Skip to main content
Log in

Chaotic dynamics and forced harmonic vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, the damping forced harmonic vibration characteristics of magneto-electro-viscoelastic (MEV) nanobeam embedded in viscoelastic foundation is evaluated based on nonlocal strain gradient elasticity theory. The viscoelastic foundation consists of Winkler–Pasternak layer. The governing equations of nonlocal strain gradient viscoelastic nanobeam in the framework of refined shear deformable beam theory are obtained using Hamilton’s principle and solved implementing an analytical solution. In addition, a parametric study is presented to examine the effect of the nonlocal strain gradient parameter, magneto-electro-mechanical loadings, and aspect ratio on the vibration characteristics of nanobeam. From the numerical evaluation, it is revealed that the effect of electric and magnetic loading on the natural frequency has a predominant influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van den Boomgard J, Terrell DR, Born RAJ et al (1974) An in situ grown eutectic magnetoelectric composite material. J Mater Sci 9:1705–1709

    Google Scholar 

  2. Zheng H, Wang J, Lofland SE et al (2004) Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303:661–663

    Google Scholar 

  3. Martin LW, Crane SP, Chu YH et al (2008) Multiferroics and magnetoelectrics: thin films and nanostructures. J Phys Condens Matter 20:434220

    Google Scholar 

  4. Wang Y, Hu JM, Lin YH et al (2010) Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater 2:61–68

    Google Scholar 

  5. Prashanthi K, Shaibani PM, Sohrabi A et al (2012) Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys Status Solid R 6:244–246

    Google Scholar 

  6. Eringen A (1968) Mechanics of micromorphic continua. In: Kroner E (ed) Mechanics of Generalized Continua. Springer, Berlin, pp 18–35

    Google Scholar 

  7. Eringen A (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    MathSciNet  MATH  Google Scholar 

  8. Eringen A (1976) Nonlocal micropolar field theory. In: Eringen AC (ed) Continuum Physics. Academic Press, New York, p 106

    Google Scholar 

  9. Eringen A (2002) Nonlocal continuum field theories. Springer, New York, p 105

    MATH  Google Scholar 

  10. Eringen A (2006) Nonlocal continuum mechanics based on distributions. Int J Eng Sci 44(3):141–147

    MathSciNet  MATH  Google Scholar 

  11. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Google Scholar 

  12. Li L, Hu Y, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092

    Google Scholar 

  13. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    MATH  Google Scholar 

  14. She GL, Ren YR, Yan KM (2019) On snap-buckling of porous FG curved nanobeams. Acta Astronaut 161:475–484

    Google Scholar 

  15. She GL, Yan KM, Zhang YL, Liu HB, Ren YR (2018) Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. Euro Phys J Plus 133(9):368

    Google Scholar 

  16. Shafiei N, She GL (2018) On vibration of functionally graded nano-tubes in the thermal environment. Int J Eng Sci 133:84–98

    MathSciNet  MATH  Google Scholar 

  17. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312

    Google Scholar 

  18. Zenkour AM, Sobhy M (2013) Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium. Phys E Low Dimens Syst Nanostruct 53:251–259 (Science 41:305–312)

    Google Scholar 

  19. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Google Scholar 

  20. Wang CM, Kitipornchai S, Lim CW, Eisenberger M (2008) Beam bending solutions based on nonlocal Timoshenko beam theory. J Eng Mech 134:475–481

    Google Scholar 

  21. Civalek O, Demir C (2011) Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl Math Model 35:2053–2067

    MathSciNet  MATH  Google Scholar 

  22. Murmu T, Pradhan SC (2009) Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 41(7):1232–1239

    Google Scholar 

  23. Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E 42(5):1727–1735

    Google Scholar 

  24. Roque CMC, Ferreira AJM, Reddy JN (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49(9):976–984

    MATH  Google Scholar 

  25. Şimşek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Google Scholar 

  26. Arefi M, Zenkour AM (2016) A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment. J Sandwich Struct Mater 18(5):624–651

    Google Scholar 

  27. Ebrahimi F, Barati MR (2016) Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J Vibrat Control. https://doi.org/10.1177/1077546316646239

