Skip to main content
Log in

A bounded numerical solver for a fractional FitzHugh–Nagumo equation and its high-performance implementation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we propose a high-performance implementation of a space-fractional FitzHugh–Nagumo model. Our implementation is based on a positivity- and boundedness-preserving finite-difference model to approximate the solutions of a Riesz space-fractional reaction-diffusion equation. The model generalizes the FitzHugh–Nagumo model. The stability and convergence of the difference scheme are thoroughly discussed. Moreover, we prove the existence and uniqueness of numerical solutions, positivity, boundedness and consistency of the model. The scheme is based on weighted and shifted Grünwald differences. The conjugate gradient method is used then to solve the sparse matrix system. The MPI and PETSc libraries are used for the computational implementation. We investigate the influence of some computer factors on the performance of our implementation and scalability. More precisely, we consider the number of cores, the size of the computation mesh and the orders of the fractional derivatives. Tests are evaluated on a ccNUMA architecture with two CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Ghoul M, Eu BC (1996) Hyperbolic reaction- diffusion equations, patterns, and phase speeds for the Brusselator. J Phys Chem 100(49):18900–18910

    Google Scholar 

  2. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern software tools in scientific computing. Birkhäuser Press, Basel, pp 163–202

    MATH  Google Scholar 

  3. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2018) PETSc Web page.http://www.mcs.anl.gov/petsc, http://www.mcs.anl.gov/petsc

  4. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2018) PETSc users manual .Tech. Rep. ANL-95/11—revision 3.9, Argonne National Laboratory. http://www.mcs.anl.gov/petsc

  5. Barbera E, Consolo G, Valenti G (2013) Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model. Phys Rev E 88(5):052,719

    MathSciNet  Google Scholar 

  6. Biancalani T, Fanelli D, Di Patti F (2010) Stochastic Turing patterns in the Brusselator model. Phys Rev E 81(4):046,215

    Google Scholar 

  7. Cartwright JH (2002) Labyrinthine Turing pattern formation in the cerebral cortex. J Theor Biol 217(1):97–103

    MathSciNet  Google Scholar 

  8. Chen S, Liu F, Turner I, Anh V (2013) An implicit numerical method for the two-dimensional fractional percolation equation. Appl Math Comput 219(9):4322–4331

    MathSciNet  MATH  Google Scholar 

  9. Cho UI, Eu BC (1993) Hyperbolic reaction-diffusion equations and chemical oscillations in the Brusselator. Phys D 68(3–4):351–363

    MathSciNet  MATH  Google Scholar 

  10. Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley JM, Menyuk CR, Chembo YK (2013) Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. IEEE Photonics J 5(4):6100,409–6101,409

    Google Scholar 

  11. Consolo G, Currò C, Valenti G (2017) Pattern formation and modulation in a hyperbolic vegetation model for semiarid environments. Appl Math Model 43:372–392

    MathSciNet  MATH  Google Scholar 

  12. Datsko B, Luchko Y, Gafiychuk V (2012) Pattern formation in fractional reaction-diffusion systems with multiple homogeneous states. Int J Bifurc Chaos 22(04):1250,087

    MATH  Google Scholar 

  13. De Wit A (2007) Spatial patterns and spatiotemporal dynamics in chemical systems. Adv Chem Phys 109:435–513

    Google Scholar 

  14. Dufiet V, Boissonade J (1996) Dynamics of Turing pattern monolayers close to onset. Phys Rev E 53(5):4883

    Google Scholar 

  15. Eftimie R (2012) Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J Math Biol 65(1):35–75

    MathSciNet  MATH  Google Scholar 

  16. Ervin VJ, Macías-Díaz JE, Ruiz-Ramírez J (2015) A positive and bounded finite element approximation of the generalized Burgers–Huxley equation. J Math Anal Appl 424(2):1143–1160

    MathSciNet  MATH  Google Scholar 

  17. Fujimoto T, Ranade RR (2004) Two characterizations of inverse-positive matrices: the Hawkins–Simon condition and the Le Chatelier–Braun principle. Electron J Linear Algebra 11(1):6

    MathSciNet  MATH  Google Scholar 

  18. Gafiychuk V, Datsko B (2008) Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order. Phys Rev E 77(6):066

    MathSciNet  Google Scholar 

  19. Glöckle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68(1):46–53

    Google Scholar 

  20. Gong C, Bao W, Tang G (2013) A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method. Fract Calc Appl Anal 16(3):654–669

    MathSciNet  MATH  Google Scholar 

  21. Henry BI, Wearne SL (2002) Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J Appl Math 62(3):870–887

    MathSciNet  MATH  Google Scholar 

  22. Isaeva OB, Kuznetsov AS, Kuznetsov SP (2013) Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source. Phys Rev E 87(4):040,901

