Skip to main content
Log in

Local radial basis function–finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher–Kolmogorov equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this investigation, we concentrate on solving the regularized long-wave (RLW) and extended Fisher–Kolmogorov (EFK) equations in one-, two-, and three-dimensional cases by a local meshless method called radial basis function (RBF)–finite-difference (FD) method. This method at each stencil approximates differential operators such as finite-difference method. In each stencil, it is necessary to solve a small-sized linear system with conditionally positive definite coefficient matrix. This method is relatively efficient and has low computational cost. How to choose the shape parameter is a fundamental subject in this method, since it has a palpable effect on coefficient matrix. We will employ the optimal shape parameter which results from algorithm of Sarra (Appl Math Comput 218:9853–9865, 2012). Then, we compare the approximate solutions acquired by RBF–FD method with theoretical solution and also with results obtained from other methods. The numerical results show that the RBF–FD method is suitable and robust for solving the RLW and EFK equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adormian G (1995) Fisher–Kolmogorov equation. Appl Math Lett 8:51–52

    MathSciNet  Google Scholar 

  2. Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv Math 30:33–67

    MathSciNet  MATH  Google Scholar 

  3. Bayona V, Moscoso M, Kindelan M (2011) Optimal constant shape parameter for multiquadric based RBF-FD methods. J Comput Phys 230:7384–7399

    MathSciNet  MATH  Google Scholar 

  4. Bayona V, Moscoso M, Kindelan M (2012) Optimal variable shape parameter for multiquadric based RBF-FD methods. J Comput Phys 231:2466–2481

    MathSciNet  MATH  Google Scholar 

  5. Bayona V, Flyer N, Fornberg B (2019) On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. J Comput Phys 380:378–399

    MathSciNet  MATH  Google Scholar 

  6. Benjamin TB, Bona JL, Mahony JJ (1972) Model equations for long waves in nonlinear dispersive systems. Philos Trans R Soc Lond Ser A 272:47–78

    MathSciNet  MATH  Google Scholar 

  7. Bolling EF, Flyer N, Erlebacher G (2012) Solution to PDEs using radial basis function finite difference (RBF-FD) on multiple GPUs. J Comput Phys 231:7133–7151

    MathSciNet  Google Scholar 

  8. Chandhini G, Sanyasiraju YVSS (2007) Local RBF-FD solutions for steady convection-diffusion problems. Int J Numer Methods Eng 72:352–378

    MathSciNet  MATH  Google Scholar 

  9. Coullet P, Elphick C, Repaux D (1987) Nature of spatial chaos. Phys Rev Lett 58:431–434

    MathSciNet  Google Scholar 

  10. Dag I (2000) Least squares quadratic B-spline finite element method for the regularized long wave equation. Comput Methods Appl Mech Eng 182:205–215

    MATH  Google Scholar 

  11. Dag I, Naci Özer M (2001) Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl Math Model 25:221–231

    MATH  Google Scholar 

  12. Dag I, Saka B, Irk D (2004) Application of cubic B-splines for numerical solution of the RLW equation. Appl Math Comput 159:373–389

    MathSciNet  MATH  Google Scholar 

  13. Danumjaya P, Pani AK (2005) Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation. J Comput Appl Math 174:101–117

    MathSciNet  MATH  Google Scholar 

  14. Danumjaya P, Pani AK (2006) Numerical methods for the extended Fisher–Kolmogorov (EFK) equation. Int J Numer Anal Model 3:186–210

    MathSciNet  MATH  Google Scholar 

  15. Dee GT, Saarloos WV (1988) Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett 60:2641–2644

    Google Scholar 

  16. Dehghan M, Salehi R (2011) The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas. Comput Phys Commun 182:2540–2549

    MathSciNet  MATH  Google Scholar 

  17. Dehghan M, Abbaszadeh M (2015) The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J Comput Appl Math 286:211–231

    MathSciNet  MATH  Google Scholar 

  18. Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510

    MathSciNet  MATH  Google Scholar 

  19. Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Comput Math Appl 54:136–146

    MathSciNet  MATH  Google Scholar 

  20. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30

    MathSciNet  MATH  Google Scholar 

  21. Dehghan M (2005) On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer Methods Partial Differ Equ 21(1):24–40

    MathSciNet  MATH  Google Scholar 

  22. Djidjeli K, Price WG, Twizell EH, Cao Q (2003) A linearized implicit pseudo-spectral method for some model equations the regularized long wave equations. Commun Numer Methods Eng 19:847–863

