Skip to main content
Log in

Implementation of periodic boundary conditions for loading of mechanical metamaterials and other complex geometric microstructures using finite element analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The implementation of periodic boundary conditions (PBCs) is one of the most important and difficult steps in the computational analysis of structures and materials. This is especially true in cases such as mechanical metamaterials which typically possess intricate geometries and designs which makes finding and implementing the correct PBCs a difficult challenge. In this work, we analyze one of the most common PBCs implementation technique, as well as implement and validate an alternative generic method which is suitable to simulate any possible 2D microstructural geometry with a quadrilateral unit cell regardless of symmetry and mode of deformation. A detailed schematic of how both these methods can be employed to study 3D systems is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Evans KE, Nkansah MA, Hutchinson J, Rogers SC (1991) Molecular network design. Nature 353:124

    Article  Google Scholar 

  2. Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392:362–365

    Article  Google Scholar 

  3. Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040. https://doi.org/10.1126/science.235.4792.1038

    Article  Google Scholar 

  4. Wojciechowski KW (1989) Two-dimensional isotropic system with a negative poisson ratio. Phys Lett A 137:60–64. https://doi.org/10.1016/0375-9601(89)90971-7

    Article  Google Scholar 

  5. Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368

    Article  Google Scholar 

  6. Ishibashi Y, Iwata M (2000) A microscopic model of a negative Poisson’s ratio in some crystals. J Phys Soc Jpn 69:2702–2703. https://doi.org/10.1143/JPSJ.69.2702

    Article  Google Scholar 

  7. Dudek MR, Grabiec B, Wojciechowski KW (2007) Molecular dynamics simulations of auxetic ferrogel. Rev Adv Mater Sci 14:167–173

    Google Scholar 

  8. Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme damping in composite materials with negative-stiffness inclusions. Nature 410:565–567

    Article  Google Scholar 

  9. Baughman RH, Stafstrom S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one or more dimensions. Science 279:1522–1524. https://doi.org/10.1126/science.279.5356.1522

    Article  Google Scholar 

  10. Nicolaou ZG, Motter AE (2012) Mechanical metamaterials with negative compressibility transitions. Nat Mater 11:608–613

    Article  Google Scholar 

  11. Lakes R, Wojciechowski KW (2008) Negative compressibility, negative Poisson’s ratio, and stability. Phys Status Solidi Basic Res 245:545–551. https://doi.org/10.1002/pssb.200777708

    Article  Google Scholar 

  12. Mizzi L, Attard D, Casha A, Grima JN, Gatt R (2014) On the suitability of hexagonal honeycombs as stent geometries. Phys Status Solidi B 251:328–337. https://doi.org/10.1002/pssb.201384255

    Article  Google Scholar 

  13. Gatt R, Attard D, Farrugia PS, Azzopardi KM, Mizzi L, Brincat JP et al (2013) A realistic generic model for anti-tetrachiral systems. Phys Status Solidi B 250:2012–2019. https://doi.org/10.1002/pssb.201384246

    Article  Google Scholar 

  14. Mizzi L, Azzopardi KM, Attard D, Grima JN, Gatt R (2015) Auxetic metamaterials exhibiting giant negative Poisson’s ratios. Phys Status Solidi Rapid Res Lett 9:425–430. https://doi.org/10.1002/pssr.201510178

    Article  Google Scholar 

  15. Mizzi L, Mahdi EM, Titov K, Gatt R, Attard D, Evans KE et al (2018) Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson’s ratio. Mater Des 146:28–37. https://doi.org/10.1016/j.matdes.2018.02.051

    Article  Google Scholar 

  16. Taylor M, Francesconi L, Gerendás M, Shanian A, Carson C, Bertoldi K (2014) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26:2365–2370

    Article  Google Scholar 

  17. Shan S, Kang SH, Zhao Z, Fang L (2015) Design of planar isotropic negative Poisson’ s ratio structures. Extrem Mech Lett 4:96–102. https://doi.org/10.1016/j.eml.2015.05.002