    Google Scholar 

  23. Koeller R (1984) Applications of fractional calculus to the theory of viscoelasticity. ASME Trans J Appl Mech (ISSN 0021-8936) 51:299–307

    MathSciNet  MATH  Google Scholar 

  24. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620

    MathSciNet  MATH  Google Scholar 

  25. Langlands T, Henry B, Wearne S (2007) Turing pattern formation with fractional diffusion and fractional reactions. J Phys Condens Matter 19(6):065,115

    Google Scholar 

  26. Lutscher F, Stevens A et al (2002) Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci 12(6):619–640

    MathSciNet  MATH  Google Scholar 

  27. Macías-Díaz JE (2011) Sufficient conditions for the preservation of the boundedness in a numerical method for a physical model with transport memory and nonlinear damping. Comput Phys Commun 182(12):2471–2478

    MathSciNet  MATH  Google Scholar 

  28. Macías-Díaz JE (2017) Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines. Commun Nonlinear Sci Numer Simul 53:31–43

    MathSciNet  MATH  Google Scholar 

  29. Macías-Díaz JE (2018) A bounded and efficient scheme for multidimensional problems with anomalous convection and diffusion. Comput Math Appl 75(11):3995–4011

    MathSciNet  MATH  Google Scholar 

  30. Macías-Díaz J, Puri A (2010) A boundedness-preserving finite-difference scheme for a damped nonlinear wave equation. Appl Numer Math 60(9):934–948

    MathSciNet  MATH  Google Scholar 

  31. Macías-Díaz J, Villa-Morales J (2017) A deterministic model for the distribution of the stopping time in a stochastic equation and its numerical solution. J Comput Appl Math 318:93–106

    MathSciNet  MATH  Google Scholar 

  32. Markov N, Ushenin K, Hendy A (2016) Performance evaluation of space fractional fitzhugh-nagumo model: An implementation with petsc library. CEUR Workshop Proc 1729:66–77

    Google Scholar 

  33. Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77

    MathSciNet  MATH  Google Scholar 

  34. Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56(1):80–90

    MathSciNet  MATH  Google Scholar 

  35. Morales-Hernández MD, Medina-Ramírez IE, Avelar-González FJ, Macías-Díaz JE (2012) An efficient recursive algorithm in the computational simulation of the bounded growth of biological films. Int J Comput Methods 9(04):1250,050

    MathSciNet  MATH  Google Scholar 

  36. Mvogo A, Macías-Díaz JE, Kofané TC (2018) Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion. Phys Rev E 97(3):032,129

    Google Scholar 

  37. Namias V (1980) The fractional order Fourier transform and its application to quantum mechanics. IMA J Appl Math 25(3):241–265

    MathSciNet  MATH  Google Scholar 

  38. Nec Y, Nepomnyashchy A (2007) Turing instability in sub-diffusive reaction-diffusion systems. J Phys A Math Theor 40(49):14,687

    MathSciNet  MATH  Google Scholar 

  39. Ortigueira MD (2006) Riesz potential operators and inverses via fractional centred derivatives. Int J Math Math Sci 2006:48391

    MathSciNet  MATH  Google Scholar 

  40. Pena B, Perez-Garcia C (2001) Stability of Turing patterns in the Brusselator model. Phys Rev E 64(5):056,213

    MathSciNet  Google Scholar 

  41. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J (1993) Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res 72(3):631–650

    Google Scholar 

  42. Pimenov VG, Hendy AS, De Staelen RH (2017) On a class of non-linear delay distributed order fractional diffusion equations. J Comput Appl Math 318:433–443

    MathSciNet  MATH  Google Scholar 

  43. Polyanin AD, Zaitsev VF (2016) Handbook of nonlinear partial differential equations. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  44. Povstenko Y (2009) Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Phys Scr 2009(T136):014,017

    Google Scholar 

  45. Rudovics B, Barillot E, Davies P, Dulos E, Boissonade J, De Kepper P (1999) Experimental studies and quantitative modeling of turing patterns in the (chlorine dioxide, iodine, malonic acid) reaction. J Phys Chem A 103(12):1790–1800

    Google Scholar 

  46. Rudovics B, Dulos E, De Kepper P (1996) Standard and nonstandard Turing patterns and waves in the CIMA reaction. Phys Scr 1996(T67):43

    Google Scholar 

  47. Scalas E, Gorenflo R, Mainardi F (2000) Fractional calculus and continuous-time finance. Phys A 284(1):376–384

    MathSciNet  Google Scholar 

  48. Song F, Xu C, Karniadakis GE (2016) A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput Methods Appl Mech Eng 305:376–404