    MathSciNet  MATH  Google Scholar 

  23. Driscol TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43:413–422

    MathSciNet  MATH  Google Scholar 

  24. Eilbeck JC, McGuire GR (1975) Numerical study of RLW equation I: numerical methods. J Comput Phys 19:43–57

    MathSciNet  MATH  Google Scholar 

  25. Eilbeck JC, McGuire GR (1977) Numerical study of the regularized long-wave equation II: interaction of solitary waves. J Comput Phys 23:63–73

    MathSciNet  MATH  Google Scholar 

  26. Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, New York

    MATH  Google Scholar 

  27. Flyer N, Lehto E, Blaise S, Wright GB, St-Cyr A (2012) A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J Comput Phys 231:4078–4095

    MathSciNet  MATH  Google Scholar 

  28. Forenberg B, Wright G (2004) Stable computation of multiquadric interpolants for all values of the shape parameter. Comput Math Appl 16:497–523

    MathSciNet  Google Scholar 

  29. Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230:2270–2285

    MathSciNet  MATH  Google Scholar 

  30. Fornberg B, Wrigth G, Larsson E (2004) Some observations regarding interpolants in the limit of flat radial basis functions. Comput Math Appl 47:37–55

    MathSciNet  MATH  Google Scholar 

  31. Ghiloufi A, Rouatbi A, Omrani K (2018) A new conservative fourth-order accurate difference scheme for solving a model of nonlinear dispersive equations. Math Methods Appl Sci 41:5230–5253

    MathSciNet  MATH  Google Scholar 

  32. Guo BY, Cao WM (1988) The Fourier pseudospectral method with a restrain operator for the RLW equation. J Comput Phys 74:110–126

    MathSciNet  MATH  Google Scholar 

  33. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Google Scholar 

  34. Hardy RL (1975) Research results in the application of multiquadric equations to surveying and mapping problems. Surv Map 35:321–332

    Google Scholar 

  35. Helal MA (2002) Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Solitons Fractals 13(9):1917–1929

    MathSciNet  MATH  Google Scholar 

  36. Hon YC, Mao XZ (1998) An efficient numerical scheme for Burgers equation. Appl Math Comput 95:37–50

    MathSciNet  MATH  Google Scholar 

  37. Hon YC, Cheung KF, Mao XZ, Kansa EJ (1999) Multiquadric solution for shallow water equations. J Hydraul Eng 125:524–533

    Google Scholar 

  38. Hon YC, Mao XZ (1999) A radial basis function method for solving options pricing model. Financ Eng 8:31–49

    Google Scholar 

  39. Hornreich RM, Luban M, Shtrikman S (1975) Critical behaviour at the onset of \(\vec{k}\)-space instability at the \(\lambda\) line. Phys Rev Lett 35:1678–1681

    Google Scholar 

  40. Ilati M, Dehghan M (2017) Direct local boundary integral equation method for numerical solution of extended Fisher–Kolmogorov equation. Eng Comput 34:203–213

    Google Scholar 

  41. Javed A, Djijdeli K, Xing JT (2014) Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier–Stokes equations. Comput Fluids 89:38–52

    MathSciNet  MATH  Google Scholar 

  42. Kadri T, Omrani K (2011) A second-order accurate difference scheme for an extended Fisher–Kolmogorov equation. Comput Math Appl 61:451–459

    MathSciNet  MATH  Google Scholar 

  43. Kadri T, Omrani K (2018) A fourth-order accurate finite difference scheme for the extended Fisher–Kolmogorov equation. Bull Korean Math Soc 55:297–310

    MathSciNet  MATH  Google Scholar 

  44. Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics- I. Surface approximations and partial derivative estimates. Comput Math Appl 9:127–145

    MathSciNet  MATH  Google Scholar 

  45. Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics- II. Solutions to parabolic hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    MathSciNet  MATH  Google Scholar 

  46. Khiari N, Omrani K (2011) Finite difference discretization of the extended Fisher–Kolmogorov equation in two dimensions. Comput Math Appl 62:4151–4160

    MathSciNet  MATH  Google Scholar 

  47. Lam L (2003) Introduction to nonlinear physics. Springer, New York

    Google Scholar 

  48. Liu GR, Gu YT (2005) An introduction to mesh free methods and their programming. Springer, Dordrecht, Berlin, Heidelberg, New York

    Google Scholar 

  49. Marcozzi M, Choi S, Chen CS (2001) On the use of boundary conditions for variational formulations arising in financial mathematics. Appl Math Comput 124:197–214

    MathSciNet  MATH  Google Scholar 

  50. Mittal RC, Arora G (2010) Quintic B-spline collocation method for numerical solution of the extended Fisher–Kolmogorov equation. Int J Appl Math Mech 6:74–85