    Article  Google Scholar 

  28. Ebrahimi F, Barati MR (2016) Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J Brazil Soc Mech Sci Eng 39:1–16

    Google Scholar 

  29. Ebrahimi F, Barati MR (2016) Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl Phys A 122(4):1–18

    Google Scholar 

  30. Ebrahimi F, Barati MR (2016) Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment. Int J Smart Nano Mater 7:1–22

    Google Scholar 

  31. Ebrahimi F, Barati MR (2016) An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams. Adv Innano Res 4(2):65–84

    Google Scholar 

  32. Ke LL, Wang YS, Yang J, Kitipornchai S (2014) Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta Mech Sin 30(4):516–525

    MathSciNet  MATH  Google Scholar 

  33. Ke LL, Wang YS (2014) Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Physica E 63:52–61

    Google Scholar 

  34. Thostenson ET, Li WZ, Wang {\rm d}z, Ren ZF, Chou TW (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037

    Google Scholar 

  35. Shen HS (2009) A comparison of buckling and postbuckling behavior of FGM plates with piezoelectric fiber reinforced composite actuators. Compos Struct 91(3):375–384

    Google Scholar 

  36. Kim M, Park YB, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69(3):335–342

    Google Scholar 

  37. Feng C, Kitipornchai S, Yang J (2017) Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng 110:132–140

    Google Scholar 

  38. Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96:716–725

    Google Scholar 

  39. Mantari JL, Bonilla EM, Soares CG (2014) A new tangential-exponential higher order shear deformation theory for advanced composite plates. Compos B Eng 60:319–328

    Google Scholar 

  40. Leissa AW (1969) Vibration of plates. J Appl Math Mech 51(3):243

    Google Scholar 

  41. Ebrahimi F, Salari E (2016) Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams. Mech Adv Mater Struct 23:1379–1397

    Google Scholar 

  42. Ebrahimi F, Barati MR (2017) Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams. Mech Syst Signal Process 93:445–459

    Google Scholar 

  43. Shen HS, Chen X, Guo L, Wu L, Huang XL (2015) Nonlinear vibration of FGM doubly curved panels resting on elastic foundations in thermal environments. Aerosp Sci Technol 47:434–446

    Google Scholar 

  44. Sahmani S, Aghdam MM (2017) Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int J Mech Sci 131:95–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(M_{11} = I_{0} \left( {\mu \bar{X}_{13} - \bar{X}_{11} } \right)\)

\(M_{12} = I_{1} \left( {\bar{X}_{11} - \mu \bar{X}_{13} } \right)\)

\(M_{13} = I_{2} \left( {\bar{X}_{11} - \mu \bar{X}_{13} } \right)\)

\(M_{21} = I_{1} \left( {\mu \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(M_{22} = I_{0} \left( {\mu \bar{X}_{20} - \bar{X}_{00} } \right) + I_{4} \left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right)\)

\(M_{23} = I_{0} \left( {\mu \bar{X}_{20} - \bar{X}_{00} } \right) + I_{3} \left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right)\)

\(M_{31} = I_{2} \left( {\mu \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(M_{32} = I_{0} \left( {\mu \bar{X}_{20} - \bar{X}_{00} } \right) + I_{3} \left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right)\)

\(M_{33} = I_{0} \left( {\mu \bar{X}_{20} - \bar{X}_{00} } \right) + I_{5} \left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right)\)

 

\(C_{11} = i{\text{g}}_{0} J_{11} \left( {\lambda \bar{X}_{15} - \bar{X}_{13} } \right)\)

\(C_{12} = i{\text{g}}_{0} J_{11}^{z} \left( {\bar{X}_{13} - \lambda \bar{X}_{15} } \right)\)

\(C_{13} = i{\text{g}}_{0} J_{11}^{f} \left( {\bar{X}_{13} - \lambda \bar{X}_{15} } \right)\)

\(C_{21} = i{\text{g}}_{0} J_{11}^{z} \left( {\lambda \bar{X}_{60} - \bar{X}_{40} } \right)\)

\(C_{22} = i\left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right)c_{d} + i{\text{g}}_{0} J_{11}^{zz} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right)\)

\(C_{23} = i\left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right)c_{d} + i{\text{g}}_{0} J_{11}^{zf} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right)\)

\(C_{31} = i{\text{g}}_{0} J_{11}^{f} \left( {\lambda \bar{X}_{60} - \bar{X}_{40} } \right)\)

\(C_{32} = i\left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right)c_{d} + i{\text{g}}_{0} J_{11}^{zf} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right)\)