    Article  Google Scholar 

  18. Hassan MR, Scarpa F, Ruzzene M, Mohammed NA (2008) Smart shape memory alloy chiral honeycomb. Mater Sci Eng A 481–482:654–657. https://doi.org/10.1016/j.msea.2006.10.219

    Article  Google Scholar 

  19. Carta G, Brun M, Baldi A (2016) Design of a porous material with isotropic negative Poisson’s ratio. Mech Mater 97:67–75. https://doi.org/10.1016/j.mechmat.2016.02.012

    Article  Google Scholar 

  20. Bezazi A, Scarpa F, Remillat C (2005) A novel centresymmetric honeycomb composite structure. Compos Struct 71:356–364. https://doi.org/10.1016/j.compstruct.2005.09.035

    Article  Google Scholar 

  21. Shen J, Zhou S, Huang X, Xie YM (2014) Simple cubic three-dimensional auxetic metamaterials. Phys Status Solidi B 251:1–8. https://doi.org/10.1002/pssb.201451304

    Article  Google Scholar 

  22. Jopek H, Strek T (2015) Thermal and structural dependence of auxetic properties of composite materials. Phys Status Solidi B 252:1551–1558. https://doi.org/10.1002/pssb.201552192

    Article  Google Scholar 

  23. Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN et al (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70:1042–1048. https://doi.org/10.1016/j.compscitech.2009.07.009

    Article  Google Scholar 

  24. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40:1907–1921. https://doi.org/10.1016/S0020-7683(03)00024-6

    Article  MATH  Google Scholar 

  25. Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 43:266–278. https://doi.org/10.1016/j.ijsolstr.2005.03.055

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao L, Wang C, Liu Z, Zhuang Z (2017) Theoretical aspects of selecting repeated unit cell model in micromechanical analysis using displacement-based finite element method. Chin J Aeronaut 30:1417–1426. https://doi.org/10.1016/j.cja.2017.05.010

    Article  Google Scholar 

  27. Mizzi L, Gatt R, Grima JN (2015) Non-porous grooved single-material auxetics. Phys Status Solidi B 252:1559–1564. https://doi.org/10.1002/pssb.201552218

    Article  Google Scholar 

  28. Poźniak AA, Wojciechowski KW, Grima JN, Mizzi L (2016) Planar auxeticity from elliptic inclusions. Compos Part B Eng 94:379–388. https://doi.org/10.1016/j.compositesb.2016.03.003

    Article  Google Scholar 

  29. Gatt R, Brincat JP, Azzopardi KM, Mizzi L, Grima JN (2015) On the effect of the mode of connection between the node and the ligaments in anti-tetrachiral systems. Adv Eng Mater 17:189–198. https://doi.org/10.1002/adem.201400120

    Article  Google Scholar 

  30. Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19:1563–1565

    Article  Google Scholar 

  31. Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of two dimensional cellular materials. Proc R Soc A Math Phys Eng Sci 382:25–42

    Google Scholar 

  32. Abd El-Sayed FK, Jones R, Burgess IW (1979) A theoretical approach to the deformation of honeycomb based composite materials. Composites 1979:209–214

    Article  Google Scholar 

  33. Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422

    Article  Google Scholar 

  34. ANSYS® Academic Research Mechanical, Release 13.0 (2013)

  35. Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8:365–379. https://doi.org/10.1088/0964-1726/8/3/308

    Article  Google Scholar 

  36. Grima BJN, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 2010:460–464. https://doi.org/10.1002/adem.201000005

    Article  Google Scholar 

  37. Grima JN, Alderson A, Evans KE (2004) Negative Poisson’s ratios from rotating rectangles. Comput Methods Sci Technol 10:137–145

    Article  Google Scholar 

  38. Attard D, Grima JN (2008) Auxetic behaviour from rotating rhombi. Phys Status Solidi 245:2395–2404. https://doi.org/10.1002/pssb.200880269

    Article  Google Scholar 

  39. Grima JN, Farrugia P-S, Gatt R, Attard D (2008) On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi 245:521–529

    Article  Google Scholar 

  40. Attard D, Manicaro E, Grima JN (2009) On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys Status Solidi B 2044:2033–2044. https://doi.org/10.1002/pssb.200982034