    Google Scholar 

  51. Mittal RC, Dahiya S (2016) A study of quintic B-spline based differential quadrature method for a class of semi-linear Fisher–Kolmogorov equations. Alexandria Eng J 55:2893–2899

    Google Scholar 

  52. Omrani K (2006) The convergence of fully discrete Galerkin approximations for the Benjamin–Bona–Mahony (BBM) equation. Appl Math Comput 180:614–621

    MathSciNet  MATH  Google Scholar 

  53. Peletier LA, Troy WC (1995) A topological shooting method and the existence of kinks of the extended Fisher–Kolmogorov equation. Topol Methods Nonlinear Anal 6:331–355

    MathSciNet  MATH  Google Scholar 

  54. Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25:321–330

    Google Scholar 

  55. Petras A, Ling L, Piret C, Ruuth SJ (2019) A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces. J Comput Phys 381:146–161

    MathSciNet  MATH  Google Scholar 

  56. Rippa S (1999) An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv Comput Math 11:193–210

    MathSciNet  MATH  Google Scholar 

  57. Roque CMC, Cunha D, Shu C, Ferreira AJM (2011) A local radial basis functions—Finite differences technique for the analysis of composite plates. Eng Anal Bound Elem 35(3):363–374

    MathSciNet  MATH  Google Scholar 

  58. Roshan T (2012) A Petrov–Galerkin method for solving the generalized regularized long wave (GRLW) equation. Comput Math Appl 63:943–956

    MathSciNet  MATH  Google Scholar 

  59. Rouatbi A, Omrani K (2017) Two conservative difference schemes for a model of nonlinear dispersive equations. Chaos Solit Fractal 104:516–530

    MathSciNet  MATH  Google Scholar 

  60. Rouatbi A, Achouri T, Omrani K (2018) High-order conservative difference scheme for a model of nonlinear dispersive equations. Comput Appl Math 37:4169–4195

    MathSciNet  MATH  Google Scholar 

  61. Sarra SA (2012) A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl Math Comput 218:9853–9865

    MathSciNet  MATH  Google Scholar 

  62. Shang Y, Niu P (1988) Explicit exact solutions for the RLW equation and the SRLW equation in two space dimensions. Math Appl 11:1–5

    MathSciNet  MATH  Google Scholar 

  63. Shan YY, Shu CW, Qin N (2009) Multiquadric finite difference (MQ-FD) methods and its application. Adv Appl Math Mech 1:615–638

    MathSciNet  Google Scholar 

  64. Shokri A, Dehghan M (2010) A meshless method using the radial basis functions for numerical solution of the regularized long wave equation. Numer Methods Partial Differ Equ 26:807–825

    MathSciNet  MATH  Google Scholar 

  65. Shu CW, Ding H, Zhao N, Cao Q (2006) Numerical comparison of least square-based finite-difference (LSFD) and radial basis function-based finite-difference (RBF-FD) methods. Comput Math Appl 51:1297–1310

    MathSciNet  MATH  Google Scholar 

  66. Shu CW, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192:941–954

    MATH  Google Scholar 

  67. Tillenius M, Larsson E, Lehto E (2015) A scalable RBF-FD method for atmospheric flow. J Comput Phys 298:406–422

    MathSciNet  MATH  Google Scholar 

  68. Tolstykh AI (2000) On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculation. In: Proceeding of the 16th IMACS, World Congress, Lausanne

  69. Tolstykh AI, Shirobokov DA (2003) On using basis functions in a finite difference mode with applications to elasticity problems. Comput Mech 33:68–79

    MathSciNet  MATH  Google Scholar 

  70. Wendland H (2005) Scattered data approximation, Cambridge monograph on applied and computational mathematics. Cambridge University Press, England

    Google Scholar 

  71. Wright GB, Fornberg B (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J Comput Phys 212:99–123

    MathSciNet  MATH  Google Scholar 

  72. Zerroukat M, Power H, Chen CS (1992) A numerical method for heat transfer problem using collocation and radial basis functions. Int J Numer Methods Eng 42:1263–1278

    MATH  Google Scholar 

  73. Zheng-hong H (2002) On Cauchy problems for the RLW equation in two space dimensions. Appl Math Mech 23:169–177

    MathSciNet  Google Scholar 

  74. Zhu G (1982) Experiments on director waves in nematic liquid crystals. Phys Rev Lett 49:1332–1335

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge one of the referee for his (her) valuable comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Shafieeabyaneh, N. Local radial basis function–finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher–Kolmogorov equations. Engineering with Computers 37, 1159–1179 (2021). https://doi.org/10.1007/s00366-019-00877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00877-z

Keywords

Mathematics Subject Classification

Navigation