    MathSciNet  MATH  Google Scholar 

  49. Su N, Nelson PN, Connor S (2015) The distributed-order fractional diffusion-wave equation of groundwater flow: theory and application to pumping and slug tests. J Hydrol 529:1262–1273

    Google Scholar 

  50. Tang X, Song Y (2015) Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality. Chaos, Solitons & Fractals 81:303–314

    MathSciNet  MATH  Google Scholar 

  51. Tarasov VE (2006) Continuous limit of discrete systems with long-range interaction. J Phys A Math Gen 39(48):14,895

    MathSciNet  Google Scholar 

  52. Tarasov VE, Zaslavsky GM (2008) Conservation laws and Hamiltons equations for systems with long-range interaction and memory. Commun Nonlinear Sci Numer Simul 13(9):1860–1878

    MathSciNet  MATH  Google Scholar 

  53. Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727

    MathSciNet  MATH  Google Scholar 

  54. Wang X, Wang W, Zhang G (2017) Vegetation pattern formation of a water-biomass model. Commun Nonlinear Sci Numer Simul 42:571–584

    MathSciNet  MATH  Google Scholar 

  55. Wolfrum M (2012) The Turing bifurcation in network systems: collective patterns and single differentiated nodes. Phys D 241(16):1351–1357

    MATH  Google Scholar 

  56. Xu J, Yang G, Xi H, Su J (2015) Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay. Nonlinear Dyn 81(4):2155–2163

    MathSciNet  Google Scholar 

  57. Yang L, Epstein IR (2003) Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys Rev Lett 90(17):178,303

    Google Scholar 

  58. Zhang T, Xing Y, Zang H, Han M (2014) Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality. Nonlinear Dyn 78(1):265–277

    MathSciNet  Google Scholar 

  59. Zhao X, Hu X, Cai W, Karniadakis GE (2017) Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng 325:56–76

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to thank the anonymous reviewers and the associate editor in charge of handling this submission for their time and efforts in evaluating this manuscript. Their comments were very helpful in improving substantially the overall quality of this work. The present work reports on a set of results of the research project “conservative methods for fractional hyperbolic systems: analysis and applications”, funded by the National Council for Science and Technology of Mexico through grant A1-S-45928. The second author acknowledges the support of RFBR Grant 19-01-00019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Macías-Díaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Implicit formulas

Implicit formulas

The purpose of this section is to provide explicit forms of the finite-difference method (29) under all the possible cases. More precisely, note that the right-hand side of that equation can be written as