    Article  Google Scholar 

  41. Dudek KK, Attard D, Caruana-Gauci R, Wojciechowski KW, Grima JN (2016) Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Mater Struct 25:025009

    Article  Google Scholar 

  42. Grima JN, Gatt R, Alderson A, Evans KE (2005) On the potential of connected stars as auxetic systems. Mol Simul 13:923–934

    Google Scholar 

  43. Tang Y, Lin G, Han L, Qiu S, Yang S, Yin J (2015) Design of hierarchically cut hinges for highly stretchable and reconfi gurable metamaterials with enhanced strength. Adv Mater 2015:1–10. https://doi.org/10.1002/adma.201502559

    Article  Google Scholar 

  44. Cho Y, Shin J, Costa A, Ann T, Kunin V, Li J et al (2014) Engineering the shape and structure of materials by fractal cut. Proc Natl Acad Sci 111:17390–17395. https://doi.org/10.1073/pnas.1417276111

    Article  Google Scholar 

  45. Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A et al (2015) Hierarchical auxetic mechanical metamaterials. Sci Rep 5:1–6. https://doi.org/10.1038/srep08395

    Article  Google Scholar 

  46. Dudek KK, Gatt R, Mizzi L, Dudek MR, Attard D, Evans KE et al (2017) On the dynamics and control of mechanical properties of hierarchical rotating rigid unit auxetics. Sci Rep 7:65–69. https://doi.org/10.1038/srep46529

    Article  Google Scholar 

  47. Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of − 1. Int J Mech Sci 39:305–314

    Article  Google Scholar 

  48. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199

    Article  Google Scholar 

  49. Wojciechowski KW, Branka A, Parrinello M (1984) Monte Carlo study of the phase diagram of a two dimensional system of hard cyclic hexamers. Mol Phys 53:1541–1545

    Article  Google Scholar 

  50. Wojciechowski KW (1987) Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61:1247–1258

    Article  Google Scholar 

  51. Suquet PM (1987) Homogenization techniques for composite media. Springer, Berlin

    Google Scholar 

  52. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418. https://doi.org/10.1016/S0045-7825(98)00218-7

    Article  MathSciNet  MATH  Google Scholar 

  53. Grima JN, Evans KE (2006) Auxetic behaviour from rotating triangles. J Mater Sci 41:3193–3196

    Article  Google Scholar 

  54. Grima JN, Farrugia P-S, Gatt R, Zammit V (2006) Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J Phys Soc Jpn 76:025001

    Article  Google Scholar 

  55. Kunin V, Yang S, Cho Y, Deymier P, Srolovitz DJ (2015) Static and dynamic elastic properties of fractal-cut materials. Extrem Mech Lett. https://doi.org/10.1016/j.eml.2015.12.003

    Article  Google Scholar 

  56. Zhou XQ, Zhang L, Yang L (2017) Negative linear compressibility of generic rotating rigid triangles. Chin Phys B 26:126201

    Article  Google Scholar 

  57. Lim TC (2017) Analogies across auxetic models based on deformation mechanism. Phys Status Solidi Rapid Res Lett 11:1600440

    Article  Google Scholar 

  58. Alderson A, Alderson KL, Chirima G, Ravirala N, Zied KM (2010) The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos Sci Technol 70:1034–1041. https://doi.org/10.1016/j.compscitech.2009.07.010

    Article  Google Scholar 

  59. Shim J, Perdigou C, Chen ER, Bertoldi K, Reis PM (2012) Buckling-induced encapsulation of structured elastic shells under pressure. Proc Natl Acad Sci 2012:1–6. https://doi.org/10.1073/pnas.1115674109

    Article  Google Scholar 

  60. Bacigalupo A, Gambarotta L (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Compos Struct 116:461–476. https://doi.org/10.1016/j.compstruct.2014.05.033

