26. Javed A, Djijdeli K, Xing J (2014) Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier–Stokes equations. Comput Fluids 89:38–52

    MathSciNet  MATH  Google Scholar 

  27. Hafez RM, Zaky MA (2019) High-order continuous Galerkin methods for multi-dimensional advection-reaction-diffusion problems. Eng Comput. https://doi.org/10.1007/s00366-019-00797-y

    Article  Google Scholar 

  28. Katsikadelis JT (2014) Numerical solution of distributed order fractional differential equations. J Comput Phys 259:11–22

    MathSciNet  MATH  Google Scholar 

  29. Li C, Deng W, Zhao L (2019) Well-posedness and numerical algorithm for the tempered fractional differential equations. Discret Contin Dyn Syst B 24:1989

    MathSciNet  MATH  Google Scholar 

  30. Luchko Y (2009) Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract Calc Appl Anal 12(4):409–422

    MathSciNet  MATH  Google Scholar 

  31. Hu X, Liu F, Turner I, Anh V (2016) An implicit numerical method of a new time distributed-order and two-sided space-fractional advection–dispersion equation. Numer Algorithms 72:393–407

    MathSciNet  MATH  Google Scholar 

  32. Mashayekhi S, Razzaghi M (2016) Numerical solution of distributed order fractional differential equations by hybrid functions. J Comput Phys 315:169–181

    MathSciNet  MATH  Google Scholar 

  33. Moghaddam BP, Machado JAT, Morgado ML (2019) Numerical approach for a class of distributed order time fractional partial differential equations. Appl Numer Math 136:152–162

    MathSciNet  MATH  Google Scholar 

  34. Osman SA, Langlands TAM (2019) An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations. Appl Math Comput 348:609–626

    MathSciNet  MATH  Google Scholar 

  35. Podlubny I, Skovranek T, Jara BMV, Petras I, Verbitsky V, Chen Y (2013) Matrix approach to discrete fractional calculus iii: non-equidistant grids, variable step length and distributed orders. Philos Trans R Soc A 371(1990):20120153

    MathSciNet  MATH  Google Scholar 

  36. Qiao Y, Zhai S, Feng X (2017) RBF-FD method for the high dimensional time fractional convection–diffusion equation. Int Commun Heat Mass Transfer 89:230–240

    Google Scholar 

  37. Sandev T, Chechkin AV, Korabel N, Kantz H, Sokolov IM, Metzler R (2015) Distributed-order diffusion equations and multifractality: models and solutions. Phys Rev E 92(4):042117

    MathSciNet  Google Scholar 

  38. Shankar V (2017) The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD. J Comput Phys 342:211–228

    MathSciNet  MATH  Google Scholar 

  39. Shu C, Ding H, Chen H, Wang T (2005) An upwind local RBF-DQ method for simulation of inviscid compressible flows. Comput Methods Appl Mech Eng 194(18–20):2001–2017

    MATH  Google Scholar 

  40. Sun Z-Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56(2):193–209

    MathSciNet  MATH  Google Scholar 

  41. Wang X, Deng W Discontinuous Galerkin methods and their adaptivity for the tempered fractional (convection) diffusion equations. arXiv:1706.02826 (arXiv preprint)

  42. Wendland H (2004) Scattered data approximation, vol 17. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  43. Ye H, Liu F, Anh V (2015) Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J Comput Phys 298:652–660

    MathSciNet  MATH  Google Scholar 

  44. Yuttanana B, Razzaghi M (2019) Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl Math Model 70:350–364

    MathSciNet  MATH  Google Scholar 

  45. Zaky MA (2018) An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput Math Appl 75:2243–2258

    MathSciNet  MATH  Google Scholar 

  46. Zaky MA, Machado JAT (2017) On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul 52:177–189

    MathSciNet  MATH  Google Scholar 

  47. Zaky MA, Doha EH, Machado JAT (2018) A spectral numerical method for solving distributed-order fractional initial value problems. J Comput Nonlinear Dyn 3(10):101007

    Google Scholar 

  48. Zaky MA (2018) A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn 91:2667–2681

    MATH  Google Scholar 

  49. Zaky MA (2019) Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl Numer Math. https://doi.org/10.1016/j.apnum.2019.05.008

    Article  MathSciNet  MATH  Google Scholar 

  50. Zaky MA (2019) Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J Comput Appl Math 357:103–122

    MathSciNet  MATH  Google Scholar 

  51. Zaky MA, Ameen IG (2019) A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra–Fredholm integral equations with smooth solutions. Numer Algorithms. https://doi.org/10.1007/s11075-019-00743-5

    Article  MATH  Google Scholar 

  52. Zayernouri M, Karniadakis GE (2014) Discontinuous spectral element methods for time-and space-fractional advection equations. SIAM J Sci Comput 36(4):B684–B707

    MathSciNet  MATH  Google Scholar 

  53. Zhao X, Sun Z-Z, Karniadakis GE (2015) Second-order approximations for variable order fractional derivatives: algorithms and applications. J Comput Phys 293:184–200

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abbaszadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Dehghan, M. Meshless upwind local radial basis function-finite difference technique to simulate the time- fractional distributed-order advection–diffusion equation. Engineering with Computers 37, 873–889 (2021). https://doi.org/10.1007/s00366-019-00861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00861-7

Keywords

Navigation