\(C_{33} = i\left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right)c_{d} + i{\text{g}}_{0} J_{11}^{ff} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right) + i{\text{g}}_{0} K_{55} \left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{11} = J_{11} \left( {\lambda \bar{X}_{15} - \bar{X}_{13} } \right)\)

\(k_{12} = J_{11}^{z} \left( {\bar{X}_{13} - \lambda \bar{X}_{15} } \right)\)

\(k_{13} = J_{11}^{f} \left( {\bar{X}_{13} - \lambda \bar{X}_{15} } \right)\)

\(k_{14} = K_{31}^{e} \left( {\lambda \bar{X}_{13} - \bar{X}_{11} } \right)\)

\(k_{15} = K_{31}^{m} \left( {\lambda \bar{X}_{13} - \bar{X}_{11} } \right)\)

\(k_{21} = J_{11}^{z} \left( {\lambda \bar{X}_{60} - \bar{X}_{40} } \right)\)

\(\begin{aligned} k_{22} & \, & = \left( {N^{E} + N^{H} } \right)\left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right) \\ & \quad + k_{w} \left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right) \\ \quad + k_{p} \left( {\mu \bar{X}_{40} - \bar{X}_{20} } \right) \\ \quad + J_{11}^{zz} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right) \\ \end{aligned}\)

\(\begin{aligned} k_{23} & & = \left( {N^{E} + N^{H} } \right)\left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right) \\ \quad + k_{w} \left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right) \\ \quad + k_{p} \left( {\mu \bar{X}_{40} - \bar{X}_{20} } \right) \\ \quad + J_{11}^{zf} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right) \\ \end{aligned}\)

\(k_{24} = X_{31}^{e} \left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{25} = X_{31}^{m} \left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{31} = J_{11}^{f} \left( {\lambda \bar{X}_{60} - \bar{X}_{40} } \right)\)

\(\begin{aligned} k_{32} & = \left( {N^{E} + N^{H} } \right)\left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right) + k_{w} \left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right) \\ + k_{p} \left( {\mu \bar{X}_{40} - \bar{X}_{20} } \right) + J_{11}^{zf} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right) \\ \end{aligned}\)

\(\begin{array}{ll} k_{33} & = \left( {N^{E} + N^{H} } \right)\left( {\bar{X}_{20} - \mu \bar{X}_{40} } \right) \\ &+ k_{w} \left( {\bar{X}_{00} - \mu \bar{X}_{20} } \right) \\ &+ k_{p} \left( {\mu \bar{X}_{40} - \bar{X}_{20} } \right) \\ & + K_{55} \left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right) \\ & + J_{11}^{ff} \left( {\bar{X}_{40} - \lambda \bar{X}_{60} } \right) \\ \end{array}\)

\(k_{34} = \left( {Y_{31}^{e} - X_{15} } \right)\left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{35} = \left( {Y_{31}^{m} - Y_{15} } \right)\left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{41} = K_{31}^{e} \left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right)\)

\(k_{42} = X_{31}^{e} \left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{43} = \left( {X_{15} - Y_{31}^{e} } \right)\left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right)\)

\(k_{44} = X_{11} \left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right) + X_{33} \left( {\lambda \bar{X}_{20} - \bar{X}_{00} } \right)\)

\(k_{45} = Y_{11} \left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right) + Y_{33} \left( {\lambda \bar{X}_{20} - \bar{X}_{00} } \right)\)

\(k_{51} = K_{31}^{m} \left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right)\)

\(k_{52} = X_{31}^{m} \left( {\lambda \bar{X}_{40} - \bar{X}_{20} } \right)\)

\(k_{53} = \left( {Y_{15} - Y_{31}^{m} } \right)\left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right)\)

\(k_{54} = Y_{11} \left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right) + Y_{33} \left( {\lambda \bar{X}_{20} - \bar{X}_{00} } \right)\)

\(k_{55} = K_{11} \left( {\bar{X}_{20} - \lambda \bar{X}_{40} } \right) + K_{33} \left( {\lambda \bar{X}_{20} - \bar{X}_{00} } \right)\)

F e33  = F m33  = 0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., karimiasl, M. & Mahesh, V. Chaotic dynamics and forced harmonic vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam. Engineering with Computers 37, 937–950 (2021). https://doi.org/10.1007/s00366-019-00865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00865-3

Keywords

Navigation