    Article  Google Scholar 

  61. Ha CS, Hestekin E, Li J, Plesha ME, Lakes RS (2015) Controllable thermal expansion of large magnitude in chiral negative Poisson’s ratio lattices. Phys Status Solidi B 1434:1431–1434. https://doi.org/10.1002/pssb.201552158

    Article  Google Scholar 

  62. Bettini P, Airoldi A, Sala G, Di Landro L, Ruzzene M, Spadoni A (2010) Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process. Compos Part B Eng 41:133–147. https://doi.org/10.1016/j.compositesb.2009.10.005

    Article  Google Scholar 

  63. Hassan MR, Scarpa F, Mohamed NA, Ruzzene M (2008) Tensile properties of shape memory alloy chiral honeycombs. Phys Status Solidi B 245:2440–2444. https://doi.org/10.1002/pssb.200880263

    Article  Google Scholar 

  64. Jiang Y, Li Y (2018) 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Sci Rep 8:2397

    Article  Google Scholar 

  65. Almgren RF (1985) An isotropic three-dimensional structure with Poisson’s ratio = −1. J Elast 15:427–430

    Article  Google Scholar 

  66. Grima JN, Oliveri L, Attard D, Ellul B, Gatt R, Cicala G (2010) Hexagonal honeycombs with Zero Poisson’ s ratios and enhanced stiffness. Adv Eng Mater 2010:855–862. https://doi.org/10.1002/adem.201000140

    Article  Google Scholar 

  67. Olympio KR, Gandhi F (2010) Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. J Intell Mater Syst Struct 21:1737–1753

    Article  Google Scholar 

  68. Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 2015:27

    Google Scholar 

  69. Mitschke H, Robins V, Mecke K, Schroder-Turk G (2012) Finite auxetic deformations of plane tessellations. Proc R Soc A Math Phys Eng Sci 2012:469

    MATH  Google Scholar 

  70. Pozniak AA, Wojciechowski KW (2014) Poisson’s ratio of rectangular anti-chiral structures with size dispersion of circular nodes. Phys Status Solidi B 251:367–374. https://doi.org/10.1002/pssb.201384256

    Article  Google Scholar 

  71. Grima JN, Mizzi L, Azzopardi KM, Gatt R (2016) Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv Mater 28:385–389. https://doi.org/10.1002/adma.201503653

    Article  Google Scholar 

  72. Mizzi L, Attard D, Gatt R, Pozniak AA, Wojciechowski KW, Grima JN (2015) Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems. Compos Part B Eng 80:84–91. https://doi.org/10.1016/j.compositesb.2015.04.057

    Article  Google Scholar 

  73. Pozniak AA, Smardzewski J, Wojciechowski KW (2013) Computer simulations of auxetic foams in two dimensions. Smart Mater Struct 2013:22. https://doi.org/10.1088/0964-1726/22/8/084009

    Article  Google Scholar 

  74. Zhu H, Hobdell JR, Windle AH (2001) Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J Mech Phys Solids 49:857–870. https://doi.org/10.1016/S0022-5096(00)00046-6

    Article  MATH  Google Scholar 

  75. Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078. https://doi.org/10.1016/j.ijsolstr.2005.05.008

    Article  MATH  Google Scholar 

  76. Zhu HX, Windle AH (2002) Effects of cell irregularity on the high strain compression of open cell foams. Acta Mater 50:1041–1052

    Article  Google Scholar 

  77. Mizzi L, Salvati E, Spaggiari A, Tan J, Korsunsky AM (2020) Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting. Int J Mech Sci 167:105242. https://doi.org/10.1016/j.ijmecsci.2019.105242

    Article  Google Scholar 

Download references

Acknowledgements

K.K.D. acknowledges the financial support from the program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022, project no. 003/RID/2018/19, funding amount 11 936 596.10 PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Mizzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizzi, L., Attard, D., Gatt, R. et al. Implementation of periodic boundary conditions for loading of mechanical metamaterials and other complex geometric microstructures using finite element analysis. Engineering with Computers 37, 1765–1779 (2021). https://doi.org/10.1007/s00366-019-00910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00910-1

Keywords

Navigation