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle {{\mathfrak {a}} _{0 , 0} ^k v _{0 , 0} ^{k + 1} - {\mathfrak {b}} _1 v _{1 , 0} ^{k + 1} - {\mathfrak {b}} _2 v _{0 , 1} ^{k + 1} - \sum _{l = 2} ^M {\widetilde{\omega }} _{l + 1} ^1 v _{l , 0} ^{k + 1} - \sum _{l = 2} ^N {\widetilde{\omega }} _{l + 1} ^2 v _{0 , l} ^{k + 1}}, \quad \forall (m , n ) = (0 , 0), \\ \displaystyle {{\mathfrak {a}} _{0 , n} ^k v _{0 , n} ^{k + 1} - {\mathfrak {b}} _1 v _{1 , n} ^{k + 1} - {\mathfrak {b}} _2 \left( v _{0 , n - 1} ^{k + 1} + v _{0 , n + 1} ^{k + 1} \right) - \sum _{l = 2} ^M {\widetilde{\omega }} _{l + 1} ^1 v _{l , n} ^{k + 1} - \sum _{\begin{array}{c} l = 0 \\ l \ne n - 1 , \\ n , n + 1 \end{array}} ^N {\widetilde{\omega }} _{|n - l| + 1} ^2 v _{0 , l} ^{k + 1}}, \quad \forall (m , n) \in 0 \times I _{N - 1}, \\ \displaystyle {{\mathfrak {a}} _{0 , N} ^k v _{0 , N} ^{k + 1} - {\mathfrak {b}} _1 v _{1 , N} ^{k + 1} - {\mathfrak {b}} _2 v _{0 , N - 1} ^{k + 1} - \sum _{l = 2} ^M {\widetilde{\omega }} _{l + 1} ^1 v _{l , N} ^{k + 1} - \sum _{l = 0} ^{N - 2} {\widetilde{\omega }} _{N - l + 1} ^2 v _{0 , l} ^{k + 1}}, \quad \forall (m , n) = (0 , N), \\ \displaystyle {{\mathfrak {a}} _{m , 0} ^k v _{m , 0} ^{k + 1} - {\mathfrak {b}} _1 \left( v _{m - 1 , 0} ^{k + 1} + v _{m + 1 , 0} ^{k + 1} \right) - {\mathfrak {b}} _2 v _{m , 1} ^{k + 1} - \sum _{\begin{array}{c} l = 0 \\ l \ne m - 1 , \\ m , m + 1 \end{array}} ^M {\widetilde{\omega }} _{|m - l| + 1} ^1 v _{l , 0} ^{k + 1} - \sum _{l = 2} ^N {\widetilde{\omega }} _{l + 1} ^2 v _{m , l} ^{k + 1}}, \quad \forall (m , n) \in I _{M - 1} \times 0, \\ \displaystyle {{\mathfrak {a}} _{m , n} ^k v _{m , n} ^{k + 1} - {\mathfrak {b}} _1 \left( v _{m - 1 , n} ^{k + 1} + v _{m + 1 , n} ^{k + 1} \right) - {\mathfrak {b}} _2 \left( v _{m , n - 1} ^{k + 1} + v _{m , n + 1} ^{k + 1} \right) } \\ \displaystyle {\qquad - \sum _{\begin{array}{c} l = 0 \\ l \ne m - 1 , \\ m , m + 1 \end{array}} ^M {\widetilde{\omega }} _{|m - l| + 1} ^1 v _{l , n} ^{k + 1} - \sum _{\begin{array}{c} l = 0 \\ l \ne n - 1 , \\ n , n + 1 \end{array}} ^N {\widetilde{\omega }} _{|n - l| + 1} ^2 v _{m , l} ^{k + 1}}, \quad \forall (m , n) \in J, \\ \displaystyle {{\mathfrak {a}} _{m , N} ^k v _{m , N} ^{k + 1} - {\mathfrak {b}} _1 \left( v _{m - 1 , N} ^{k + 1} + v _{m + 1 , N} ^{k + 1} \right) - {\mathfrak {b}} _2 v _{m , N - 1} ^{k + 1} - \sum _{\begin{array}{c} l = 0 \\ l \ne m - 1 , \\ m , m + 1 \end{array}} ^M {\widetilde{\omega }} _{|m - l| + 1} ^1 v _{l , N} ^{k + 1}} \\ \qquad \displaystyle {- \sum _{l = 0} ^{N - 2} {\widetilde{\omega }} _{N - l + 1} ^2 v _{m , l} ^{k + 1}}, \quad \forall (m , n) \in I _{M - 1} \times N, \\ \displaystyle {{\mathfrak {a}} _{M , 0} ^k v _{M , 0} ^{k + 1} - {\mathfrak {b}} _1 v _{M - 1 , 0} ^{k + 1} - {\mathfrak {b}} _2 v _{M , 1} ^{k + 1} - \sum _{l = 0} ^{M - 2} {\widetilde{\omega }} _{M - l + 1} ^1 v _{l , 0} ^{k + 1} - \sum _{l = 2} ^N {\widetilde{\omega }} _{l + 1} ^2 v _{M , l} ^{k + 1}}, \quad \forall (m , n) = (M , 0), \\ \displaystyle {{\mathfrak {a}} _{M , n} ^k v _{M , n} ^{k + 1} - {\mathfrak {b}} _1 v _{M - 1 , n} ^{k + 1} - {\mathfrak {b}} _2 \left( v _{M , n - 1} ^{k + 1} + v _{M , n + 1} ^{k + 1} \right) - \sum _{l = 0} ^{M - 2} {\widetilde{\omega }} _{M - l + 1} ^1 v _{l , n} ^{k + 1}} \\ \quad \displaystyle {- \sum _{\begin{array}{c} l = 0 \\ l \ne n - 1 , \\ n , n + 1 \end{array}} ^N {\widetilde{\omega }} _{|n - l| + 1} ^2 v _{M , l} ^{k + 1}}, \quad \forall (m , n) \in M \times I _{N - 1}, \\ \displaystyle {{\mathfrak {a}} _{M , N} ^k v _{M , N} ^{k + 1} - {\mathfrak {b}} _1 v _{M - 1 , N} ^{k + 1} - {\mathfrak {b}} _2 v _{M , N - 1} ^{k + 1} - \sum _{l = 0} ^{M - 2} {\widetilde{\omega }} _{M - l + 1} ^1 v _{l , N} ^{k + 1} - \sum _{l = 0} ^{N - 2} \widetilde{\omega } _{N - l + 1} ^2 v _{M , l} ^{k + 1}}, \quad \forall (m , n) = (M , N). \end{array} \right. \end{aligned}$$
(A.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías-Díaz, J.E., Hendy, A.S. & Markov, N.S. A bounded numerical solver for a fractional FitzHugh–Nagumo equation and its high-performance implementation. Engineering with Computers 37, 1593–1609 (2021). https://doi.org/10.1007/s00366-019-00902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00902-1

Keywords

Mathematics Subject Classification

Navigation